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ABSTRACT 

We examine a popular practitioner methodology used in the construction of linear factor models whereby particular 
factors are increased or decreased in relative importance within the model. This allows model builders to customise 
models and, as such, reflect those factors that the client and modeller may think important. We call this process Prag- 
matic Bayesianism (or prag-Bayes for short) and we provide analysis which shows when such a procedure is likely to 
be successful. 
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1. Introduction 

The purpose of this paper is to investigate statistical pro- 
cedures frequently used by practitioners to build factor 
models. In particular, we are interested in the variable 
selection methodologies that are used to give a particular 
returns model a particular style and nature. For example, 
in the context of global models, one may wish the model 
to depend more or less upon domestic factors such as 
country’s indices rather than, say, global factors such as 
currency or world equity and bond markets. Likewise at 
the domestic level, one may want one’s model to be built 
around styles (value, growth etc.) rather than industries 
or sectors—alternatively, the opposite may be preferred. 
The literature on this topic is very sparse. We present a 
brief survey of alternative approaches. The problem can 
be viewed as a practical alternative to well-known Baye- 
sian procedures, such as Jorion’s (1986) [1] Bayes Stein 
adjustment and Black-Litterman’s BL model (1991, 1992) 
[2,3]. These models are both examples of Bayesian ad- 
justment which effectively updates currently held opin- 
ions with data to form new opinions. Satchell and Scow- 
croft (2000) [4] also present details of Bayesian portfolio 
construction procedures based on Black-Litterman mod- 
els. The essential idea in this process is to have a prior 
distribution over expected returns or over the regression 
Betas. In either case, one needs to specify hyperparame- 
ters which are, in practice, very troublesome. The proce- 
dure we advocate, and which is used by practitioners, is 
to convert beliefs about the magnitude of betas into pro- 
cedures of sequential regression.  

In Section 2 we shall describe how this is done in prac- 
tice and how it could be analysed in theory. In Section 3 
we shall present conditions under which these method- 
ologies should work. Section 4 presents some empirical 
results. Conclusions and further discussion are presented 
in Section 5. 

2. Theorem 

There are a number of procedures that can be used to 
facilitate one factor being preferred to another. Here we 
shall assume that our return series is denoted by the n × 1 
vector y, and the two factors over which we may have 
preferences are denoted by 1X  and 2X  respectively, 
both n × 1 vectors.  

Letting  1 2
2

,
n
X X X

 , we will facilitate calculations 

later by making the following assumption: 
1

1
X X




    
 

 

Our “true” model is 

1 1 2 2y X X u                (1) 

where y and u are n× 1 vectors, β1 and β2 are scalars and 
 2~ 0, Nu N I .  

This is obviously a simplification of the general case, 
but little is lost in so doing and it allows us to focus on 
the essential features of the problem. We now define the 
sequential variable selection method (SVSM), which is 
the essential component of the prag-Bayes approach. 

Definition: The SVSM is defined by the following 
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procedure. If you want variable 1 to “explain” more of y 
asset returns than variable 2, you regress variable 1 first 
in a univariate regression. The coefficient for variable 2 
is then calculated by regressing the residual of y on vari- 
able 1 upon the residual of variable 2 on variable 1. 

The question we wish to ask is: under what circum- 
stances will this procedure lead to a larger estimated ex- 
posure  1̂  of variable 1 versus that of variable 2, 
 2̂ . A closely related question is the conditions under 
which the new slope estimates will be bigger or smaller 
than those calculated from conventional ordinary least 
squares (OLS). 

It is worth discussing a variant on these procedures 
which concerns testing. Rather than just focusing on the 
magnitude of ̂ : we could also alternatively make in- 
clusion and exclusion decisions based on t-statistics. Our 
results can be tilted in the desired direction by moving 
the critical values of our tests. 

In terms of the Equation (1), we do not wish to impose 
β1 > β2 for all stocks. This is because we recognise that 
particular stocks may not be modeled subject to such a 
constraint. To illustrate, in the case of factor 1 being a 
global factor and factor 2 being a domestic factor, we can 
imagine cases of multinationals where β1 > β2 but there 
will also be Japanese railway stocks, for example, where 
the opposite is true. Accordingly, a Bayesian approach 
where β1 and β2 are variable allows us to approach this 
question in a theoretically appealing way. 

We may have a prior, that P(β1 ≥ β2) ≥ d where d is 
some threshold probability, and P() denotes the probabi- 
lity of the event in brackets. This can be easily imposed 
by an adroit choice of hyper-parameters in the prior joint 
distribution of β1 and β2. Then we can compute the like- 
lihood in the usual way, and finally, the posterior distri- 
bution of β1 and β2 where the posterior probability of β1 ≥ 
β2 can be computed in a straightforward manner. How- 
ever, implementation of hierarchical Bayes models re- 
quired a number of ancillary assumptions that are not 
particularly transparent, see Gelman (2004) [5] for ex- 
ample. We shall not detail how a Bayesian might proceed, 
but return to our SVSM method to see if it can achieve 
similar results and now address the second question as to 
whether the SVSM method will increase the magnitude, 
relative to OLS, of estimated β1. 

With the above model we now consider the two esti- 
mators of β1 

1) 1̂  from 1 1y X     where 2 2X u    

 
  

1 1 1 1

1

1 1 1 1 2 2

ˆ X X X y



1

X X X X u



 

 

   



 

2) 1  from 1 1 2 2y X X u     i.e. 

 2 2

1

1 1 1 1x xX P X X P y


 , 

where  
2

1

2 2 2xP I X X X X
   2



 

With the assumption on X X  we have immediately 
that 1 1

ˆ X y   

   
12

1 11 2X y X y  


     

and since  20,u N I  
This implies  2, I 

1 0

y N X  

And    
 

11
1 12 2

21

2

ˆ

1 1

,

X y

X y

N u


  



 

                   

 

  

Where 1 2

1

 



 

  
 

 and    12

1 1

1 1 


 
  
  

We now calculate the following probability illustrated 
in the following diagram Figure 1, where the horizontal 
axis gives values of 1̂  while the vertical gives values 
of 1̂ . 

   
 
 
 

1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

ˆ, 0, 0

ˆ ˆ, 0, 0

ˆ ˆ, 0, 0

ˆ ˆ, 0, 0

P P

P

P

P

     

   

   

   

    ˆ ˆ

    

    

   

  

 

 

 

 

The result is stated in the following Theorem. 
Theorem 
Under the SVSM estimation procedure we have the 

following probability: 
When ρ > 0 

 

 

Figure 1. Area defining the probability.   
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For ρ < 0 
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02

1 1 1 1 1
0

2
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      r r  

where    
2

22
2

1
1 2g r r

  
 

   
               

, 
2 2

2
2

1 1
2h r r

  


 

   
     
  
  






 

    2

1 1 2  22

1 1
exp

22π
f r r  


     
 

 and   2

2 122

1 1
exp

22π
f r r  


     
 

2  

Proof: See Appendix 

 

3. Statistical Analysis The results show that if the regression was a high R2 
and if the two variables are positively correlated, then 
this procedure leads to a high probability that 1̂  ex- 
ceeds 1  not just when 1̂  exceeds 1 , but even when 

1̂  is less than 1  (see Tables 3-5). In the case when 
R2 is low or when the returns are negatively correlated, 
the methodology is less successful. 

To illustrate our calculations, we carried out some nu- 
merical calculations; we calculated the probability that 

1̂  exceeds 1  for different values of σ and ρ; we also 
computed the R2 of the regression. The values of σ were 
0.1, 0.2, 0.5, 1.0, and 2.0 whilst the values of ρ were −0.8, 
−0.5, −0.2, 0.2, 0.5 and 0.8. Different combinations of 1̂  
and 1  were used, namely (0.8, 0.4), (0.5, 0.4), (0.4, 0.4), 
(0.3, 0.4), and (0.1, 0.4). The output constitutes Tables 
1-5. 

4. Empirical Examples 

For illustrative purposes, we use six Fama-French style 
based portfolios formed on size and book-to-market1. 
These are: Small Growth (SG), Small Neutral (SN), 
Small Value (SV), Big Growth (BG), Big Neutral (BN), 
Big Value (BV). There are two return factors, the first, 
SMB (Small Minus Big) is the return difference between 
the average of three small portfolios and the average of 
three large portfolios, Likewise, the second factor, HML 
(High Minus Low) is the return difference between the 
average of two value portfolios and the average of two 
growth portfolios. 

 
Table 1. Probability and R-squared for  and 

; (a) Probability for  and ; (b) 

R-squared for  and . 

β̂1 = 0.80

β̂1 = 0.40β̂1 = 0.80 β̂1 = 0.80

β̂1 = 0.40β̂1 = 0.80

(a) 

   
 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.008198 0.000266 0.000044 0.999956 0.999734 0.991802

0.2 0.117701 0.042598 0.025148 0.974964 0.958360 0.884898

0.5 0.279114 0.267746 0.248766 0.751119 0.721594 0.632659

1.0 0.305628 0.367917 0.395136 0.570189 0.528138 0.436008

σ 

2.0 0.311146 0.399377 0.448025 0.496190 0.443837 0.347957

We choose two different sample periods, where SMB 
and HML are either positively or negatively correlated. 
Table 6 lists the regression results for the period from 
1935 Jan to 1954 Dec, where SMB and HML are posi- 
tively correlated with ρ = 0.529; Table 7 lists the regres- 
sion results for the period from 1992 Jan to 2011 Dec 
with ρ = −0.348. In our sequential variable selection 
model, SMB is variable 1 and HML is variable 2. 1̂  is 
the estimated coefficient from the univariate regression  

(b) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.966443 0.979592 0.985337 0.989339 0.991150 0.992436

0.2 0.878049 0.923077 0.943820 0.958678 0.965517 0.970414

0.5 0.535316 0.657534 0.728850 0.787776 0.817518 0.839949

1.0 0.223602 0.324324 0.401914 0.481328 0.528302 0.567474

σ 

2.0 0.067164 0.107143 0.143836 0.188312 0.218750 0.246988

1The stocks are ranked based on two independent criteria: size (market 
capitalization) and book-to-price (the ratio of book value to market 
value). The median NYSE market equity is chosen to divide the stocks 
into two groups: big and small; the 30th and 70th percentiles of book-
to-price ratio are used to split the stocks into three groups: growth, 
neutral and value. Six portfolios are formed from the intersection of 
these independent sorts. Six portfolios are formed from the intersection 
of these independent sorts. 
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Table 2. Probability and R-squared for  and 

; (a) Probability for  and  (b) 

R-squared for  and . 

β̂1 = 0.50

β1 = 0.40β1 = 0.40 β̂1 = 0.50

β1 = 0.40β̂1 = 0.50

(a) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.041297 0.001569 0.000057 0.999956 0.999734 0.991802

0.2 0.196088 0.089434 0.039651 0.971446 0.956407 0.881919

0.5 0.292002 0.318466 0.308932 0.690551 0.660531 0.563587

1.0 0.307585 0.385128 0.421232 0.536673 0.490127 0.393426

σ 

2.0 0.311519 0.404026 0.455544 0.485904 0.431795 0.334440

(b) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.900000 0.954545 0.970588 0.980000 0.983871 0.986486

0.2 0.692308 0.840000 0.891892 0.924528 0.938462 0.948052

0.5 0.264706 0.456522 0.568966 0.662162 0.709302 0.744898

1.0 0.082569 0.173554 0.248120 0.328859 0.378882 0.421965

σ 

2.0 0.022005 0.049881 0.076212 0.109131 0.132321 0.154334

 
Table 3. Probability and R-squared for  and 

; (a) Probability for  and ; (b) 

R-squared for  and . 

β1 = 0.40

β1 = 0.40β1 = 0.40 β1 = 0.40

β1 = 0.40β1 = 0.40

(a) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.196464 0.021743 0.000680 0.999950 0.999733 0.991801

0.2 0.273772 0.156281 0.070600 0.961037 0.950293 0.875036

0.5 0.305567 0.345069 0.339541 0.659712 0.630060 0.532287

1.0 0.310969 0.392804 0.431375 0.524599 0.477063 0.379741

σ 

2.0 0.312364 0.406016 0.458267 0.482522 0.428049 0.330487

(b) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.864865 0.941176 0.962406 0.974619 0.979592 0.982935

0.2 0.615385 0.800000 0.864865 0.905660 0.923077 0.935065

0.5 0.203822 0.390244 0.505929 0.605678 0.657534 0.697337

1.0 0.060150 0.137931 0.203822 0.277457 0.324324 0.365482

σ 

2.0 0.015748 0.038462 0.060150 0.087591 0.107143 0.125874

Table 4. Probability and R-squared for  and 

; (a) Probability for  and ; (b) 

R-squared for  and . 

ˆ
1β = 0.30

β1 = 0.40β1 = 0.40 ˆ
1β = 0.30

β1 = 0.40ˆ
1β = 0.30

(a) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.490914 0.145394 0.012818 0.999596 0.999673 0.991738

0.2 0.376203 0.268794 0.139910 0.930899 0.931419 0.857201

0.5 0.324386 0.376531 0.375308 0.623671 0.594845 0.497748

1.0 0.315780 0.401432 0.442149 0.512258 0.464063 0.366637

σ

2.0 0.313574 0.408225 0.461091 0.479180 0.424459 0.326839

(b) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.852941 0.928571 0.952830 0.967532 0.973684 0.977876

0.2 0.591837 0.764706 0.834711 0.881657 0.902439 0.917012

0.5 0.188312 0.342105 0.446903 0.543796 0.596774 0.638728

1.0 0.054820 0.115044 0.168053 0.229584 0.270073 0.306519

σ

2.0 0.014293 0.031477 0.048072 0.069335 0.084668 0.099505

 
Table 5. Probability and R-squared for  and 

; (a) Probability for  and ; (b) 

R-squared for  and . 

ˆ
1β = 0.10

β1 = 0.40β1 = 0.40 ˆ
1β = 0.10

β1 = 0.40ˆ
1β = 0.10

(a) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.815601 0.751707 0.393672 0.918113 0.972403 0.976545

0.2 0.599814 0.586064 0.431205 0.740597 0.794515 0.747375

0.5 0.376591 0.451091 0.458812 0.539563 0.514171 0.423813

1.0 0.329611 0.421336 0.465250 0.487285 0.438907 0.342919

σ

2.0 0.317082 0.413286 0.467019 0.472654 0.417802 0.320514

(b) 

   

 −0.8 −0.5 −0.2 0.2 0.5 0.8 

0.1 0.913793 0.928571 0.939024 0.948980 0.954545 0.959016

0.2 0.726027 0.764706 0.793814 0.823009 0.840000 0.854015

0.5 0.297753 0.342105 0.381188 0.426606 0.456522 0.483471

1.0 0.095841 0.115044 0.133449 0.156830 0.173554 0.189627

σ

2.0 0.025816 0.031477 0.037073 0.044434 0.049881 0.055267
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Table 6. Regression results for six portfolios when ρ = 0.529. 

 SG SN SV BG BN BV 

1̂  
1.8919 1.8433 2.426 0.76693 0.89019 1.5041

2

indiR
 0.57378 0.54156 0.62007 0.19987 0.25477 0.31972

1  
1.6684 1.4202 1.6543 0.61075 0.50736 0.6249

2̂  
0.35162 0.66562 1.2141 0.24572 0.60229 1.3832

2

multiR
 0.59437 0.61492 0.78141 0.22119 0.37594 0.60065

 
Table 7. Regression results for six portfolios when ρ = 
−0.348. 

 SG SN SV BG BN BV 

1̂  
1.4183 0.93986 0.90215 0.18208 0.047672 0.030638

2

indiR
 0.50081 0.39152 0.32264 0.02081 0.001394 0.000484

1  
1.2584 1.0111 1.0787 0.027752 0.11295 0.20748

2̂  
−0.47902 0.21332 0.5288 −0.46232 0.19554 0.52974

2

multiR
 0.5471 0.40787 0.41246 0.12952 0.020397 0.11761

 
of y on SMB; 1  is the coefficient on SMB from the 
multiple regression of y on SMB and HML; 2̂  is the 
coefficient on HML and calculated by regressing the 
residual of y on SMB upon the residual of HML on 
SMB. 

We are interested in the following question. Under 
what circumstances will there be a larger estimated ex- 
posure 1̂  than 1 ? The results show that when the two 
variables are positively correlated as in Table 6, this pro- 
cedure always generates higher 1̂  than 1 . When the 
two variables are negatively correlated as in Table 7, we 
identify higher 1̂  than 1  only for two portfolios SG 
and BG; for the other four portfolios, 1̂  is lower than 

1 . Therefore comparing the two different cases, we find 
out that the methodology is more successful when ρ is 
positively correlated. This confirms our finding in sec- 
tion 3. 

5. Conclusions 

Bayesian methods are notoriously difficult to implement 
and practitioners often use tricks to allow their models to 

reflect their beliefs. We discuss such a procedure, and 
show analytically conditions when it will work. The par- 
ticular procedure we discuss is used by practitioners to 
build factor models. We are interested in the variable 
selection methodologies that are used to give a particular 
returns model a particular style and nature. For example, 
in the context of global models one may wish the model 
to depend more/less upon domestic factors such as coun- 
try indices rather than, say, global factors such as cur- 
rency or world equity/bond markets. The method we dis- 
cuss allows for favorable selection of a variable by spe- 
cifying the order in which variables enter a regression. 

We strip the problem down to its bare essentials by 
considering bivariate situations. We evaluate these con- 
ditions using numerical integration and further confirm 
their relevance by looking at an empirical example. The 
examples used US equity data over 20 years period. 
These illustrate the efficacy of the procedure. 
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Appendix: Proof of Theorem 

Diagrammatically we need to calculate the two areas in 
Figure 1 on either side of the origin. 
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where  x is the cumulative distribution function of the 
standard normal distribution we have: 
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Having completed the calculation of RHS, we now 
turn to LHS. 
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We can make further simplifications depending upon 
the sign of ρ. 

For ρ > 0 
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When ρ< 0 rewrite using –ρ and then let ρ > 0. Thus 
we now have: 
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and again transforming from s to ω,  
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Thus for ρ < 0. 
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