Journal of Quantum Information Science, 2013, 3, 42-49

o5 Scientific
http://dx.doi.org/10.4236/jqis.2013.31009 Published Online March 2013 (http://www.scirp.org/journal/jqis)

#3% Research

Quantum Mechanics of Complex Octic
Potential in One Dimension

Ram Mehar Singh
Department of Physics, Chaudhary Devi Lal University, Sirsa, India
Email: dixit_rammehar@yahoo.co.in

Received November 11, 2012; revised December 19, 2012; accepted December 29, 2012

ABSTRACT

.. . . . . . . 8 i
For gaining further insight into the nature of the eigenspectra of a complex octic potential [say V (x) = Zi:o ax ], we
investigate the quasi exact solutions of the Schrédinger equation in an extended complex phase space characterized by
X=X +ip,, p=p, +iX,. The analyticity property of the eigenfunction alone is found sufficient to throw light on the

nature of eigenvalues and eigenfunction of a system. Explicit expressions of eigenvalues and eigenfunctions for the
ground state as well as for the first excited state of a complex octic potential and its variant are worked out. It is found

that imaginary part of the eigenvalue (Ei) turns out to be zero for real coupling parameters, whereas it becomes
non-zero for complex coupling parameters. However, the PT-symmetric version of a non-hermitian Hamiltonian pos-

sesses the real eigenvalue even if coupling parameters in the potential are complex.

Keywords: Schrédinger Equation; Complex Potential; PT-Symmetry; Ansatz

1. Introduction

Though complex potentials are in practice for a long time,
the quantum mechanics of such potentials has not been
studied to a desired level. It is only in the last few years
that study of complex potentials has become important
for better theoretical understanding of some newly dis-
covered phenomena in Physics and Chemistry like phe-
nomena pertaining to resonance scattering in atomic,
molecular, and nuclear Physics and to some chemical
reactions [1,2]. Besides some general studies of a com-
plex Hamiltonian in nonlinear domain [3-5], efforts have
been made to study both classical as well as quantum
aspects [6-8] of the one-dimensional complex Hamilto-
nian systems. In the classical context, H(x,p) becomes
the function of two complex variables and analyticity
property of the Hamiltonian leading to a class of inte-
grable systems. In the quantum context, the analyticity of
H(x, p) is translated into the complex potential V (x).
It is observed that complex Hamiltonian is no longer
hermitian and ordinarily does not guarantee for real ei-
genvalues; however, in its PT-symmetric form [9-11], the
system is found to exhibit real eigenvalue spectrum [12].
The reality of the spectrum is a direct consequence of the
combined action of the parity and time reversal invari-
ance of Hamiltonian [13]. The parity operator P and
the time reversal operator T are defined by the action
of position and momentum operator as
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P:R>-Xpo-p and T:Ro>Xpo—pi—o-i .
The non-hermitian PT-symmetric Hamiltonians play an
important role in various fields like superconductivity,
population biology, quantum cosmology, condensed mat-
ter Physics and quantum field theory etc [5,8].

In literature, the complexity of the Hamiltonian is in-
troduced in several ways but here we use the scheme
given by Xavier and de Aguir [10], which is used to de-
velop an algorithm for the computation of semi classical
coherent state propagator, to transform potentials using
extended complex phase space approach (ECPSA). In
this approach, the transformations of the positions and
the momenta variables are defined as

X=X +ip,, p=p, +iX,. Q)

Here, the variables (x,, p;,X,, p,) are considered as
some sort of coordinate-momentum interactions for a
dynamical system. For the dimensional considerations,
there should be a constant “d” in (1) i.e. x=Xx +idp,,
p=p, +id'x,, etc and for simplicity, we select d =1.
It is to be noted that in this complexifying scheme, the
degrees of freedom of the underlying system just be-
come double. Recently, some efforts have been made
to solve the Schrédinger equation (SE) for low order
polynomial potentials in real as well as complex phase
space [13-15]; however, no attempt has been made for
higher order potentials. With the same spirit and to
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expand the domain of applications, we find the quasi-
exact solutions of the SE for a coupled complex octic
potential and its variant.

The paper is organized as follows: in Section 2, we
carry out the mathematical formulation of the ECPSA to
compute eigenvalue spectra of the SE in one dimension.
Under such mathematical prescription, the ground state
solutions are described in Section 3, whereas excited
state solutions are addressed in Section 4. Finally, con-
cluding remarks are presented in Section 5.

2. The Methods

For, one-dimensional complex Hamiltonian system
H(x,p),the ASE ( =m=1) isgiven by

I:|(x, p)w(x)=Ey(x), )
where
~ 1 d?
H(X, p):—gw‘f‘V(X). (3)
After employing transformation (1), one gets
d_1fo ;03d 1o ;o)
dx 2{ox, op,)dp 2\dp, X

Under the transformation (1), momentum operator be-

_ . —i(a .a}
comes: p=p, +iX, =— i ,

2\ % ap,
-10 0
where p1=7£,x2:—&.
1

The real and imaginary parts of V(x),(x) and E
are written as

V(%) =V, (%, ) +iV; (X, P, ) s (52)
V/(X):l//r(xl’p2)+il//i(xl’p2)’ (5b)
E=E, +iE, (5¢)

where the subscript “r” and “i” denotes the real and
imaginary parts of the corresponding quantities and other
subscripts to these quantities separated by comma de-
notes the partial derivatives of the quantity concerned.
On employing Equations (1), (3) and (5a)-(5e) in Equa-
tion (2), then after separating real and imaginary parts in
the final result, the following pair of partial differential
equations is obtained

1
_g(l/lr,xlxl _(//r,Pzpz + Zl/li'xlpz ) (6&)
+VrWr _ViV/i = ErWr - Ei(//i'

1
_g(l/li,xlxl _‘//i,pz P2 + 2Wr,x1p2 )

Wy, +Viy, =By, + By,

(6b)
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Under Cauchy-Riemann condition, the analyticity pro-
perty of the wavefunction /(x) implies

Vi =Vinp, ;‘//r,pz =Vix - (7)

By imposing the analyticity condition (7), on Equa-
tions (6a) and (6b), we have

1
_El//r,xlxl +Vrl//r _Vil//i = Erl//r - Eil//i ’ (8(':1)
_%V/i,xlxl +Vrl//i +Vil//r = Erl//i + Eil//r : (Sb)

The Ansatz for the wavefunction (x) is assumed as
[14]

v (x)=p(x)exe a(x)], ©
where, ¢(x) and g(x) arewritten as
#(x. P2) =6 (%, P) +idi (. P,) . (10a)

9(%,P,) =9, (%, P,)+ig; (X, P, (10b)

on substituting Equations (5b), (10a) and (10b) in Equa-
tion (9), the real and imaginary parts of the wavefunction
are expressed as

Wr(xl!pz):egr (¢r €os g; —¢ sin gi)’ (11a)
Wi(xlnpz):(:"gr (¢| Cosgi_¢r5ingi)' (11b)
Then analyticity condition for g, and g; becomes

gr,x1 = gi_p2 ’ gr,p2 = _gi,xl . (12)

On implying Equations (11a) and (11b) in Equations
(8a) and (8b), one gets

1

S (80 (00 4
|:¢r (¢r,x1x1 + 2¢r,x1 gr,xl - 2¢|,x1 gi,xl ) (133.)

+¢| (¢|,x1x1 + 2¢r,x1 gi,><1 + 2¢|,><1 gr,xl ):|

+2(E, -V,)=0,

1

gi,xlxl + 2gr,x1 gi,x1 +W
|:¢r (¢|,x1x1 + 2¢r,x1 gi,x1 + 2¢|,x1 gi,xl )
+¢| (_¢r,x1x1 + 2¢|,x1 gi,x1 - 2¢r,x1 gi,xl ):|
+2(E,-V,)=0.

(13b)

For the ground state solutions, ¢(x) is taken as con-
stant, then Equations (13a) and (13b) reduces to

2 2
gr,xlxl +<gr‘x1) _<gi,x1) + 2(Er _Vr ) =0, (14&)
gi,x1x1 + 2gr,><1 gi,xl +2(Ei _Vi ) =0. (14b)
JQIS
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By assuming the appropriate ansatz for a given poten-
tial, rationalization of Equations (14a) and (14b) provides
the ground state solutions, whereas Equations (13a) and
(13b) yield the excited state solutions.

3. Ground State Solutions
In this section, we are devoted with ground state solu-
tions of a complex octic potential and its variants as
3.1. Generalized Octic Potential
Consider a generalized octic potential of the form
V(x)=a, +ax+a,x* +ax’

(X)=a+a 2 3 (15)

+a,xt +agx’ +agx° +a, X" +agx®,

where, the coupling parameters (a,,1<i<8) are com-
plex constants.

Under the transformation (1), the real and imaginary
component of the potential (15) are written as

V, =8, +a,% —3; D, +a, (X - ;)
—28,% P, +a,, (X ~3%. 0} )+ 3 (3 3% p, )
+a,, (X' - p; —6x7 p} ) —4a, (% p3 - x'p,)
+a,, (5 p2+x1 ~10x; p )

+ay — p3 +10; p3)
+ag, (X - p; ~15x p; —15%p; ) (16)
6%, p; +20%; 3 )

+a,, (X —7xp; —21¢ p} +35% p; )
7><1p2—21x1 p; —35%p; )

— 28X/ p; —28x’p} )
p2—8x1 p, +56x; p; —56X7p; ),
a,% —a, P, +ay (X — Pf ) +2a, %, p,

3><1p2) (s -3xp,)

p; —6Xp3 ) —4a,, (%P3 -%p,)

X, Py + X 1Ox1p2)
—a,, (-5%'p, - p2+10x1p2)

+ag (X - py —15%p; —15x p} ) 17)

+ay,(p; -
+ag, (% -
+a, (8

V, = ay

(

(5%

(
+ag (6%

(

(

(

X
+ag (X!
+a, (% -
(5
(-

+ag;

—ag, (-6 p, —6X,p; +20%; p3)

+ay, (X — 7% p; —21¢ p; +35%p; )
—a,, (P} —7xp, - 21 p; — 35X/ p3 )

— 2, (X — P} —28x] p; —28xp} )

+ay, (8xl ps —8% p, +56%’p; —56x’ p2)
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The functional forms of g, (x,p,) and g;(x.p,)
in consonance with condition (12) are written as

gr :%az(

+%as(xf —3x1p22)—

X; - p§)+ﬁzx1pz
1
35(P-3xp,)
1
+Z““(Xl4_ p; —6x; p} ) (182)

—ﬂ4(xlp§ )+ a5(5X1p2 + X% —10X1p2)

1
=5 Bs(-5%p, — P} +10xP; ),

9, =3a2x1p2+ﬂ2(xf—p§)

ﬂs( 3x1pz)——a3(p§—3xfpz)

1
=2 B (X - p; —6xp}) (18b)

3

—a, (%3 —Xfp2)+%ﬂ5(5x1p;‘+Xf—10Xfp§)

1
=5 (5P, = p3 +106p}),

where ¢; and g are real parameters. Now, substitut-
ing Equations (18a) and (18b) in Equations (14a) and
(14b), then equating the coefficients of various terms to
zero, one gets the following set of 18 non-repeating equa-
tions

1

E, =a, —5 % (19a)

E = a, +% B, (19b)

oy =a,, (19c)

Py =-ay, (19d)

- P +3a, =2a,,, (19)

2a,3, +38, =24y, , (19f)

0,0 = o s + 205 = 8y (199)
Boog+o,p+ 20, =—ay, (19h)

- B} +2a,0, - 23,8, = 2a,,, (19i)
a,B,+a,p, + o, =-a,, (19j)
s, = PoBi + 05— Pofs = 85, (19K)
Boos + o, + Bios +a, B+ 25, =4, (191)
i + 20505~ 2,5 = 28, (19m)

o fs+asfy + o, f, =, (19n)
JQIs
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a5 = Puffs =, (190)
Bias +a,fs =2, (19p)
—f; =28, (190)

A5 s = —ay - (19r)

In order to find out the ground state energy eigenval-
ues and corresponding eigenfunctions, one should solve
Equations (19¢)-(19r). As there are 16 equations against
8 unknowns (say ¢;’sand f;’s). Therefore in principle
one can obtain the solutions of various coefficients ¢; s
and £ ’s in terms of the potential parameters ¢; ’s with
some constraining relations among ¢;’s. Then Equa-
tions (19q)-(19r) immediately lead to

a5 =—ay,, s =8, , (20)
where ag, =,/+ay +[a| .
Now Equations (19g)-(19h) and (19m)-(19r) can be

immediately solved for the remaining arbitrary constants
as

1
a, = m(awam +a,8, ), 5, _m(_a”af“ tands, ),
(21a)

-1 1
= s e A= (Cha ha),

(21b)
+D , 21c
a, = 2|h| (Aaha8+ s — 4K, (21c)
1
P :W(Dahae+_’l'\ahas-+4‘]ah)! (21d)
where
1
hr =8, _W[asr (a72r - a72i )+ 2a7ra7ia8i :| ’ (22&)
1
h =ag +W[asi (a72r - a72i )_ 2a7ra7ia8r:| . (22b)

n|=/h? +h?, (22c)

Aah a3rhr + a3| hl’ ah a3rhi + a3i hr 1 (22d)
C = a3rhr — & h-, ah — a3rhi — &y hr ) (22d)
ah =8, hr + 8 hl’ ah = g hr - aﬁrhi ' (228)

it is to be noted that quantities in Equations (22a)-(22c)
are so defined to represent Equations (21a)-(22d) in com-
pact and lucid form. The Equations (19c¢)-(19f) provides
the constraining relations among the potential parameters
as

Copyright © 2013 SciRes.

hoay, +ha, =2[a|a, (23a)
hrae—_hia8+ :2|a8|a'1i’ (23b)
2<Aa2h - D;h)aﬂr +16(K§h _‘]azh)+4Aah Dy
~8( Ay Kan + J3n Dy ) 85,
3Jh[* (242)
+8(Andan —KanDan )3 - ||a|8|(a7rag+ 2,3, )
=2|h" a,,,
2A,,D,na 167, K, +(Da2h - A )as
+4‘]ah (Aaha8+ + Dahaﬁ—)
| | (24b)

~4K . (Dandy, — Apds )+ ——(8;,85, —ay,85 )

2Jay|
:|h|4 8

in the same way, one can obtain four constraining rela-
tions from Equations (19i)-(191) also. On utilizing the
above values of ¢; ’sand f;’s in (19b) and (19c), the
real and imaginary components of the energy eigenvalues
for ground state are written as

EX =ay, +Ti|z(Aahae+ +Dyu3y —4Ky),  (259)
E” =a, +W(Dahag+ ~Aas +43,).  (28D)
The corresponding eigenfunctions becomes
1//(0) (x)
-erp| e (A 10)a (0 iR
(26)

3

. h .
—4a, (h, —ih )} x> ——— (a4, —ia,, ) x
( )} 6|a |( 8 8 )

. 1 .
——T (ag, —iay, X' —=(ag, +iag, )X |.
8|a8| 8+ 8+) 5( 8+ 8+)
Special case: Under the PT-symmetric condition
(X0 Py PuuXo31) (=X, Py, P —X,;—i) . the potential (15)
becomes

V(X)=ag, +a;X+a, X +ayx°

4 5 6 7 ' (27)
+a, X" +ag X +ag, X +a, X" +agX

8

In order to extract the information regarding the nature
of the energy eigenvalues and eigenfunctions for the po-
tential (27), we follow the same prescription as laid down
in general case. Then the energy eigenvalues and eigen-
functions turn out to be
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28, | 2,28, +43, |

ECL) =, + Trmraaa il _0. (28
l//((gl)(x)=e p Zaer([jji 2 +;;ESJXZ
g, 8, — &y
6 7 (29)

_ i(4§8ra6r _a72i)X3 N a7ix4 + i 2§8r 5
3 —
o@): WS

3.2. Variant of Octic Potential

Here, we consider the one-dimensional octic potential
along with inverse harmonic term as

V(X) =a, +a,x+a,x* +a,x> +a,x*

A (30)
+a X +a,x° +a, X" +agx’ +X—

where, the parameters (ai,lsis8) are complex con-
stants.

Again under the transformation (1), the real and imagi-
nary parts of the potential (30) becomes

VoV 4A (- pi) L _2AXP, (31a)
T () ()

V2V 4 A (x-r3) __2AXD, (31b)
L () ()

where, V, and V; are same as given by Equations (16)
and (17). The functional form of g, (x,p,) and
9, (X, p,) in complying with the analyticity condition
(12) are written as

9, =0, +ytanl(%j—glog(xf +p3), (32a)
2

g, =0, +otan” (p j ylog(xl +p3) (32b)
2

where, g, and g, aresame as given by Equations (18a)

and (18b). After using Equations (31a), (31b), (32a) and

(32b) in Equations (14a) and (14b), the rationalization of

the final expression yields the following 10 non-repeat-

ing equations

E =a, —%0{2 +a,0 =By, (339)
1
£ =ty o fmay-f, ()
A3 — 0+ Poy = 3y, ' (33c)
P —azy — 0 = —ay;, (33d)
- B +3a, —2a,5+2B,y = 2a,,, (33¢e)

Copyright © 2013 SciRes.

20,3, + 3, — 2a,y — 23,6 = —2a,,, (33f)
0,05 — By By + 20 — a0 + Py = 8y, (339)
Boots + 0, By + 2 —asy — B0 = —ay; (33h)

S —y*+5=2A, (33i)

y=2y5=-A. (33))

Now, Equations (33g) and (33h) lead to

a, = G [Aaha8+ +Dypa +4{(A —1)Ky, + AJah}] ,
(34a)

By =2|17|2[Dahas+ —Ane +4{(A =13 - AKy ],

(34b)

where, Equations (33i) and (33j) can be solved for y
and ¢ . For convenience, we choose y =4, then Equa-
tions (33j) yields y =0 =2A,.

The constraining relations can be derived from Equa-
tions (33c)-(33f). Finally employing the values of various
ansatz parameters in Equations (33a) and (33b), the real
and imaginary part of energy eigenvalues in the ground
state are written as

E§°)=a0r
2|h| |:Aaha8++Daha8 +4{(Ar 1) ah+ArJah}
_%{(Aah_Dah)aer"‘(Aah_Dah)as}

FA(A 1) (Jap +Ka) +4A (30 =Ky )},
2|h| |:Aaha8 Daha8++4{(Ar_1)Jah
AK&“ _{ (Aa Dah)aﬁ++('A‘dh_Dah)a87}

nf
H4{(A ~1)(Jan = Kan) —4A (I + Ko )} ],

(36)
The corresponding eigenfunctions becomes
A(i-1) -1 .
V/(O)(X):(Xf+pzz) exp[2|h|2(Aah_lDah)a8+
+(Dy, +iAy )3 +4(A —1)(K,, +id4,)
h . a (37)
_4 J K 2 _ 3__ %
A (o =iKa) X =g (e iy, ) 5o
x(ag,—iag, )x* —l(a +iag, )x°+2 - (ﬁﬂ
8+ 8+ 8+ 8+ AY tan ?
5 P,
After using the condition
JOIS



R. M. SINGH 47

(X, Pay P Xo31) (=X, Py P —X,5—1) , the PT-symmetric
solutions for the potential (30) are given by

E@ _ a,
r(PT) r
2(-2+\1+8A )&, [asn/ﬁ—(—5+\/1+8k )5&}

(4§8ra6r - a72i )

+

EO

i(PT) =0,

(38)
2
Wior (X) = (X +p3) 2

-2, [%@—(—MW)%}XE

(4§8ra6r - a72i )

xexp

(39)
4. Excited State Solutions

To compute the eigenvalues and eigenfunctions for the
first excited state, we follow the same prescription as adopted
in earlier section. The functional form of ¢(x) for the
first excited state is taken as

$(X)=ax+n, (40)

where, « and 7 are considered as real constants.
Then under the transformation (1), Equation (40) reduces
to

4 (%, 0,)=ax +n.6 (%, p,)=ap,.  (41)

4.1. Generalized Octic Potential

In order to compute the energy eigenvalues and associ-
ated eigenfunctions for the first excited state of the po-
tential (15), we use the same functional forms of g,
and g, as mentioned in Equations (18a) and (18b). Then
inserting Equations (18a), (18b) and (41) in Equations
(13a) and (13b), the rationalization of the resultant ex-
pression yields the following non-repeating equations in
addition to Equations (19c), (19d) and (19i)-(19r) as

3

Eél) = 8o _Eaz ' (422)
Ei(l) =& +gﬂ2 ' (42b)
al - +5a, = 2a,, , (42¢)

Copyright © 2013 SciRes.

20,3, +5B, =24, , (42d)
0y = By By +3a5 =y, (42¢)
Boay +a, P, +36 =—a,. (42f)

The Equations (42c) and (42d) gives the constraining
relations as

(Aah Dazh)a8r+16(K§h ah)

+4Adh an B — (AahKah+‘]ahDah)a8+

| | (43)
+8(Aah‘]ah_K hDah)aS— 2| | a7ra8++a7|a8—)
=2|h|4 a,,

2A,,D,naq —16J,, K, +(D§h - A )ae
+4J . (Anas, +Dandg )

5|h|* (43b)
~4K (D, — Ay )+ ||aL|( 8,85, — ;8. )
:|h|4 &y,

whereas, Equations (42¢) and (42f) can be solved for «,
and g, as

-1
2 :W(Aihaﬂ++Daha8—_6Kah)' (44a)
-1
ﬂz = W(Daha‘ch - AahaS— +6‘]ah ) . (44b)

After inserting the values of various Ansatz parameters
in Equations (42a) and (42b), the energy eigenvalues for
the first excited state are

Er(l) =8 + (Ans, +Dyag —6K,,), (45a)
2Ihl
3
aOl |h| ( aha8+ Adha‘B— +6Jah )' (45b)
and the corresponding eigenfunctions becomes
l//(l) (x)
-1 . .

=exp 2|h|2 {(Aah + IDah )a8+ +(Dah _IAAh)aﬁ

(46)

. h .
—6a, (h, —ih )} x* ———(a,, -ia,, ) x°
3 ( )} 6|a8|( g miag.)

_ & o a1 - 5
8|a8|(a8+ iag, )X 5(a8++|r:18+)x

Special case: The PT-symmetric solutions for the first
excited state are given by

JQIS
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6§8r |:a3i \/ﬁ + 6§8r :|

(4§8raer - a'72i )

2§8r I:a?:i \/ﬁ + 6§8r :|

(4§8ra6r - a72i )

=a,, +  Eibr) =0 (472)

1
r(PT)

X2

Y(er) (x)=exp

(430, -2)C ap i,
_ 8 a 5
6(3, )2 4,28,

(47b)
4.2. Variant of Octic Potential

To compute the energy eigenvalues and associated ei-
genfunctions for the first excited state of the potential
(30), we use the same polynomial forms of g, and g,
as in Equations (32a) and (32b). Then implying these
equations in g, and g; in Equations (13a) and (13Db),
the rationalization of the resultant expression yields the
following equations in addition to Equations (19c), (19d)
and (19i)-(19r) as

E =a, —%az va,5-By.  (489)

E =a, +§ By —ay 0, (48b)

20—, 0+ By =4y, , (48c)

2B, —ay — 0 =—ay; , (48d)

ai — 2 +5a, 20,5 + 2B,y = 2a,,, (48e)
20,3, +50, — 20,y — 25,0 = -2a, , (48f)
0,0, — B, B + 30 —as0 + Boy = 8y, (480)
Loty +, By + 30 —asy — 0 =—ay (48h)
8 —yP-5=2A, (48i)

7=2y5=-A. (48))

Now, Equations (48g) and (48h) yield

-1
0 = [ Ay, + Dypde +2(3+2A Ky, +4A D, ],

i
(49a)
8 :ﬁ[—owa& +Auy +2(3+2A) 3, ~4AK, ],
(49b)

where, the Equations (48i) and (48j) can be solved for »
and & . For convenience, we set y =¢, then Equation
(48j) yields y =6=-2A .

Finally, substituting the values of various ansatz pa-
rameters in Equations (48a) and (48b), the real and

Copyright © 2013 SciRes.

imaginary part of energy eigenvalues for the ground state
are written as

Er(l) =8y, +Ti|2[Aahas+ +Dyag +2(3+2A )K,,

+4A J,, +%{(Aah + Dy )8y, +( Ay + Dah)aS—}

—2(3+2A ) (I + Ky )—4A (3 - Ky ],

(50)
Ei(l) = Qy; +T":’]|2[_Daha8+ +Apdg +2(3+2A) 3,
-4AK,, _%{(Aah ~D,,)a, +(_Aah + Dah)a‘a—}

—2(3+2A )(=J4 + Ky ) +4A (I + Ky ) |,
(51)
The corresponding eigenfunctions becomes
A
v (x)=(x + p})
_12 {(Aah _iDah)a‘8+
2|

+2(3+2A ) (K +1d, ) +4A (3, — 1K, )PP (52)

1)

x exp

+(Dy, +iAy, )ag.

h ; 3 & : 4
———(ag,—iag, )X’ ———(ag,—ia,, ) x
A T

—%(as++ia8+)x5 +2A (1+i)tan™(x,/ pz)}'

The PT-symmetric excited state solutions for the po-
tential (30) turn out to be

E @

r(PT)

(2 IrBA )3, [a, 28, +(5- i+ 8A )a, |

= 2
(4a8ra6r — 8y )

= a'Or

Ei((llz’T) =0
(53)
s
Vier) (x)=(x +p) 2
exp _258r |:a3| \/258r _(_5+ \]1+8Ar )§8r:| )(2
X
(4§8ra6r _a72i)
|(4§8ra6r _a'7zi)x3 (54)
- 3
6(3 )
- aZ%B, x“—i “ia_gr x5+itan‘1(x1/p2)}
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5. Conclusion

In the present work, we have computed the quasi-exact
solutions of the SE for one-dimensional octic potential
and its variants by using ECPS approach. The non-her-
miticity arising is not only due to the potential parame-
ters but the underlying phase space is also considered as
complex. The PT-symmetry discussed here is of general-
ized nature which in certain limit (for real x and p)
reduces to conventional PT-symmetry, besides the com-
plexity of the phase space produced by (1), the complex-
ity of the potential parameters is also taken into account.
It is also emphasized that solutions of the ASE in the
above mentioned cases are obtained only in the presence
of certain constraining relation among the potential pa-
rameters, such constraining relations give rise to bound
state energies of a system. It is found that the imaginary
part of the energy eigenvalues always vanishes for the
solvable cases of ASE as long as all the potential pa-
rameters are real [14-16]. However, for the PT-sym-
metric potentials, the energy eigenvalues are found real,
even if the concerned potential possesses complex cou-
plings parameters. The result obtained in this manner
coincides with those computed from the invariant of
Hamiltonian under PT operation. The interesting aspect
of this method is an account of the complex coupling
parameters in the potential in addition to the complex
phase space, such feature of the method lead to complex
spectra. If PT-symmetric version of the concerned poten-
tial is taken into account, then it is found that imaginary
part of the complex eigenvalue vanishes after imposing
certain restrictions on the complex coupling parameters
of the potential. It is observed that real and imaginary
parts of the eigenvalues follow just opposite ordering for
the discrete energy level by retaining the conventional
ordering for the magnitude of the eigenvalues.
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