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ABSTRACT 

A method is suggested for estimating unknown velocities by combining their sparse measurements with observations of 
a tracer on a fine grid advected by the underlined velocity field. The dependence of the estimation error on a coarseness 
parameter and parameters of the flow in question is investigated numerically using synthetic velocity fields typical for 
real oceanic circulation. In an advanced version of the estimation procedure uncertainty in the transport equation forcing 
is modeled via a fuzzy sets approach. We also compare the method with a traditional interpolation which is in contrast 
to the developed procedure unable to capture the flow details. 
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1. Introduction 

The problem of retrieving a surface circulation in the 
ocean from observations of tracers such as sea surface 
temperature and chlorophyll concentration has been in- 
tensively discussed for the decades [1-15] because of its 
great practical and theoretical importance. In general it is 
an ill-posed inverse problem since the current component 
tangent to the tracer lines never can be recovered [2]. For 
that reason different additional conjectures were used to 
get a unique solution such as a scale separation [5-8]. In 
alternative approaches optimizing an appropriate cost 
function was suggested [3,4,13] or tracer observations 
were assimilated in numerical models of oceanic circula- 
tion [14]. 

If there is an independent source of information on the 
surface velocities such as a circulation model output then 
the problem can be formulated in a well-posed fashion 
using multi-objective optimization ideas [16-18]. The 
present work extends these ideas to a new set up which is 
of great practical importance: to estimate a surface circu- 
lation from high resolution tracer observations and sparse 
measurements of the surface velocity itself. 

Typically, direct measurements of the surface veloci- 
ties in the ocean covering a significant area cannot pro- 
vide a high degree of the space resolution because of 
technical difficulties and high cost of such measurements. 
For example the distance between ADCP (Acoustic 
Doppler Current Profiler) stations in NAVOCEANO 
shipboard surveys (California Coastal Region) is about  

18.5 km. On the other hand the space resolution of sate- 
llite observations of the sea surface temperature and 
chlorophyll concentration is much higher, 2 km or less 
depending on a type of radiometers. Thus, a task is to 
optimally combine these two kinds of data to restore the 
true circulation with highest possible resolution. 

Here we consider a simplified formulation of the 
problem as follows. Assume that an unknown 2D veloci- 
ty field  ,tu x  is observed on a coarse space grid 

coarse  at a fixed time . Then assume that two snap- 
shots 
G t

 ,t x  and  ,t t   x  of a tracer field are 
available as well on a fine grid , where the tracer 
concentration is covered by  

fineG

 ,t f t   u x             (1) 

with a poorly known forcing  ,f t x . 
The problem is to estimate the velocity field on the 

fine grid by optimally combining both sorts of obser- 
vations. 

We first discuss the problem when the forcing in (1) is 
completely known (Section 2). This is the case for sate- 
llite observations of sea surface temperature since they 
are usually accompanied with heat fluxes measurements. 
In Section 3 we extend the approach to a poorly known 
forcing modeling its uncertainty in terms of fuzzy sets. 
An aimed area of application is the ocean color 
(chlorophyll). An estimation algorithm is derived for the 
corresponding two-objective fuzzy optimization problem. 
Numerical experiments with few types of synthetic flows 
typical for real oceanic circulation are presented in Sec-  
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tion 4. Brief conclusions are summed up in Section 5. 

2. Velocity Estimation under Completely 
Known Forcing 

Let us fix a space point , time moment  and 
assume  and spacing  of fine  to be small 
enough such that 

fineGx
x

t
t G

  and t  can be accurately com- 
puted. 

Denote by 1  the velocities measured at  
nearest neighbors 1 2  of x on the coarse grid 

coarse . For the present purposes neither the number  
nor the configuration of the neighbors matters. To 
estimate the velocity  at  we suggest to solve the 
following conditional optimization problem  

, , ku u
x x

u

k

k
, , , kx

x

G

  2

1

min, 0
k

k k tJ W f     u u u θ u   

where k  are prescribed weights (matrices or scalars). 
A quadratic cost function is traditionally used in stati- 
stical estimation problems. In our context its advantage is 
that unconditional optimization of  leads to a li- 
near interpolation widely used in oceanographic research. 

W

 J u

The solution obtained by a standard procedure of 
Lagrangian multiplier is given by  

2

1
e I t I f  


     


u u u        (2) 

where  

1

k

I k kW u u                 (3) 

is the interpolated velocity. So, the resulting estimator 
consists of interpolation (the first term in (2)) and a 
correction according to the tracer observations (the 
second term). 

The estimation skill for each time moment we measure 
by the error ratio  

e
e

s

s
   

where  

2 22 2,e es s   u u u  

u  is the true velocity and the summation is carried out 
over all the grid points in fine . The relative error G e  
will be compared to the interpolation error  

I
I

s

s
   

where  

22
2

1
I Is

s
  u u  

Under some idealistic assumptions it can be shown 
similarly to [17] that  

1
1 1 0.293

2
e I              (4) 

i.e. theoretically speaking the method would give about 
 improvement comparing to the interpolation. In 

our numerical experiments with realistic flows shown 
below this number varies in the range 12% - 32%. 

30%

3. Unknown Forcing 

Here we assume that the forcing in (1) is not known, 
rather some reasonable confidence interval is available. 
Namely, one believes that  

   , , <bf t f t h  x x  

where  ,bf t x

h

 is a given background and  is a mar- 
gin depending on the location  and moment  as 
well which henceforth are fixed. The tracer gradient on 
the right hand side is introduced to keep the velocity 
dimension for . 

h
x t

Let us denote  

 , ,x y t bA B C f             

then the last inequality is written as <w h  where  
w Au Bv C    

To describe an uncertainty in knowledge of  ,f t x  
we assume that  is a fuzzy number with a member- 
ship function 

w
 m w  such that  0m 1 and   0m w   

if  is outside of the interval  [19,20]. To 
satisfy Equation (1) in condition of uncertainty about the 
forcing we formulate the problem of estimating 

w  ,h h 

 ,tu x  
as the following two-objective optimization problem  

   min, maxJ m w u         (5) 

which in the traditional approach does not have a solu- 
tion in contrast to the conditional optimization discussed 
above for the case of known forcing. 

A key concept in multi-objective optimization is a 
Pareto optimal solution, e.g. [21]. In plain words it is one 
in which any improvement of one objective function can 
be achieved only at the expense of another. For a formal 
definition see the cited paper. 

To find the set  of all Pareto optimal solutions for 
(5) introduce I I

P
w A IBv C  u

m w
 for the interpolated 

velocity (3) and assume that  is even and strictly 
increasing on 


 ,0h , for example  is a triangle 

membership function. 
 m w

Direct computations lead to the following parametric 
description of   P

     
    

, : , ,

0 0

I I I

I I

P u v A s w v v B s w

w h s w h

      

      

u u I
 (6) 
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In other words,  is a segment on the straight line in 
the plane 

P
 ,vu  passing through  ,I Ivu



 perpendicu- 
lar to the line . One of the endpoints of 
this segment is always coincides with 

0v C  uA B
,e evu  given by (2) 

while the another one is either  ,I I vu  or ,e eh v h u  
depending on whether Iw  is greater or less than . h

In principle, any point from  could be treated as a 
sensible estimator of the true velocity. To single out a 
certain solution one can simply take the middle point of 

, however we suggest another way which is more 
consistent with fuzzy logic ideas and also allows to find 
out an explicit expression for the estimator. Namely, we 
change the set up (5) by replacing the quadratic cost 
function 

P

P

J  by an appropriate membership function 
 ,m uI v  centered at  ,I Ivu  and then proceed to ano- 

ther fuzzy two-objective optimization problem  

   , max, maxIm v m w u         (7) 

In simple words we try to make the solution as close as 
possible to the interpolated velocity at the same time 
maximizing the possibility that just this solution advects 
the tracer. 

The Pareto optimal set for (7) also can be efficiently 
described similarly to (6) and then the unique solution 
can be singled out by taking its center of mass  

d

d

I
P

f

I
P

m m

um m










u u

u
u

              (8) 

according to fuzzy logic standard rules in aggregating 
information coming from different sources [19,20]. 

Let us parameterize Im


 as a circular cone inside the 
circle  and zero otherwise where 

 is a parameter characterizing uncertainties in the 
velocity observations. Then take  as a triangle mem- 
bership function defined by triplet . 
As a result (8) van be readily found in explicit form. 
Namely, denote  

  2 2 2
I Iv v p  u u

p
m

 , ,I I Iw h w w h 

,I Il p w r h w   

then (6) is expressible in form  

  , f I f I f I fu u A s w v v B s w      I

1

, 1

1

1, 1

 

    (9) 

where for   0Iw 

 
     
 
    

, , if 1,

, 1 , , if 1

, , if 1,

, , , if

I

I I

f

I

a l r w l r

b l r w p b l r w l r
s

b r l h l r

c l r w p c r l h l r




    
 

 
    

 

and for   0Iw 

 
 
     

    

, , if 1,

, , if 1, 1

1 , , , if 1,

, , , if 1,

I

f

I I

I

a l r w l r

b r l h l r
s

b l r w b l r w p l r

c r l h c l r w p l r

1

1

1

  

  

 
   




    

 

with  

 
   

        
 

    

   

3

2 2

1 21
,

3 3 1 1

1 1
,

3 3 1

1
,

3 3

l r l r l r
a l r

l r l r r l lr l r

l r
b l r

l r l l r

r
c l r

l r

  
 

      

 
 

  

 


1

 

4. Simulations 

4.1. Gyre Superimposed with Eddy System 

In the first series of experiments the “true” velocity field 
is given by the following stream function  

 , ,r b t x y      

where  

    2 2 2, expb bx y x y    R  

is the gyre with space scale b  and the disturbing velo- 
city is expressed by an oscillating regular system of 
eddies filling up the region  

R

       , , sin 2π sin 2π cos 3πt x y a x L y L t T    

where  is the amplitude and  is the fixed ob- 
servation time. Finally, suppose that the initial tracer 
distribution is given by a Gaussian bell  

a 3T 

       2 2 2
0 00, , expx y x x y y      R



 

where R is the patch radius and  0 0,x y  is its center. 
In all below experiments the region    , ,L L L L    

remains the same with 20L  . The fine grid  de- 
fined as the set of all integer pairs  
is also kept constant (thus 

fineG
  , : ,i j L i j L  

1x  ), while the step of the 
coarse grid is defined by X c x   where  is the 
coarseness parameter which assumes three possible 
values 

c

2,4,8c  . 

4.1.1. Known Forcing 
In the first experiment we assumed zero forcing for the 
tracer, 0f  . The estimates (2) were computed for each 
time moment d , 1, ,300t n t n    with d 0.01t   and 
then compared to the pure interpolation. 

Weights k  in the interpolation objective function 
were chosen to be inversely proportional to the squared  

W
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distances 
2

kx x  where x is the point in which the 
velocity is estimated and  are vertices of the square 
in  where  lies. 

kx

coarse

An example is shown in Figure 1 for the terminal time 
moment  under the following values of other 
parameters R = 10, Rb = 10, x0 = 3, y0 = 3, a = 5, k = 3, c 
= 8. As one can see, the estimated velocity field (first 
panel at the bottom) fairly captures principal features of 
the real velocity even for extremely high coarseness. In 
terms of numbers the relative estimation error 

e

G x

3t 

00.587 
I

 is significantly less than the interpolation 
error 0.8433   such that 1 0.3039e I      
which is well agreed with the theoretical bound (4). 

We also show the gyre itself (last panel at the bottom) 
to illustrate that the interpolation itself captures well the 
large scale part of the circulation. 

Results for other experiments are summarized in the 
following table. 

From Table 1 the following conclusions can be drawn 
- In all the instances the estimation error is less than the 

interpolation error. 
- The estimation error is most sensitive to the coar- 

seness parameter c  characterizing sparseness of the  

velocity observations. 
- The least influential parameter is the patch radius. 
- The estimation error decreases as eddy density k  

decreases. 
- As amplitude 5a   kept constant, the range of 

improvement   is  with the 
minimum value at 8c   and 
maximum value at 2

 0.2651,0.4596
1, 3, 10,a k R  

5, 2, 10,a k R c    . 
The goal of next two experiments whose results are 

presented in Tables 2 and 3 was to examine high and low 
amplitudes .  a

As one can see from Table 2 a sharp rise in the eddy 
amplitudes (ten times) modestly increases the estimation 
error, while when we go back to very small amplitude 

1a   the error decays by 2 - 3 times depending on the 
coarseness (Table 3). 

4.1.2. Unknown Forcing 
In the second series of experiments we tested the same 
model and “real” velocities with the “unknown” tracer 
forcing  

    , cos 4π cos 4π f x y h x L y L     (10) 

 
Real velocity fieid, k = 3, a = 5, c = 8       Observed veiocity field, k = 3, a = 5, c = 8    Tracer distribution under real velocity in 3 days 

 
Esimated velocity field, k = 3, a = 5, c = 8        Optimal Interpolation, k = 3, a = 5, c = 8    Large scale velocity field, k = 3, a = 5, c = 8 

 

Figure 1. A gyre superimposed with a periodic eddy system: Upper panel: 1) “True” velocity; 2) Velocity observations; 3) 
Tracer observations. Bottom panel 1) Estimated velocity at  3t ; 2) Interpolated velocity field; 3) Large scale component of 
the “real” velocity days. 
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Table 1. Dependence of the estimation and interpolation error on the eddy density (k), observation coarseness (c) and the 
patch radius (R) for the fixed amplitude a = 5. 

R  2.5 5 10 

k c δi δe δe δe 

4 2 0.3452 0.2335 0.2380 0.2291 

4 4 0.6990 0.4904 0.4976 0.4974 

4 8 1.0018 0.7130 0.7170 0.7042 

3 2 0.2689 0.1772 0.1804 0.1640 

3 4 0.5721 0.3860 0.3946 0.3846 

3 8 0.8433 0.6024 0.6034 0.5870 

2 2 0.2069 0.1309 0.13295 0.1118 

2 4 0.4225 0.2728 0.2811 0.2596 

2 8 0.7612 0.5336 0.5340 0.5149 

 
Table 2. Dependence of the estimation and interpolation 
error on the observation coarseness (c) and the patch radius 
(R) for the fixed amplitude a = 50 and eddy density k = 3. 

R  2.5 5 10 

c δi δe δe δe 

2 0.3162 0.2220 0.2220 0.2216 

4 0.6737 0.4659 0.4573 0.4478 

8 0.9779 0.6855 0.6739 0.6464 

 
Table 3. Dependence of the estimation and interpolation 
error on the observation coarseness (c) and the patch radius 
(R) for the fixed amplitude a = 1 and eddy density k = 3. 

R  2.5 5 10 

c δi δe δe δe 

2 0.1132 0.0752 0.0772 0.0732 

4 0.2356 0.1597 0.1639 0.1608 

8 0.4165 0.3004 0.3036 0.3061 

 
where  is a given amplitude. The experiment condi- 
tions were the same as in the previous subsection except 
that the transport Equation (1) was integrated to generate 
tracer observations with the forcing given in (10) and the 
velocity estimates were obtained from the more general 
Equation (9) instead of (2). We underscore that in 
estimating the velocity field by (9) expression (10) for 
the forcing was not used at all. The only information on 
the forcing used for estimating was  and h . 

h

0bf 
The goal of experiments with fuzzy estimator (9) was 

to compare it with the estimator (2) which simply ignores 
the forcing uncertainty. We carried out such a compa- 
rison for two values of the parameter  cha- 
racterizing the forcing intensity. The results are summed  

5,10h 

up in Tables 4 and 5. The relative error of the fuzzy 

estimator f  is defined similarly to e .  
The main conclusions concerning an unknown forcing 

are as follows: 
- In most of scenarios the fuzzy estimator overperforms 

the non-fuzzy one. 
- Under high amplitude of an unknown forcing and low 

coarseness the simple interpolation can perform better 
than either of the estimators. 

4.2. Coastal Flow 

The goal of the last experiment Which is prensented in 
Figure 2 was to examine the method performance in 
detecting a single vortex (eddy) surrounded by a steady 
coastal current. The “true” velocity field is shown in the 
first panel at the upper row. On the next panel sparse 
direct velocity measurements are presented, which 
certainly do not allow to capture the eddy because of too 
low resolution. Finally, in the third panel we give tracer 
observations which exposing the eddy, but not sufficient 
to recover the whole flow. 

The estimate according to the developed fuzzy 
algorithm is shown in the first panel of the lower row. 
One can see that the procedure was able to efficiently 
combine both kinds of the observations thereby 
adequately to retrieve both the eddy and background 
current. We compare the result with a pure interpolation 
(second panel) where the eddy turned out to be almost 
invisible. The only positive outcome of the interpolation 
is a fair estimate of the background flow (last panel). 

In terms of numbers the improvement of the fuzzy 
estimate comparing to interpolation is only about , 
but in fact qualitatively the results are quite different. 

16%

5. Conclusions 

A method is developed for estimating surface velocities 
on a fine grid by combining o kinds of observations:  tw   
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True                            Observed velocity field                             Tracer 

 
Estimated velocity field                     Optimal Interpolation                          Background 

 

Figure 2. A synthetic coastal flow with an isolated eddy: Upper panel 1) “True” velocity. 1) Velocity observations; 2) Tracer 
observations; Bottom panel 1) Estimated velocity at t = 3 days; 2) Interpolated velocity field; 3) Large scale component of the 
“true” velocity. 
 
Table 4. Comparison between the fuzzy estimator (δf), 
non-fuzzy (δe, Section 2), and interpolation (δi) for h = 5. 

c δi δf δe 

2 0.2689 0.2626 0.3571 

4 0.5721 0.4718 0.4972 

8 0.8433 0.6740 0.6505 

 
Table 5. Comparison between the fuzzy estimator (δf), 
non-fuzzy (δe, Section 2), and interpolation (δi) for h = 10. 

c δi δf δe 

2 0.2689 0.3003 0.4609 

4 0.5721 0.4935 0.5760 

8 0.8433 0.6891 0.7122 

 
velocity itself on a coarse grid and tracer on a fine grid. 

The first version of the method is aimed at the known 
forcing in the transport equation. The corresponding 
estimator is nothing more but the solution of a classical 
conditional optimization problem with a traditional  

quadratic cost function. Numerical experiments were 
conducted with a gyre superimposed by a vortex system  
to investigate the method performance depending on the 
coarseness of velocity measurements, the number of 
eddies, and the gyre radius. Improvement in the estimate 
comparing to the pure interpolation was around 25% - 
40% depending on the above parameters. 

In the second version of the method designed for a 
poorly known forcing we model uncertainties in the 
forcing and velocity measurements using a fuzzy set 
approach. Arising a simple two-objective fuzzy optimi- 
zation problem allows an explicit solution. With poorly 
known forcing an improvement in estimation comparing 
to interpolation is more modest. Moreover, for low 
coarseness interpolation can work even slightly better 
under large unknown forcing. As for comparing the 
fuzzy and non-fuzzy algorithm (which does not account 
for uncertainties in the forcing at all) the former is better 
in all the scenarii, even though the difference in 
estimation error is not much significant. 

On the qualitative level the method overperforms 
interpolation as well for a typical coastal flow with an 
isolated eddy. 
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