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ABSTRACT 

Dynamics of measurement-induced-nonlocality (MIN) and geometric measure of discord (GD) in the spin-boson model 
are studied. Analytical results show that for two large classes of initial states, MINs are equal but GDs are different. At 
the end of evolution, MIN and GD initially stored in the spin system transfer completely to reservoirs. The quantum 
beats for MIN and GD are also found, which are the results of quantum interference between two local non-Markovian 
dynamics via quantum correlation. 
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1. Introduction 

Quantum correlation arises from noncommutativity of oper- 
ators representing states, observables, and measurements 
[1]. Quantum entanglement, as the earliest known quan- 
tum correlation, has acquired extensive research and is 
found to be an useful resource in quantum communica- 
tion and quantum computation [2]. However, entangle- 
ment is not the unique kind of quantum correlation. A 
more general concept, quantum discord [3], was found, 
which is regarded as the measure of all nonclassical cor- 
relations in a bipartite system, being the entanglement of 
a particular case of it. It was shown that there exists sepa-
rable states with nonzero discord which can be used to 
perform quantum computation [4,5]. Quantum discord is 
also useful in the studies of quantum phase transition [6,7] 
and estimation of quantum correlations in Grover search 
algorithm [8]. Unfortunately, evaluation of quantum dis- 
cord in general requires considerable numerical minimi- 
zation and analytical results that are known only for cer-
tain classes of states [9-11]. More recently, two measures 
out of geometric perspective in measurements, GD [12] 
and MIN [13], were proposed, which as the authors shown 
have the merit of easier evaluation. In fact, Luo and Fu 
[14,15] have evaluated the GD for some typical classes of 
states and found the tight lower bound. The dissecting 
about the meaning of GD was also done [16,17]. 

Realistic quantum systems cannot avoid interactions 
with their environments, leading to the change of quan- 
tum correlation. In the last decade, the influences of en- 

vironments to quantum entanglement [18] and quantum 
discord [19] have been investigated extensively. An in- 
teresting phenomenon, named as “entanglement sudden 
death” (ESD) [20,21] for a pair of entangled qubits ex- 
posed to local Markovian environments was found. In 
contrast, quantum discord in similar conditions decays 
only in asymptotic time [22], which signifies that quan- 
tum discord is more robust against Markovian noise than 
entanglement. There are also many works involved in the 
evolutions of quantum entanglement and discord in the 
non-markovian environments [23-29]. Especially, trap- 
ping [30] and quantum beats [31] for quantum entangle- 
ment and discord for a pair of qubits in local structured 
environments were found. 

In this paper, we investigate the dynamics of GD and 
MIN in a system that consists of two independent spins 
(qubits) coupled respectively to their local environments. 
Our motivation is to find the evolutional properties of GD 
and MIN and the difference between their evolutions and 
make a comparison between the evolutions of quantum 
entanglement or/and discord. The paper is constructed as 
follows. In Section 2, we introduce the original definitions 
of GD and MIN. In Section 3, we first introduce the inter-
action model, and then study the evolution of GD and 
MIN of different partitions for two classes of initial states. 
Section 4 is devoted to the study of quantum beats for GD 
and MIN. And the conclusion is arranged in Section 5. 

2. GD and MIN 

Let   be a bipartite state shared by parties A and B. 
The GD of   is defined as [12], *Corresponding author. 
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where the min is taken over all von Neumann measure- 
ments  on subsystem A, and the Hilbert Schmidt A

norm defined by 
2 †X trX X . On the other hand, the 

MIN is defined as [13] 
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here the max is taken over the von Neumann measure-
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Here i  are the Pauli operators,  

and 

 A B
i ix Tr  1

 A B
iy iTr  1

ijt Tr

 are the components of the local 

Bloch vectors,  A B
i j   

ijT t

  are the components 

of the correlation tensor     . For this state, we  

have [12,13] 
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where 
2 2

ii
x x   with  1 2 3, ,

tx x xx
t

,  is the  maxk
tmaximum eigenvalue of matrix xx TT , and 3  the 

minimum eigenvalue of matrix . tTT

3. Model and Dynamics of MIN and GD 

The model we consider consists of two independent spins 
interacting respectively with their local boson reservoirs. 
The total Hamiltonian is, 
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Here z
i and i i    are the Pauli and raising (low-

ering) operators for the spin.  is the crea- ith  †
, ,i k i kb b

ithtion (annihilation) operator of the  mode in the  
reservoir with corresponding frequency ,i k

ith
 . The cou- 

pling strength between spin  and its reservoir mode  
is denoted by ,i k

i k
g . For simplicity, we assume the two 

spins have equal Zeeman splitting 0 , and the reservoirs 
are initially in vacuum states and not correlated to the 
spins. Under these conditions, the model can be solved 
exactly for any initial state of the spins and any form of 
spectral reservoirs. In this paper, we will mainly discuss 
two types of reservoirs—unstructured flat reservoirs and 
structured Lorentzian reservoirs, and also two large types 
of initial states of spins—double-excitation and one-exci- 
tation states. 

3.1. Double-Excitation Dynamics of MIN and 
GD 

Let us first study the double-excitation case, i.e., the joint 
initial state for the whole system is, 

   
1 2 2

0 0 1 1 0 0 ,
1 2 1

0
s s s s r r

        (7) 

where 
2 2

1   , and the collective state 

0 0
i i

kr r
k

  represents vacuum state of reservoir . ir

Due to the conservation of excitation number under 
the evolution of Jaynes-Cummings model, the dynamical 
state of the whole system has the form, 
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Here we introduce the collective state  

   1
1

i i
k kkr r

i

t
t




  1  to denote the one-excitation 

state of the reservoir i  [19,32]. The coefficients r  i t  
and  i t , which are determined by the quantum dy- 
namical equation, satisfy 

     1 1 10
d

t

i it t f t t t    ,          (9) 

and 

   2 2
1.i it t  

,

        (10) 

Here the kernel function is defined by 

      0 1
1 d ei t t

i if t t J         

with spectral density    2

, ,i i kk
J g    i k . 

The reduced density matrix for the two spins reads 
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(11) 
From Equations (4) and (5), the analytical expressions 

for MIN and GD can be written as 
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Similarly, the MIN and GD for the reservoirs reads, 
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In order to further demonstrate the dynamical features 
of MIN and GD, we specify our study to two exemplary 
reservoir spectra widely used in the literature, flat spec-
trum and Lorentzian spectrum. First, we consider the 
case that both spins are respectively embedded into two 
equal but independent flat spectral reservoirs, 

   1 2 ,J J               (16) 

where   is a constant that is commonly used as the 
Markov approximation with the interval of the spectral 
density much broader than the corresponding energy 
scale of the system. For this set of spectra, we obtain the 
time-dependent coefficients, 

 1 22
1 2 1 2e , 1 e .        (17) t t         

We plot the time evolution of  and  for differ-
ent partitions as in Figure 1, where we take two initial 

states for spins: Bell state with 

N D

1 2    and Bell- 
like state with 1 8 , 7 8   . From the figure 
along with the analytical expressions of Equations 
(12)-(15), we can find the following features. Firstly, 
there is clearly correlation transference between the spins 
and reservoirs [Figure 1(a) and 1(b)]. Both  and  
initially stored in the spins run into reservoirs gradually.  

N D

 And in the equilibrium,     0s s1 2 1 2
limt r rN t  N   

and      1 2
0s sD 

1 2
limt r rD t , i.e., the transfer- 

ence is complete. Secondly, both  and  of the 
spins deplete gradually and no sudden death occurs in the 
process of transference, which is different from the con-
currence [20]. Indeed, the concurrence of the spin system 

N D

is   2
max 0, 1 e etC         

t . When  

   (i.e., the Bell-like initial state in the figure), it 
will occur sudden death. Thirdly, due to the interaction of 
the spins with their own reservoirs, any spin  1 2s s  
becomes correlated with its reservoir  1r as shown in 
Figure 1(c). Also, 1

2r  
s  tangles with 2r  [Figure 1(d)] 

due to the initial correlation of the spins. However, at the 
end of evolution there is no correlation between any one 
of the spins and reservoirs. Therefore, the spin system 
can finally be discarded without any effect, and all corre- 
lations transfer to the reservoirs. Lastly, we find that the 
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Figure 1. (Color online) Evolution of  and N D  among 
different partitions with flat spectral density and for the 

double-excitation initial spin state  0 . Solid black line 

and purple plus sign denote respectively  and N D  for 
Bell state. Dotted red line and dashed green line denote 
respectively  and N D  for Bell-like state with 

, 1 8 7 8  . (a) Spins  with ; (b) Reservoirs 

 with ; (c) Spin with reservoir ; (d) Spin  

s1 s2

r1r1

with

r2 s1 s1

 reservoir r2 . 
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time evolution  of s  and  in this flat Markovian 

se 
of

N
 

 D
dreservoir are roughly in accor ance, only in few time 

intervals they behave large difference. This result high-
lights in some sense the relation between the two defini-
tions. Note that there are clearly some non-smooth points 
(sudden changes) on the evolution of D  (more obvious 
in Figure 1(c)), which are due to the ax operation in 
the expressions of D  [see Equations (13) and (15)]. 

Up to now, we have mainly concentrated on the ca

 m

 flat reservoirs where the dynamics is Markovian. 
There will be different features for structured reservoirs 
which will lead to obvious non-Markovian dynamics. As- 
sume that the two spins are now embedded in the local 
Lorentzian reservoirs with spectra, 
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This spectrum is commonly used to describe a two- 
level atom in an imperfect cavity. Where 0  is the Bohr 
frequency of the spins, and 0i ic 

ts c
    is the fre-

quency detuning between spin avity mode. 
The quantity 

i  and i
  is the photon-leakage rate of the cavity 

whose inverse notes the reservoir correlation time. The 
ideal cavity limit is obtained for 0

 de
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es , we obtain, 

 N
D  for different partitions in this case is presented in 

ure 2. For clarity, we only present the evolution of 
N  and D  for the initial state of the spins to be in Bell 

te. The istinctive property compared with the case of 
flat reservoirs is the oscillation in the evolution of N  
and D , which is the result of non-Markovian effe  
Other alike properties include: complete correlation trans- 
ference between the spins and reservoirs, no sudden 
death of correlations for the spins in the transferring pro- 
cess, the vanishing correlations between spins and reser-
voirs at the end of evolution, and the roughly overlapping 
evolutional curves for N  and D. 
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Figure 2. (Color online) Dynamics of  and N D  for the 
double-excitation initial Bell state of s  and e Lorpins  in th -
entz spectrum with ,  W 1 220 0   . Red dotted and 

blue lines denote respectively N  and D . (a) Spins s1  with 

s2 ; (b) Reservoirs r1  with 2 ith reservoir r1 ; 

(d) Spin s1  with reservoir r2

 r ; (c) Spin 
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Figure 3. (Color online) Evolution of  and N D  among 
different partitions with non-resonan nt ectrut Lore z sp m 

 ,  W 1 220 0    and for the doub -excitat n initial 

Bell state of spins. Red dotted and blue lines denote respec-

le io

tively N  and D . (a) 

ir 

Spins s1  with s2 ; (b) Reservoirs r1  

with r2 ; (c) Spin s1  with reservoir r1 ; (d) Spin s1  with 

reservo r2 . 

 
also exist , bs ut the amplitude of oscillation becomes 

aller compared with the resonant case. From Equa-

tween the spin and its reservoir. The steady values of 

sm
tions (12)-(15), we can also find that the correlation 
transference between the spins and reservoirs is also 
complete, but the transferring time becomes longer com-
pared with the corresponding resonant case. This is be-
cause the non-resonant effect decreases the coupling be-

N  
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and D  for 
1 1s r  and 

1 2s r  are also zero [not show com- 

pletely in Figure 3(c) and (d)]. Note that the evolutions 
of N  and D  also roughly coincide. 

3.2. Single-Excitation Dynamics of MIN and GD 

We w stud  the correlation evolution no y  for another type 
 of initial state which has only one excitation in the spin

system, 
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It is interesting to find that  and 

.

D 

 1 2s sN   1 2r rN   

have the same expressions for one- and two-excit
sp (23) 5) with  

ation 
in states [compare Equations and (2  

Equations (12) and (14)]. So do 
1 1 s rN   and  1 2s rN   

[not given in the text]. While for D , there is not similar 
result. 

When the two spins coupled  reserv   to flat oirs, the
parameters i  and i  are still g en by Equation (17). 
We sho

iv
w e corr lation transference of this case in 

Fi

g

th e
gure 4, which has roughly the similar properties as the 

correspondin  two-excitation case. 
If the spins couple to resonant and non-resonant Lo- 

rentz reservoirs, the corresponding parameters i  and 

i  are given respectively by Equations (19) an 20). 
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d (
The corresponding correlation transference depicted in 
Figures 5 and 6 are still similar to that of two-excitation 

se. 
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Figure 4. (Color online) Dynamics of  and N D  for the 

single-excitation initial spin state  0   and pectral 

density. Solid black line and purple plus sign denote re
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pectively N  and D  for initial Bell sta , while tted red 
line and dashed green line for in ell-like state with 
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itial B
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 1 8 ,  7 8 . (a) Spins s1  with s2 ; (b) Reser- 

voirs r1  with r2 ; (  Spin s1  with reservoir r1 ; (d) Spin 

s1  with reservoir r2 . 
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Figure 5. (Color online) Dynamics of  and N D  for the 
single-excitation initial Bell state of sp d esonant 
Lorentz spectra 

ins an  for r

   1 220 ,W    0 . Re d and d dotte

blue lines denote respectively N  and D . (a) Spins s1  with 

s2 ; (b) Reservoirs r1  with r2 ; (c) Spin s1  with reservoir r1 ; 

(d) Spin s  with res1 ervoir r2 . 
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Figure 6. (Color online) Evolution of  and N D  among 
different partitions for non-resonan nt ectrum t Lore z sp

   1 220 , 20W    and for the sin le-exc  initiag

s d

itation

es

l 

Bell state of spins. Red dotted and blue line enote r pectively 
N  and D . (a) s1  with s2 ; (b) r1  with r2 ; (c) s1  with r1 ; 

4. Quant Beat for MIN and GD 

Quantum beat is a very inte

(d) s1  with r2 . 

resting phenomenon in quan-
tum optics. We discussed the entanglement and discord 

n two-level sys-quantum beats in detail early [31] in ope
tems. Here, we find that for the time evolution of N  
and D  a similar phenomenon also appears. Let us still 
assume that the two spins are plugged into their own 
Lorentz reservoirs with spectral density given by Equa- 
tion (18). For simplicity, we only discuss the non-reso- 
nant and two-excitation case. For resonant or/and one- 
excitation case, similar phenomenon of quantum beat for 
N  and D  also exists. The quantum correlations N  
and D  for the spins and the reservoirs are described 
respectively by Equations (12)-(15) with parameters i  
and i  given by Equation (20). The corresponding time 
evolutions are depicted in Figure 7, where 

1 2    and 1 250 , 45     . The tiny dif-
ference between 1  and 2  is the demand of observ-
ing quantum beat. Only in this way can we induce two 
harmonic oscillations with tiny different frequencies,
whose interfering superpo ion forms quantum beat. 
These quantum beats originate from non-Markovian ef-
fect, as no any direct or mediated interaction exists be-
tween the two spins or the two reservoirs. It is the result 
of both non-Markovian effect and quantum interference. 
The detailed mathematical analysis may be consulted in 
Reference [31]. 

5. Conclusions 

We have studied
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Figure 7. (Color online) Dynamics for  and N D  for the 
double-excitation initial Bell state of spi  non- 
resonant Lorentz spectrum 

ns and for

   10 , 50 , 45W 1 2    . (a)  wits1 2 1

r2 . Red dotted and blue lines denote respectively N  and 

 with s . (b) r h 

D . 

 
al rese voirs. We cons dered 

o large types of initial states of the spins, i , one- d 
o-excitation states. We found that N  of differ t 

spectively couple to their loc r i
tw .e. an

entw
partitions is identical for the two types of initial states, 
while D  depends on the initial states. In the situations 
of flat and Lorentz spectral reservoirs, we have both 
analytically and numerically simulated the time evolu- 
tions of N  and D . We found that there exist complete 
correlation transference between the system and reser- 
voirs, all N  and D  initially stored in the spins com- 
pletely transfer to reservoirs at the end of evolution. 
There is no sudden death of correlations for the spin sys- 
tem in the transferring process, which forms bright con- 
trast to the quantum entanglement. For flat spectral res- 
ervoirs, there is no oscillation for N  and D  in the trans- 
ferring process. While for memory Lorentz reservoirs, 
oscillation appears which is the symbol of non-Mar- 
kovian effect. In particular, when the detunings of the 
spins with their reservoirs have tiny difference, the quan-
tum beats for N  and D  are observed which signify the 
quantum interference between the two dynamics of the 
spins through quantum correlations. For the Lorentz res- 
ervoirs and in the case of resonance between the spins 
and their reservoirs, the oscillation amplitudes of N  
and D  are larger, and the time of the correlation trans- 
ference is shorter. While in the detunings (particularly for 
large detunings), the oscillation amplitudes become 
smaller and the transferring time becomes longer. Finally, 
we found that though the different definitions, the evolu- 
tions of N  and D  are very close for most cases under 
consideration. This is an astonishing result which high- 
lights in some sense the relation between the two defini- 
tions. Also note that it may happen sudden change for the 
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evolution f D . 
Note that a similar work for the evolutions of the quan- 

tum and classical correlations was done [29]. The trans- 
ference of N  and D  studied here has some similar 
properties to at 

 o

of quantum and classical correlations. 
H

of 
n

d finding the
dy

or the Doctoral Program
20124306110003) the Cons- 

g Measurement-Induced Disturbance to 
racterize ations as Classical or Quantum,” Physica
Review A 01. 
doi:10.1103/Ph

th

in
 Correl
, Vol. 7

owever it also appears many differences, for example, 
N  is the same for one- and two-excitation cases, and 
D  may happen sudd  change in the evolutional proc- 
ess. Especially, N  and D  have very coincident evolu- 
tions in most cases under considerations. 

Quantum correlation is a kind of unique characteristics 
quantum system which could be a new resource in 

quantum information tech ology. Exploring the relation 
between various quantum correlations an

en

 
namical rules of them in practical environments can 

not only contribute to a better understanding of the con- 
cepts, but also offer possible references for applications. 
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