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ABSTRACT 

For gaining further insight into the nature of the eigenspectra of a complex octic potential [say ], we 

investigate the quasi exact solutions of the Schrödinger equation in an extended complex phase space characterized by 

  8

0
i

ii
V x a x


 

1 2 1 , 2x x ip p p ix    . The analyticity property of the eigenfunction alone is found sufficient to throw light on the 

nature of eigenvalues and eigenfunction of a system. Explicit expressions of eigenvalues and eigenfunctions for the 
ground state as well as for the first excited state of a complex octic potential and its variant are worked out. It is found 
that imaginary part of the eigenvalue  turns out to be zero for real coupling parameters, whereas it becomes 

non-zero for complex coupling parameters. However, the PT-symmetric version of a non-hermitian Hamiltonian pos-
sesses the real eigenvalue even if coupling parameters in the potential are complex. 

 iE
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1. Introduction 

Though complex potentials are in practice for a long time, 
the quantum mechanics of such potentials has not been 
studied to a desired level. It is only in the last few years 
that study of complex potentials has become important 
for better theoretical understanding of some newly dis-
covered phenomena in Physics and Chemistry like phe-
nomena pertaining to resonance scattering in atomic, 
molecular, and nuclear Physics and to some chemical 
reactions [1,2]. Besides some general studies of a com-
plex Hamiltonian in nonlinear domain [3-5], efforts have 
been made to study both classical as well as quantum 
aspects [6-8] of the one-dimensional complex Hamilto-
nian systems. In the classical context,  ,H x p  becomes 
the function of two complex variables and analyticity 
property of the Hamiltonian leading to a class of inte-
grable systems. In the quantum context, the analyticity of 

 ,H x p  is translated into the complex potential  V x

P̂

. 
It is observed that complex Hamiltonian is no longer 
hermitian and ordinarily does not guarantee for real ei- 
genvalues; however, in its PT-symmetric form [9-11], the 
system is found to exhibit real eigenvalue spectrum [12]. 
The reality of the spectrum is a direct consequence of the 
combined action of the parity and time reversal invari- 
ance of Hamiltonian [13]. The parity operator  and 
the time reversal operator  are defined by the action 
of position and momentum operator as 

 and . 
The non-hermitian PT-symmetric Hamiltonians play an 
important role in various fields like superconductivity, 
population biology, quantum cosmology, condensed mat- 
ter Physics and quantum field theory etc [5,8]. 

T̂

ˆ ˆ ˆ ˆ ˆ: ;P x x p p   ˆ ˆ ˆˆ ˆ ˆ ˆ: ; ;T x x p p i i   

1 2 1 2 , .

In literature, the complexity of the Hamiltonian is in-
troduced in several ways but here we use the scheme 
given by Xavier and de Aguir [10], which is used to de-
velop an algorithm for the computation of semi classical 
coherent state propagator, to transform potentials using 
extended complex phase space approach (ECPSA). In 
this approach, the transformations of the positions and 
the momenta variables are defined as 

x x ip p p ix            (1) 

Here, the variables  1 1 2 2, , ,x p x p  are considered as 
some sort of coordinate-momentum interactions for a 
dynamical system. For the dimensional considerations, 
there should be a constant “d” in (1) i.e. 1 2 ,x x idp 

1d
 

, etc and for simplicity, we select 1
1 2p p id x   . 

It is to be noted that in this complexifying scheme, the 
degrees of freedom of the underlying system just be-
come double. Recently, some efforts have been made 
to solve the Schrödinger equation (SE) for low order 
polynomial potentials in real as well as complex phase 
space [13-15]; however, no attempt has been made for 
higher order potentials. With the same spirit and to 
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expand the domain of applications, we find the quasi- 
exact solutions of the SE for a coupled complex octic 
potential and its variant. 

The paper is organized as follows: in Section 2, we 
carry out the mathematical formulation of the ECPSA to 
compute eigenvalue spectra of the SE in one dimension. 
Under such mathematical prescription, the ground state 
solutions are described in Section 3, whereas excited 
state solutions are addressed in Section 4. Finally, con-
cluding remarks are presented in Section 5. 

2. The Methods 

For, one-dimensional complex Hamiltonian system 
 ,H x p , the ASE  is given by  1m  

     ˆ ,H x p x E x  ,       (2) 

where 

   
2

2

1 dˆ ,
2 d

H x p V x
x

   .          (3) 

After employing transformation (1), one gets 

1 2 1 2

d 1 1
,

d 2 2

d
i i

x x p dp p x

     
           


 .      (4) 

Under the transformation (1), momentum operator be-

comes : 1 2
1 22

i
p p ix i

x p

   
      

,  

where 1 2
1 1

1
,

2
p x

p x

  
 

 
 .  

The real and imaginary parts of    ,V x x  and E 
are written as 

     1 2 i 1 2,rV x V x p iV x p  ,

,

,          (5a) 

     1 2 i 1 2,rx x p i x p    ,          (5b) 

irE E iE  ,                   (5c) 

where the subscript “r” and “i” denotes the real and 
imaginary parts of the corresponding quantities and other 
subscripts to these quantities separated by comma de-
notes the partial derivatives of the quantity concerned. 
On employing Equations (1), (3) and (5a)-(5e) in Equa-
tion (2), then after separating real and imaginary parts in 
the final result, the following pair of partial differential 
equations is obtained 

 1 1 2 2 1 2, , i,

i i i i

1
2

8
,

r x x r p p x p

r r r rV V E E

  

   

  

   
       (6a) 

 1 1 2 2 1 2i, i, ,

i i i i

1
2

8
.

x x p p r x p

r r rV V E E

  

   

  

   

Under Cauchy-Riemann condition, the analyticity pro- 
perty of the wavefunction  x  implies 

1 2 2, i, , i;r x p r p x1,      .          (7) 

By imposing the analyticity condition (7), on Equa-
tions (6a) and (6b), we have 

1 1, i i

1

2 r x x r r r rV V E Ei i         ,          (8a) 

1 1i, i i i i

1

2 x x r r rV V E E r         .         (8b) 

The Ansatz for the wavefunction  x  is assumed as 
[14] 

    exp x x g x    ,           (9) 

where,  x  and  g x  are written as 

    1 2 1 2 i 1 2, ,r ,x p x p i x    p ,        (10a) 

    1 2 1 2 i 1 2, ,r ,g x p g x p ig x p  ,        (10b) 

on substituting Equations (5b), (10a) and (10b) in Equa-
tion (9), the real and imaginary parts of the wavefunction 
are expressed as 

   1 2 i i i, e cos sinrg
r rx p g    g ,       (11a) 

   i 1 2 i i i, e cos sinrg
rx p g    g .        (11b) 

Then analyticity condition for rg  and ig  becomes 

1 2 2, i, , i,r x p r p x1,g g g g   .         (12) 

On implying Equations (11a) and (11b) in Equations 
(8a) and (8b), one gets 

     
 
 
 

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2 2

, , i, 2 2
i

, , , i, i,

i i, , i, i, ,

1

2 2

2 2

2 0,

r x x r x x

r

r r x x r x r x x x

x x r x x x r x

r r

g g g

g g

g g

E V

 

   

   

  


  
   

  

      (13a) 

 
 
 
 

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

i, , i, 2 2
i

i, , i, i, i,

i , i, i, , i,

i i

1
2

2 2

2 2

2 0.

x x r x x

r

r x x r x x x x

r x x x x r x x

g g g

g g

g g

E V

 

   

   

 


  
    

  

      (13b) 

For the ground state solutions,  x  is taken as con-
stant, then Equations (13a) and (13b) reduces to 

     
1 1 1 1

2 2

, , i, 2r x x r x x r rg g g E V 0    

0

,      (14a) 

r

       (6b) 
 

1 1 1 1i, , i, i i2 2x x r x xg g g E V    .       (14b) 
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By assuming the appropriate ansatz for a given poten-
tial, rationalization of Equations (14a) and (14b) provides 
the ground state solutions, whereas Equations (13a) and 
(13b) yield the excited state solutions. 

3. Ground State Solutions 

In this section, we are devoted with ground state solu-
tions of a complex octic potential and its variants as 

3.1. Generalized Octic Potential  

Consider a generalized octic potential of the form 

  2 3
0 1 2 3

4 5 6 7
4 5 6 7 8 ,

V x a a x a x a x

a x a x a x a x a x

   

     8
      (15) 

where, the coupling parameters  ,1 8ia i   are com-
plex constants. 

Under the transformation (1), the real and imaginary 
component of the potential (15) are written as 

 
  

  
 
 
 

2 2
0 1 1 1 2 2 1 2

3 2 3 2
2 1 2 3 1 1 2 3 2 1 2

4 4 2 2 3 3
4 1 2 1 2 4 1 2 1 2

4 5 3 2
5 1 2 1 1 2

4 5 2 3
5 1 2 2 1 2

6 6 2 4 4 2
6 1 2 1 2 1 2

5 5
6 1 2 1 2 1

2 3

6 4

5 10

5 10

15 15

6 6 20

r r r i r

i r i

r i

r

i

r

i

V a a x a p a x p

a x p a x x p a p x p

a x p x p a x p x p

a x p x x p

a x p p x p

a x p x p x p

a x p x p x

    

    

    

  

   

   

    
 
 
 
 

3 3
2

7 6 5 2 3 4
7 1 1 2 1 2 1 2

7 6 2 5 4 3
7 2 1 2 1 2 1 2

8 8 2 6 6 2
8 1 2 1 2 1 2

7 7 5 3 3 5
8 1 2 1 2 1 2 1 2

7 21 35

7 21 35

28 28

8 8 56 56 ,

r

i

r

i

p

a x x p x p x p

a p x p x p x p

a x p x p x p

a x p x p x p x p

   

   

   

   




3

  (16) 

 
   
  
 
 
 

2 2
0i 1i 1 1 2 2i 1 2 2 1 2

3 2 3 2
3i 1 1 2 3 2 1 2

4 4 2 2 3 3
4i 1 2 1 2 4 1 2 1 2

4 5 3 2
5i 1 2 1 1 2

4 5 2 3
5 1 2 2 1 2

6 6 2 4 4 2
6i 1 2 1 2 1 2

5 5
6 1 2 1 2 1

2

3 3

6 4

5 10

5 10

15 15

6 6 20

i r

r

r

r

r

V a a x a p a x p a x p

a x x p a p x p

a x p x p a x p x p

a x p x x p

a x p p x p

a x p x p x p

a x p x p x

     

   

    

  

   

   

    
 
 
 
 

3 3
2

7 6 5 2 3 4
7i 1 1 2 1 2 1 2

7 6 2 5 4 3
7 2 1 2 1 2 1 2

8 8 2 6 6 2
8 1 2 1 2 1 2

7 7 5 3 3 5
8i 1 2 1 2 1 2 1 2

7 21 35

7 21 35

28 28

8 8 56 56 .

r

r

p

a x x p x p x p

a p x p x p x p

a x p x p x p

a x p x p x p x p

   

   

   

   



r



  (17) 

The functional forms of  1 2,rg x p  and  i 1 2,g x p
 

in consonance with condition (12) are written as 

 

   

 

   

 

2 2
2 1 2 2 1 2

3 2 3 2
3 1 1 2 3 2 1 2

4 4 2 2
4 1 2 1 2

3 3 4 5 3 2
4 1 2 1 2 5 1 2 1 1 2

4 5 2 3
5 1 2 2 1 2

1

2
1 1

3 3
3 3

1
6

4
1

5 10
5

1
5 10 ,

5

rg x p x p

x x p p x p

x p x p

x p x p x p x x p

x p p x p

 

 



 



  

   

  

    

   

(18a) 

 

   

 

   

 

2 2
i 2 1 2 2 1 2

3 2 3 2
3 1 1 2 3 2 1 2

4 4 2 2
4 1 2 1 2

3 3 4 5 3 2
4 1 2 1 2 5 1 2 1 1 2

4 5 2 3
5 1 2 2 1 2

1

2
1 1

3 3
3 3

1
6

4
1

5 10
5

1
5 10 ,

5

g x p x p

x x p p x p

x p x p

x p x p x p x x p

x p p x p

 

 



 



  

   

  

    

   

 (18b) 

where i  and i  are real parameters. Now, substitut-
ing Equations (18a) and (18b) in Equations (14a) and 
(14b), then equating the coefficients of various terms to 
zero, one gets the following set of 18 non-repeating equa- 
tions 

0

1

2r rE a 2  ,          (19a) 

0

1

2i iE a 2  ,          (19b) 

3 1ra  ,            (19c) 

3 ia1   ,           (19d) 

2 2
2 2 4 23 2 ra     ,          (19e) 

2 2 4 22 3 2 ia     ,           (19f) 

2 3 2 3 5 32 ra       ,           (19g) 

2 3 2 3 5 32 ia        ,          (19h) 

2 2
3 3 2 4 2 4 42 2 2 ra         ,           (19i) 

4 2 2 4 3 3 4ia         ,           (19j) 

3 4 3 4 2 5 2 5 5ra           ,          (19k) 

2 5 2 5 4 3 4 3 5 52 ia             ,           (19l) 

2 2
4 4 3 5 3 5 62 2 2 ra         ,          (19m) 

3 5 5 3 4 4 6ia         ,           (19n) 
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4 5 4 5 7ra     ,           (19o) 

4 5 4 5 7ia      ,           (19p) 

2 2
5 5 82 ra   ,            (19q) 

5 5 8ia    .            (19r) 

In order to find out the ground state energy eigenval-
ues and corresponding eigenfunctions, one should solve 
Equations (19c)-(19r). As there are 16 equations against 
8 unknowns (say i ’s and i ’s). Therefore in principle 
one can obtain the solutions of various coefficients i ’s 
and i ’s in terms of the potential parameters i ’s with 
some constraining relations among i ’s. Then Equa-
tions (19q)-(19r) immediately lead to 

5 8 5,a 8a     ,          (20) 

where 8 8ra a    8a . 

Now Equations (19g)-(19h) and (19m)-(19r) can be 
immediately solved for the remaining arbitrary constants 
as 

  4 7 8 7 8 4 7 8 7
8 8

1 1
,

2 2r i r ia a a a a a a a
a a

   


     8 , 

(21a) 

   3 8 8 3 8
8 8

1 1
,

2 2r i r ih a h a h a h a
a a

   


     8 , 

(21b) 

 2 8 82

1
4

2
ah ah ahA a D a K

h
  


   ,     (21c) 

 2 8 82

1
4

2
ah ah ahD a A a J

h
     ,      (21d) 

where 

 2 2
6 8 7 7 7 72

8

1
2

4
r r r r i r i ih a a a a a a a

a
     8 ,     (22a) 

 2 2
6 8 7 7 7 72

8

1
2

4
i i i r i r i rh a a a a a a a

a
     8 ,   (22b) 

2 2
r ih h h  ,       (22c) 

3 3 3 3,ah r r i i ah r i i rA a h a h B a h a h    ,         (22d) 

3 3 3 3,ah r r i i ah r i i rC a h a h D a h a h    ,       (22d) 

8 8 8 8,ah r r i i ah i r r iK a h a h J a h a h    ,        (22e) 

it is to be noted that quantities in Equations (22a)-(22c) 
are so defined to represent Equations (21a)-(22d) in com- 
pact and lucid form. The Equations (19c)-(19f) provides 
the constraining relations among the potential parameters 

8 8 82r ih a h a a a   ,1r           (23a) 

8 8 82r ih a h a a a   ,1i           (23b) 

   
 

   

2 2 2 2
8 8

8

4

8 7 8 7
8

4

2

2 16 4

8

3
8

2

2 ,

ah ah r ah ah ah ah i

ah ah ah ah

ah ah ah ah r i

r

A D a K J A D a

A K J D a

h
8A J K D a a a a a

a

h a



 

   

 

   





 (24a) 

 
 

   

2 2
8 8

8 8

4

8 8 7 8 7
8

4

2

2 16

4

3
4

2

,

ah ah r ah ah ah ah i

ah ah ah

ah ah ah r i

i

A D a J K D A a

J A a D a

h
8K D a A a a a a a

a

h a

 

  

  

 

   





 (24b) 

in the same way, one can obtain four constraining rela-
tions from Equations (19i)-(19l) also. On utilizing the 
above values of ij ’s and ij ’s in (19b) and (19c), the 
real and imaginary compone  of the energy eigenvalues 
for ground state are written as 

 

nts

 0 1
0 8 82

4
2

r r ah ah ahE a A a D a K
h

     ,     (25a) 

   0
0 8 82

1
4

2
i i ah ah ahE a D a A a J

h
     .     (25b) 

The corresponding eigenfunctions becomes 

   

  

 



 

   

0

8 82

2 3
8 8

8

4 57
8 8 8 8

8

1
exp

2

4
6

1
.

8 5

ah ah ah ah

r i

x

8

A iD a D iA a
h

h
a h ih x a ia x

a

a
a ia x a ia x

a



 

 

   

 
   


   


    



    (26) 

Special case: Under the PT-symmetric condition 
  1 2 1 2 1 2 1 2, , , ; , , , ;x p p x i x p p x i   , the potential (15) 
becomes 

  2 3
0 1 2 3

4 5 6 7
4 5 6 7 8

r i r i

r i r i r

x a a x a x a x

a x a x a x a x a x

   

     8
. (27) 

In order to extract the information regarding the nature 
of

functions turn out to be 

V

 the energy eigenvalues and eigenfunctions for the po-
tential (27), we follow the same prescription as laid down 
in general case. Then the energy eigenvalues and eigen-

as 
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   8 3 8 80

0

2 2 4r i r r

rr PT

a a a a
E a

    0

2
8 6 7

, 0
4

i PT

r r i

E
a a a




,   (28) 

 
     

 
 

8 3 8 80 2

2
8 6 7

2 3 4
8 6 7 8 57

3
82

8

2 2 4
exp

4

4 2

54 26

r i r r

PT

r r i

r r i ri

r
r

a a a a
x x

a a a

i a a a x i aa x
x
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(29) 

3.2. Variant of Octic Potential 

ional octic potential 
  

Here, we consider the one-dimens
along with inverse harmonic term as

  2 3 4
0 1 2 3V x a a x a x a x a x4

5 6 7 8
5 6 7 8 2

A
a x a x a x a x

x

    

    
, (30) 

where, the parameters  ,1 8ia i   are complex c
stants. 

ormation (1)
rts of the potential (30) becomes 

on-

Again under the transf , the real and imagi-
nary pa

 
   1

2 2
1 2 1 22 i

r r r

x p
2 22 2 2 2

1 2 1 2

A x p
V V A


   ,      (31a)

x p x p 
 

 
   1

2 2
1 2 1 2

2 22 2 2 2
1 2 1 2

2 r
i i i

x p A x p
V V A

x p x p


  

 
,     (31b) 

where,  and are same as given by E
and (1  Th ional form of 

1r
V
7).

1i
V  

e funct
quations (16) 
 1 2,rg x p  and 

 i 1 2,g x p
 

in co lying with the analyticity condition 
(12) are written as 

mp

 1

1 2 21tan logr r

x
1 2

2 2
g g x p

   
    ,     (32a) 

p
 
 

 1

1 21
i i 1 2

2

tan log
2

x 2g g x
p

   
    

 
p

where, 

,     (32b) 

1r
g  and 

1i
g  

r usin
are same as given by Eq

and (1 fte g Equations (31a), (31b), (32a) and 
 E s (

uations (18a) 
8b). A

(32b) in quation 14a) and (14b), the rationalization of 
the final expression yields the following 10 non-repeat-
ing equations 

0 2 2 22r r

1
E a         ,       (33a) 

i 0i 2 2 2

1

2
E a         ,       (33b) 

3 3 3 1ra       , 

i

        (33c) 

3 3 3 1a        ,    

        (33e) 

         (33d) 

2 2
2 2 4 4 4 23 2 2 2 ra           ,

2 2 4 4 42 3 2 2 2i2a           ,          (33f) 

2 3 2 3 5 5 5 32 ra             ,           (33g) 

2 3 2 3 5 5 52 3ia                     (33h) 

2 2 2 rA     ,          (33i) 

i2 A    .   

Now, Equations (33g) and (33h) lead to

        (33j) 

 

 1 ah r ahK A J 2 8 82

1
4
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ah ah rA a D a A

h
  

       , 

(34a) 

  2 8 82

1
4 1

2
ah ah r ah r ahD a A a A J A K

h
         , 

(34b) 
where, Equations (33i) and (33j) can be solved for   

. For convenience, we choose  and  , then E
tion ) yields 

qua-
s (33j 2 rA   . 

The constraining relations can be derived from Equ
tions (33c)-(33f). Finally employing the values of various 
ansatz parameters in Equat ns (33a) a 3b), the real 
an

a-

io nd (3
d imaginary part of energy eigenvalues in the ground 

state are written as  
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The corresponding eigenfunctions becomes 
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After using the condition 
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 1 2 1 2 1 2 1 2, , , ; , , , ; x p p x i x p p x i 
solutions for the potential (30) are give

 , the PT-symmetric 
n by 
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(39) 

4. Excited State Solutions  

To compute the eigenvalues and eigenfunctions for the 
first excited state, we follow the same prescription as adopted
in earlier section. The functional form of

 
  x  for the 

first excited state is taken as 

 x x    ,             (40) 

where,   and   are considered as real constants. 
Then under the transformation (1), Equation (40) reduce
to 

s 

   1 2 1 i 1 2 2,r , ,x p x x p p      .    (41) 

rgy eigenvalues and associ-
ated eigenfunctions for the first excite
tential (15), we use the same func

4.1. Generalized Octic Potential 

In order to compute the ene
d state of the po-

tional forms of rg  
and ig  mentioned in Equations (18a) and (18b). Then 
inserting Equations (18a), (18b) and (41) in Equations 
(13

as 

a) and (13b), the rationalization of the resultant ex-
pression yields the following non-repeating equ
addition to Equations (19c), (19d) and (19i)-(19

ations in 
r) as 
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2 3 2 3 5 33 ra                  (42e) 

2 3 2 3 5 33 ia        .            (42f) 

The Equations (42c) and (42d) g
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ives the constraining 
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whereas, Equations (42e) and (42f) can be solved for 

 

2  
as and 2  

 2 8 82

1
6ah ah ahA a D a K

h
  


   ,           (44a) 

  2 8 82

1
6ah ah ahD a A a J
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   .          

After inserting the values of various Ansatz parameters 
in Equations (42a) and (42b), the energy eigenvalues for 
the first excited state are 

(44b) 
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3
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6
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ah ah ahA a D a K
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     ,      (45a) 
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i 0i 8 82

3
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and the corresponding eigenfunctions becomes 
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r the first 
excited state are given by 
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4.2. Variant of Octic Potential 

To compute the energy eigenvalues and associate
genfunctions for the first excited state of the potential 
(30), we use the same polynomial forms of 

d ei-

rg  and ig  
 as in Equations (32a) and (32b). Then im ng these

equations in 
plyi

rg  and ig  
of the resu

in Equations (13a d (1
the rationalization ltant expressi elds the
following equations in addition to Equations (19c), (19d
and (19i)-(19r) as 

) an
on yi

3b), 
 

) 
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           ,           (48f) 

2 3 2 3 5 5 5 33 ra            ,         (48g) 

2 3 2 3 5 5 5 3i3 a              ,           (48h) 

2 2 2 rA     ,            (48i) 

i2 A    .      

Now, Equations (48g) and (48h)

         (48j) 
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where, the Equations (48i) and (48j)

(49b) 

 can be solved for   
and  . For convenience, we set   , then Equation 
(48j s ) yield 2 rA    . 

Finally, substituting the values of various 
meters in Equations (48a) and (48b), t

ansatz pa
ra he real and 

imaginary part of energy eigenvalues for the ground state
are written as  

- 
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The corresponding eigenfunctions becomes 
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he po-
tential (30) turn out to be 

The PT-symmetric excited state solutions for t
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5. Conclusion 

In the present work, we have computed the quasi-exact 
solutions of the SE for one-dimensional octic potential 
and its variants by using ECPS approach. The non-her- 
miticity arising is not only due to the potential parame-
ters but the underlying phase space is also considered as 
complex. The PT-symmetry discussed here is of
ized nature which in certain limit (for real 

[2] D. R. Nelson and N. M. Shnerb, “Non-Hermitian Local-
ization and Population Biology,” Physical Review E, Vol. 
58, No. 2, 1998, pp. 1383-1403. 

[3] N. Hatano and D. R. Nelson, “Localization Transitions in 
Non-Hermitian Quantum Mechanics,” Physical Review 
Letters, Vol. 77, No. 3, 1996, pp. 570-573. 

 general-
x  and p ) 

om-reduces to conventional PT-symmetry, besides the c
plexity of the phase space produced by (1), the complex-
ity of the potential parameters is also taken into account. 
It is also emphasized that solutions of the ASE in the
above mentioned cases are obtained only in the presence 

ning relation among the potential 

23-540. 
2)90579-Z

 

of certain constrai pa-
rameters, such constraining relations give rise to bound 
state energies of a system. It is found that the imaginary 
part of the energy eigenvalues always vanishes for the 
solvable cases of ASE as long as all the potential pa-
rameters are real [14-16]. However, for the PT-sym- 
metric potentials, the energy eigenvalues are found real, 
even if the concerned potential possesses complex cou-
plings parameters. The result obtained in this manner 
coincides with those computed from the invariant of 
Hamiltonian under PT operation. The interesting aspect 
of this method is an account of the complex coupling 
parameters in the potential in addition to the complex 
phase space, such feature of the method lead to complex 
spectra. If PT-symmetric version of the concerned poten-
tial is taken into account, then it is found that imaginary 
part of the complex eigenvalue vanishes after imposing 
certain restrictions on the complex coupling parameters 
of the potential. It is observed that real and imaginary 
parts of the eigenvalues follow just opposite ordering for 
the discrete energy level by retaining the conventional 
ordering for the magnitude of the eigenvalues. 
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