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Structure of semantic memory was investigated in the way of neural network simulations in detail. In the 
literature, it is well-known that brain damaged patients often showed category specific disorder in various 
cognitive neuropsychological tasks like picture naming, categorisation, identification tasks and so on. In 
order to describe semantic memory disorder of brain damaged patients, the attractor neural network model 
originally proposed Hinton and Shallice (1991) was employed and was tried to re-evaluate the model 
performance. Especially, in order to answer the question about organization of semantic memory, how our 
semantic memories are organized, computer simulations were conducted. After the model learned data set 
(Tyler, Moss, Durrant-Peatfield, & Levy, 2000), units in hidden and cleanup layers were removed and 
observed its performances. The results showed category specificity. This model could also explain the 
double dissociation phenomena. In spite of the simplicity of its architecture, the attractor neural network 
might be considered to mimic human behavior in the meaning of semantic memory organization and its 
disorder. Although this model could explain various phenomenon in cognitive neuropsychology, it might 
become obvious that this model had one limitation to explain human behavior. As far as investigation in 
this study, asymmetry in category specificity between animate and inanimate objects might not be ex- 
plained on this model without any additional assumptions. Therefore, further studies must be required to 
improve our understanding for semantic memory organisation. 
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Introduction 

Cognitive neuropsychological evidence about semantic 
memory disorder have given deep impacts to studies of cogni- 
tive science and psychology. Among the cognitive neuropsy- 
chological data, disorder about distinction between animate and 
inanimate objects is suggestive in order to understand organiza- 
tion of our semantic memories. Because patients with semantic 
memory disorder often have tendency known as “double disso- 
ciation”. Some patients show deficits in identification, naming, 
and categorization tasks of animate objects, but their knowl- 
edge of inanimate objects (i.e. tools, outdoor objects, jewelries, 
body parts, and so on) remains intact (Caramazza & Shelton, 
1998; De Renzi & Lucchelli, 1994; Hillis & Caramazza, 1991; 
Warrington & Shallice, 1984). On the other hand, there exits 
another kind of patients who are not able to identify, to name, 
and to categorize inanimate objects. However, their knowledge 
about animals remains intact (Hillis & Caramazza, 1991; War-
rington & McCarthy, 1987). Although many studies controlled 
for confounding factors such as familiarity and frequency (Ca- 
ramazza & Shelton, 1998; De Renzi & Lucchelli, 1994), these 
factors failed to explain explain the double dissociation. In the 
literature, this double dissociation was first described by Niel- 
sen (1946) Capitani, Laiaconna, Mahon, and Caramazza (2003) 
reviewed evidences in category specific processing in the hu-
man brain which has selective impairments in recognizing par-
ticular types of objects. Based upon their clinical evidences, 

Warrington and her colleagues (Warrington, 1981; Warrington 
& McCarthy, 1983; Warrington & Shallice, 1984; Warrington 
& McCarthy, 1994) have tried to explain that the structure of 
semantic memory and its nature. Would these data suggest that 
different contents of semantic memory are localized in the brain 
(maybe the left lateral inferior gurus)? Might these data suggest 
that the information of these two categories are stored in dis-
tributed manner in the brain? Or might these data emerge from 
the inter- and intra-correlations between objects? In this paper, 
it was intended to focus upon these questions. 

Neuroimaging Studies 

Neuroimaging studies revealed a similar double dissociation. 
In a review of functional neuroimaging studies in normal sub-
jects, Martin and Chao (2001), Martin and Caramazza (2003) 
mentioned that animate objects had tendency to show peak 
activity in both the lateral portion of the fusiform gyrus in both 
hemispheres and the right superior temporal sulcus while in- 
animate objects had tendency to show peak activity in the me- 
dial portion of the fusiform gyrus, the left middle temporal 
gyrus, and the ventral premotor and parietal cortex in the left 
hemisphere. Similar conclusions have been made in other re- 
view papers (Josephs, 2001; Lewis, 2006; Thompson-Schill, 
2003). These areas are possible candidates responsible to per-
form semantic memory tasks. However, it is worth noticing that 
these findings might be inconsistent with cognitive neuropsy-
chological findings (see the next section). *The author would like to thank Sachiyo Iwafune for her help. 
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Cognitive Neuropsychological Evidence 

For the most of neuropsychological case studies with seman-
tic memory disorders, the performances of patients to stimuli of 
animals were less than those of inanimate objects. It was re-
ported that patients, who have an animate specic disorder in 
category judgement, he/she had a tendency to confuse an ani- 
mal with another animals more than he/she confused an inani-
mate objects with another inanimate objects (Warrington & 
Shallice, 1984). The representation of semantic memory can be 
considered that this kind of representation may vary based upon 
how they can be retrieved within the same category. Warring-
ton and her colleagues (Warrington, 1981;Warrington & Mc- 
Carthy, 1983; Warrington & Shallice, 1984; Warrington & Mc- 
Carthy, 1994) insisted that generally speaking animate objects 
are stored in the brain as visually resemble features. On the 
other hand, inanimate objects have been shared more functional 
features than those of animals. 

There are several hypotheses have been proposed so far. 
Those are as follows: 

1) Modality speci hypothesis (Warrington & Shallice, 1984; 
Warrington & McCarthy, 1983, 1987) 

2) Organized unitary content hypothesis (Caramazza, Hillis, 
Rapp, & Romani, 1990; Hillis & Caramazza, 1991). 

3) Sensory in topography hypothesis (Simmons & Barasalou, 
2003). 

4) Hierarchy in Topography hypothesis (Humphreys & Forde, 
2001). 

The facts that each hypothesis has supportive evidences 
and/or computational results have to remember while discuss-
ing about the model performances and corresponding pheno- 
menon. 

Warrington and her colleagues (Warrington & Shallice, 1984; 
Warrington & McCarthy, 1983, 1987) proposed the perceptual 
and functional hypothesis. According to this theory, the cate- 
gory specificity can be regarded as our semantic memories are 
organized along with both perceptual and functional knowledge. 
They advocated that knowledge about musical instruments and 
jewelry were similar to animate objects. They also, on the other 
hand, insisted that inanimate objects and body parts could be 
identified as functional knowledge. According to their percep-
tional/functional hypothesis, the brain damages to the regions 
for dealing with perceptual semantic knowledge would cause 
the deficits of knowledge about animate objects. In other words, 
the difference between animate and inanimate objects might be 
different on the loci damaged. This hypothesis was also sup-
ported by the results of the neural network simulation (Farah & 
McClelland, 1991). This study by the way of computer simula-
tion revealed that memory about animate objects would suffer 
from the brain damage more than that of inanimate objects, if 
perceptual memory had more damage than that of functional 
memory. It is because the knowledge of animals had been 
deeply contributed by perceptual memory. 

However, there exist studies that semantic memory about 
animal had been damaged without lack of any perceptual 
knowledge. There are patients who showed deficits about ani-
mal without any specific disorders of perceptual knowledge 
(Caramazza & Shelton, 1998). Can we say that the representa-
tions of perceptual and functional aspects of semantic memory 
would differentiate between animate and inanimate objects? 
Are the information of perceptual and functional knowledge 
stored separately in the brain? And therefore, do local lesions 

cause category specific disorders? Can we say that the category 
specificity suggests difference in the contents and the structures 
between categories? 

Especially, there exists a kind of category specificity without 
any semantic memory disorders. A hypothesis has been pro-
posed that each concept in semantic memory has been repre-
sented by activation patterns of micro features, i.e. multidimen-
sional vectors. A similar relationship between concepts could 
be regarded as overlapped activation patterns in the micro fea-
tures. 

Data Representation 

It was attempted to represent data on the basis of feature dis-
criminability in this study. It is hypothesized that correlation 
matrix among objects could be explained category specificity 
and double dissociation between animate and inanimate objects. 
This method of memory representation was originally described 
by Devlin et al. (1998). 

Figure 1 shows the correlation matrix of each item calcu- 
lated from data of Tyler et al. (2000). Tyler et al. (2000) con- 
trolled their stimuli, where inner correlations among animate 
objects (lower right sub-matrix) have higher than those of in-
animate objects (upper left side). Compared upper left with 
lower right sub-matrices in Figure 1, it is obvious that the up-
per left sub-matrix (inanimate objects) have less mutual corre-
lation coefficients than those among animate objects (the lower 
right sub-matrix). Tyler et al. (2000) insisted that they could 
control the stimuli. Figure 1 shows the correlation matrix cal-
culated from the data employed by Tyler et al. (2000). Open 
circles in Figure 1 mean positive correlation coefficients, and 
filled circles mean negative correlation coefficients as well. 
Size of circles indicates correlation strengths. The upper left 
sub-matrix of Figure 1 indicates inanimate objects, while the 
lower right sub-matrix shows animate objects. 

In studies of connectionists’ computer simulations, each 
 

 

Figure 1.  
Correlation matrix calculated from the data of Tyler et al. (2000). 
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concept has been described by micro features, which are com-
posed of multidimensional dichotomous (0 or 1) vectors (Pat-
terson et al., 1996; Plaut & Shallice, 1993; Plaut, MaClelland, 
& Seidenberg, 1995; Plaut, 2001; Plaut, McClelland, & Sei-
denberg, 1995; Seidenberg, Plaut, Petersen, McClelland, & 
McRae, 1994; Seidenberg, Alan, Plaut, & MacDonald, 1989; 
Devlin et al., 1998). It is considered that similar concepts over-
lap their activation patterns of micro features each other. That is, 
it is regarded that each concept is represented based upon the 
discriminability of micro features. The category specificity 
might be explained by the correlation matrix among concepts. 
Therefore, representation of semantic memory would constrain 
how to retrieve among the same category of the concept. Con-
cept of animal shares more perceptual features than that of in-
animate objects. On the other hand, concept of inanimate ob-
jects shares more discriminative features than that of animals. 
Co-occur- rence of micro features might strengthen the rela-
tionship between objects in semantic memory space, which is 
defined by micro features. The concept of animal would have 
higher correlation coefficients than those of inanimate objects. 
Considering the representation of semantic memory described 
above, we did not adopt dichotomous definition between ani-
mate and inanimate objects. Also, dichotomous definition be-
tween perceptual and functional aspect of semantic memory 
was not adopted. Rather, it was attempted to represent data on 
the basis of discriminability. 

In other words, Tyler et al. (2000) did not consider that the 
category specificity (the difference between concepts of ani- 
mate and inanimate objects) might emerge from the localized 
lesions in the brain. They might think the category specificity 
as the result of learning each concept of various objects. This 
learning might inevitably give rise to category specificity, be-
cause the double dissociation between animate and inanimate 
objects must emerge from the correlation matrix. Here, ex-
plaining category specificity from the viewpoint of computer 
simulations of a neural network model was attempted. 

In explanation of category specificity from the viewpoint of 
neural networks, patterns of correlation coefficients between 
micro features may play an important role in order to under-
stand category specificity (Plaut & Shallice, 1993). The re-
searchers in this field have been seeking for origin of the cate-
gory specificity and the double dissociation of semantic mem-
ory between animate and inanimate objects. 

Attractor Neural Network Model 

Several computational models have been proposed in order to 
explain category specific deficits so far (Hinton & Shallice, 
1991; Farah & McClelland, 1991; Plaut & Shallice, 1993; Plaut, 
1995; Devlin et al., 1998; Bullinaria, 1999; Perry, 1999). How- 
ever, it is worth noticing that Bullinaria (1999) tested and got 
negative conclusions in neural network models. 

Tyler et al. (2000) adopted a three layered network known as 
“perceptron” model to deal with the data described above. Al- 
though this type of neural network model is sufficient to ac-
count for the double dissociation between animate and inani-
mate objects, the attractor neural network seems to have more 
advantages than perceptron in order to describe some charac- 
teristics in semantic memory disorders. For example, the num-
ber of iterations between output and cleanup layers (Figure 2) 
until reaching the threshold of output criteria can be regarded as 
the prolonged reaction times of brain damaged patients. 

 

Figure 2.  
Attractor neural network model pro- posed by Hinton and Shallice 
(1991) and Plaut and Shallice (1993). 
 

Plaut, McClelland, and Seidenberg (1995) and Plaut (2001) 
adopted the attractor networks and tried to account for semantic 
dyslectic and compound errors from both visually and seman- 
tically. In their neural networks, basic processing units are con- 
nected mutually. Upon this multidimensional space consisted of 
activation values of processing units, the networks can change 
and retrieve contents of adequate memories. In other words, 
when the network was given random initial values, the acti- 
vation values of each processing unit would transit from value 
to value in semantic memory space. The behavior of this net- 
work could be absorbed in an “attractor”. There are many 
attractors corresponded to each memory object. If the set of 
initial values may be changed, the state of this attractor network 
might be absorbed in a correct “point” attractor. Thus, it is pos-
tulated that “basins” of each attractor are different each other. 
Each basin corresponds to correct concept of an object. 

Plaut and Shallice (1993) tried to explain the semantic errors, 
visual errors, and compounded both semantic and visual errors 
by using attractor networks. In their neural networks, in general, 
units are connected mutually causing interactions among units. 
This interaction of activation patterns of each unit can be iden- 
tified as the states of activation patterns of units. The activa- 
tions of the units are transited from one to another as the mem-
ory retrievals. The transition from arbitrary initial states to 
some attractors are called the “absorb-ability” of attractors. 
Therefore, it could be considered that different basins for each 
word are composed throughout learning. 

In case of attractor neural network, each attractor corre- 
sponds to each concept, and its basin represents its range to be 
absorbed in. Even if the state of the network defined by the 
activations of each unit would be changed on influences either 
noises or perturbations to the network, the state would stay 
within its basin. This means that we could get to the correct 
concept no matter how high the noises or perturbations are. 

In addition, if damages in attractor networks would destroy 
positions of point attractors, the same stimuli might fall into 
incorrect attractors due to transformations of size and shapes of 
basins. Therefore, it requires more time to fall in correct attrac- 
tors than the normal attractor network does (see Figure 3). 

Mathematical Notation 

Each neuron, or unit, xU  has an output function  f x , 
which is a sigmoid function, as follows, 
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Figure 3.  
Schematic description of basins of attractor neural network model 
and its modification by damages against the model. 
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where,  and  in the equations denote threshold values in 
the output and the cleanup layers respectively. The states in 
units both the output and the cleanup layers were updated re- 
peatedly until the convergence criterion had been reached or 
until the maximum numbers of iterations ( ). 

θo θc

τ 50
In the learning phase, the mean square error can be defined 

as follow: 
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where, i  indicated an i-th teacher signal. Actual learning of 
connection weights of each unit can be obtained by partial dif-
ferential as follows: 

t

=
E

w
w


 


,



                     (6) 

where,  indicates a learning rate fixed as  throug- 
out this study. 

η η = 0.01

The initial values of  and θ  were assigned in accordance 
with an uniform random value generator . 

w
 0.1 ,θ 0.1w  

Abilities of Attractor Neural Network 

Attractor networks show rather higher performances than the 
perceptrons. In general, it is said that three layered perceptron 
can be regarded as the function approximator in arbitrary preci-
sion, when attractor neural network model has plenty of units in 
the hidden layer. 

Attractor neural network model, however, show good per-
formances even with the limitation of units in hidden and 
cleanup layers. A good example is the exclusive OR problem. 
In the natural extension of an exclusive OR problem, there is a 
parity bit problem. This problem is more difficult than exclu-
sive OR problem. And this problem is more general than exclu-
sive OR problem. The attractor neural network model can solve 
4 bits parity problem. The number of units in input layer is 4. 
The number of learning patterns to be learnt is 16. The 8 bits 
parity problem where the number of units in the input layer is 8, 
and the total number to be learned is 256 with the minimum 
hidden layer, 1 unit. Figure 4 shows a solution, which can solve 
8 bits parity problem with 1 hidden unit and 1 cleanup unit. 

Furthermore, the attractor network with only one hidden 
layer unit and only one cleanup layer unit could solve the cate-
gory condition in the data of Tyler et al. (2000). The architec-
ture of the network was exactly the same as the Figure 4. 

Application of Attractor Neural Networks 

Hinton and Shallice (1991) and Plaut and Shallice (1993) showed 
that their attractor network could reproduce symptoms of a kind 
of dyslexia. According to their simulations, by means of the 
operation of semantic memory structure, they succeeded to 
account for the double dissociation between concrete and ab-
stract words (Plaut, McClelland, & Seidenberg, 1995; Plaut, 
2001). They constructed the semantic memory that the repre-
sentations of concrete words have more micro features than 
those of abstract words. They postulated when the degree of the 
brain damages would be moderate, concrete words would show 
lighter deficits than abstract words. Further, if the degree of the 
brain damage would be severe, the concrete words would have 
more severe deficits than the abstract words. 

In this study, the dichotomous taxonomy, such as animate/ 
inanimate objects classification, was not adopted. Rather, the 
data on the basis of the discriminability and correlation was 
employed. 

Numerical Experiments 

Computer simulations were conducted under the three condi-
tions described below. After learning completed, the effect of 

 

 

Figure 4.  
A set of connection weights which could solve a 8 bit parity 
problem. 
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brain damages were intended to mimic by removal of units in 
hidden and cleanup layers. In each brain damaged simulation, 
numbers of iteration were postulated to identify prolonged re-
action times of patients with semantic memory disorders. Then, 
the effect of relearning was investigated. 

Method 

Conditions 

Tyler et al. (2000) adopted the isomorphic mappings in order 
to train their networks. In other words, their networks had to 
learn the output pattern identical to the input patterns. In this 
condition, the network must acquire the reproduction of the 
input pattern. However, it is possible to consider two more 
conditions (teacher signals in this case). One is that the target 
matrix (teacher signals) being the identity matrix, having 16 
rows and 16 columns, all the diagonal elements being 1 and all 
the non-diagonal elements being 0. Another is that the matrix 
having 16 rows times 2 columns, where the elements of this 
matrix consisting (1, 0) when the item is an animate object, and 
(0, 1) when the item is an inanimate object. To summarize these 
three conditions; 

Category condition: the target matrix is a 16 rows × 2 col-
umns matrix, where the targets to be learned are animate ob-
jects, the output vectors are (1, 0). Otherwise (inanimate objects) 
the output vectors are (0, 1). 

Diag condition: the target matrix is an unitary matrix of 16 
rows × 16 columns, where diagonal elements are 1 and other 
elements in this matrix are 0. 

Same condition: the target matrix is a 16 rows × 24 columns 
matrix. This target matrix is the same as the matrix of the input 
signals. This condition is the one which Tyler et al. (2000) 
adopted. 

The category condition can be regarded as the category 
judgement task in neuropsychological test. Under this condition, 
the neural network model must learn and discriminate both 
animate and inanimate concepts. This means that the network is 
required to learn higher concepts than each item to be learned 
as Tyler et al. (2000) suggested. In the diag condition, the net-
work must learn precise knowledge of each member in the in-
put patterns. The unitary matrix in this condition means that 
each item can play a roll to form the identical matrix. In the 
same condition, the network is required to learn the precise 
knowledge of each member in the input patterns. 

Network Architecture 

The number of units in the hidden layer was set to be 10, and 
the number of units in the cleanup layer to be 1. The reason for 
determining the number of units in the cleanup layer to be 1 is 
based on the preliminary experiment. 

Procedure 

The maximum iteration numbers between the output and the 
cleanup layers was set to be 10 for each item. If the error of this 
attractor network did not reach the convergence criteria, de-
fined by the sum of squared errors being less than 0.05 for each 
item. Within the maximum number of iterations between the 
output and the cleanup layer, the program gave up to let the 
networks learn this item, and was given the next item to be 
learned. The order of the items to be learned was randomized 

within each epoch. This procedure was repeated until the net-
work learned all the items. The initial values of the connections 
are decided by using a random number generator whose range 
were from −0.15 to +0.15 in accordance with uniform random 
numbers. 

The convergence criteria were set that all the sum of squared 
errors are below 0.05 throughout in this study. The network 
was given the input signals and teacher signals at a time to learn 
the output patterns. At first, the output values were calculated 
from the input patterns to the units in the output layer. Then 
iterations between the output and the cleanup layers started 
until the output values have reached the criteria, or the iteration 
numbers have been exceeded 50 times. 

Mean Convergence and Individual Convergence 

Computer simulations of neural networks, in general, have been 
considered that the convergence criteria have often been set as 
the mean square errors (MSE, hereafter) computed from the 
data set of the whole stimulus. When the MSE of the system 
outputs would reach the point blow the criteria, it is considered 
that the system (or the neural network model) could learn the 
given task. However, in case of both the data set of Tyler et al. 
(2000) adopted and the three conditions described above, it 
might be something strange when the mean convergence crite-
ria was employed. For example, when we on the supposition 
that the MSE would be 0.06 when they know “lion”, and that 
the MSE would be 0.04 when they know “cheater”. In this case, 
the average MSE would be 0.05, and then the learning must be 
regarded to complete. However, it seems to be difficult to imag-
ine that a man would know lions uncertainly and he would 
know cheaters certainly simultaneously. Ordinary persons, in 
general, have knowledge about both lions and cheaters are 
predatory animals and live in Africa. Here, in view of this rea-
son, we decided to adopt the convergence criteria as the indi-
vidual convergence. It means that the MSE for each item to be 
learned must be reached blow the point (0.05 in this study). But 
the mean convergence criteria were adopted in the category 
condition. Because the correct output of the first item is (1, 0) 
and the correct output of the second item is also (1, 0). It cannot 
be distinguished between these two items. For the same reason, 
from the fist item to the 8-th item, the correct output patterns 
are all the same (1, 0), also from the 9-th to 16-th patterns the 
outputs are (0, 1) as well. Therefore, it would not be able to 
discriminate the outputs of the neural network systems con-
structed for this study could be produced from which output 
pattern. In case of category judgement tasks for actual human 
subjects, when the subjects would be asked to answer whether 
animals or not, they would answer the same way like neural 
network systems would, whether the object is a lion or a cheater. 
In this reason, it is adequate that we employed the mean con-
vergence criteria for the category condition. On the other hand, 
the diag and same conditions have different situations. The 
correct answer for the first item matches only the first output. 
Therefore, we adopted the individual convergence criteria for 
these two conditions as it seems to be a natural interpretation 
like human subjects do. 

Results 

Comparison among Conditions 

We investigated the mean iteration numbers between the output 
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and the cleanup layers. These numbers indicate the times that 
the initial value is absorbed in an attractor when the initial 
value was located within a basin of an attractor (Figure 5). 

This figure shows the mean iteration numbers for each con-
dition. The category condition was the least among three condi-
tions. This might come from that the system was required to 
discriminate between only two options in the category condi-
tion. There, in this condition, were eight objects of (1, 0) and 
other eight objects of (0, 1). Other two conditions require that 
16 objects must discriminate into 16 options. This simplicity of 
the output manner in the category condition might cause a kind 
of easiness of learning. In other words, category judgement task 
might be easy because of the small number of options. 

Effect of Damage 

In order to investigate the effect of damages, we removed the 
units after the system completed to learn the data set. Removal 
of units in the hidden layer caused severe disorders. The system 
failed to answer all the trials in all the conditions. The system 
had to relearn in order to get the correct answer again. This 
symptom might resemble that patients often would show severe 
declines of performance just after brain damage. The result of 
relearning is shown in the Figure 6. 

The horizontal axis in Figure 6 is the number of units re-
moved. So, this axis can be considered as the severity of dam- 
 

 

Figure 5.  
The mean iteration numbers for learning completion. 
It shows the iteration numbers that each MSE reach- 
ed below 0.05. The whiskers indicate the standard 
deviations. 

 

 

Figure 6.  
A simulation of brain damages, the removal of the 
hidden units after the learning completed. The hori- 
zontal axis shows the number of units removed. The 
vertical axis indicates percent correct (n = 100). 

age. In this figure, the results of diag and same conditions are 
indicated. The system could easily recover from damages in 
category condition. Even if the rest of unit become 1, the sys-
tem could recover 100% correct. So, we could not draw any 
curves in the figure. That is to say that the attractor neural net-
work model have enough ability to solve this category judge-
ment task. The figure also shows that the system was robust 
against damages in diag and same conditions. The system 
maintained rather good performance against damages. The 
performance declined suddenly when the number of units in the 
hidden layer were 2 or 3. 

In order confirm these findings above, we conducted another 
experiment with 5 units in the hidden layer and 2 units in the 
cleanup layer. The result shows in Figure 7. This figure reveals 
that the system showed relatively higher performance in cate-
gory condition. The other two conditions, diag and same, were 
indicated that the performance of the system fell down sud-
denly when damages became severe. 

It could be said that the system has an ability for relearning 
in category judgement task. On the other hand, object identifi-
cation task (same condition) and naming task (diag condition) 
are difficult to recover when damages are severe. 

Iteration Number between Output and Cleanup 
Layers 

Iteration number between output and cleanup layers were in-
vestigated. Attractor neural network model is a generalized 
model which includes three layered perceptron in the special 
case. If the organization of network is enough in order to solve 
given tasks, we could predict the iteration number between 
output and cleanup layers would be 0. Then, this iteration might 
apply to tasks which are required to use attractors. There were 
many cases of no iteration between output and cleanup layers in 
all conditions. After damages, the system needs to iterate in 
order to utilize attractors. Figure 8 shows one of the results. 

After learning completed, units in hidden layer were re-
moved. The horizontal axis shows the number of units removed. 
Therefore, the number in the horizontal axis can be regarded as 
severity of brain damage. The vertical axis indicates iteration 
numbers between output and cleanup layers (n = 100). As it can 
be seen in the figure, the system had to use interaction between 
output and cleanup layers. This was the same in all the three 
conditions. If we could consider these iterations as delays of  
 

 

Figure 7.  
Simulation of brain damage, removal of units in 
hidden layer after completion of learning. The hori- 
zontal axis indicates the number of units removed. 
The vertical axis indicates percent correct (n = 100). 
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latencies in reading, naming, and identification tasks, attractor 
neural network model could succeed to simulate task perform-
ance of brain damaged patients, because more iteration times 
were required to respond in all the three conditions. 

Relearning 

As the evidence of increasing of within category error, the neu-
ral network system had suffered removals of hidden units. The 
system consisted of 10 units in the hidden layer and 1 unit in 
the cleanup layer. After learning completed, 3 out of 10 units in 
the hidden layer were removed. Confusion matrices were cal-
culated from activation values of 7 units in the hidden layer and 
1 unit in the cleanup layer. Figures 9-11 show the results. 

An obvious difference can be recognized when we compare 
these figures with Figure 1. The confusion matrix in category 
condition indicated that correlation coefficients within category, 
which means 8 × 8 upper left corner and 8 × 8 lower right cor-
ner in this matrix, became higher each other than those in Fig-
ure 1. This might be analogous that most brain damaged pa-
tients with semantic disorder showed error like mistaking lion 
as cheater. 

On the other hand, in diag condition (naming task) and in 
same condition (object identification task), confusion matrices 
had tendencies that there were high confusion values inter 
category. This might be supposed a kind of reason that brain 
damaged patients often show difficulty in naming and identifi-
cation tasks. Further, this result could be considered that these  
 

 

Figure 8.  
Simulation of brain damages. 

 

 

Figure 9.  
A confusion matrix in category condition. 

 

Figure 10.  
A confusion matrix in diag condition. 

 

 

Figure 11.  
A confusion matrix in same condition. 

 
confusion matrices would cause visual and semantic errors. 

Category Specificity 

We observed the performance of the attractor neural network 
when we removed the units in the hidden layer and the cleanup 
layer. Because the ability of re-learning or the ability of recov-
ery of the attractor neural network model is excellent, this sys-
tem can recover immediately from the damage, which we re-
moved 1, 2, or 3 units in the hidden layer. Brain damage, in 
general, might be considered that the system would fall into an 
unrecoverable status when it would be suffered damages. In 
order to express this kind of status, in addition to the removal of 
the hidden units, we tried to fix the connection weights from the 
units in the hidden layer to the units in the output layer, and 
tried to let the system relearn. The relearning in this case would 
be expected to occur only units between output and cleanup 
layers. In this result, the performances in all the conditions did 
not recover completely. It means that the learning times reached 
the maximum iteration numbers in all the conditions. Figure 12 
shows that the correlation coefficients calculated from the acti-
vation values among units in hidden and cleanup layers. Figure 
12 was calculated from a result of the system which has 10  
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Figure 12.  
A visualization of a matrix of correlation coefficients 
among objects to be learned, calculated from the 
hidden and cleanup layers after relearning. 

 
units in hidden layer and 1 unit in cleanup layer. After learning 
completed, 3 units in the hidden layer were removed. Compare 
Figure 1 with Figure 12. Comparison between figures indi-
cates that the correlation coefficients are relatively higher in 
Figure 12 than in Figure 1. It is possible to interpret that this 
result might cause confusions among objects. For example, 
brain damaged patients with animate specific disorder may 
confuse lion as cheater. The system may confuse objects in the 
data set as well. 

Removal of Units in Cleanup Layer 

We set the number of units in the cleanup layer as two and train 
the system, then we removed one of the units in the cleanup 
layer. We varied the initial values and performed simulations. 
The results are shown blow. Each line indicates each result. 
There are 16 items to be learned. The first 8 columns indicated 
by the digits from 0 to 7 mean inanimate objects, and the last 8 
columns indicated by the digits from 8 to 15 means animate 
objects. Parentheses “()” indicate that the system failed to reach 
the correct answer within the limited iterations between output 
and cleanup layers. Each digit shows the number of items 
which the system produced (Table 1). 

This results might mean that brain damages would transform 
the basins. Therefore, it could be pointed out that a kind of 
confusion among other items occurred. Compared with animal 
objects, the system did not make any mistakes about inanimate 
objects. It is supposed that the correlation coefficients between 
inanimate objects were relatively smaller than those of animates. 
Table 2 shows the iteration numbers when the system suffered 
damage: removal of units. 

The iteration numbers between output and cleanup layers 
were increased in animate objects. If we could identify these 
iteration numbers as reaction times which brain damaged pa-
tients show, the attractor neural network can be regarded as the 
model of semantic memory disorder to explain category speci-
ficity. 

As an analysis of the types of error, objects are close each 
other in the data set of Tyler et al. (2000). So, if the system 
would suffer injuries or damages, it would give rise to mistakes 
the most likely objects. In fact, when we conducted a multidi-

mensional scaling analysis to the data of Tyler2000, its result 
showed as Table 3. The coordinate values were calculated until 
 
Table 1.  
Example of the outputs when one of the units in the cleanup layer was 
removed. 

inanimate animate 

0 1 2 3 4 5 6 7 (5) 9 (5) 11 (5) (5) (5) (5) 

0 1 2 3 4 5 6 7 (7) (7) (7) (7) 12 (7) (7) 15 

0 1 2 3 4 5 6 7 (6) (6) (6) (6) (6) (6) (6) (6) 

0 1 2 3 4 5 6 7 (1) (1) (1) (1) (1) (1) 14 (1) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 (1) (1) 10 (1) (1) 13 (1) (1) 

0 1 2 3 4 5 6 7 8 (1) 10 11 (1) (1) (1) (1) 

0 1 2 3 4 5 6 7 (4) (4) (4) 11 12 (4) 14 15 

0 1 2 3 4 5 6 7 (7) 9 10 11 (7) (7) (7) (7) 

 
Table 2.  
Example of the iteration numbers (max = 20) when one of the units in 
the cleanup layer was removed. 

inanimate animate 

0 0 0 0 0 0 0 0 2 2 2 2 1 2 2 2 

2 0 0 0 0 0 0 0 (20) 2 (20) 2 (20) (20) (20) (20) 

0 0 0 0 0 0 0 0 (20) (20) (20) (20) 2 (20) (20) 2 

0 0 0 0 0 0 0 0 (20) (20) (20) (20) (20) (20) (20) (20) 

0 0 0 0 0 0 0 0 (20) (20) (20) (20) (20) (20) 3 (20) 

0 0 0 0 0 0 0 0 2 2 2 2 3 2 2 2 

0 0 0 0 0 0 0 0 (20) (20) 2 (20) (20) 2 (20) (20) 

0 0 0 0 0 0 0 0 2 (20) 2 3 (20) (20) (20) (20) 

0 0 0 0 0 0 0 0 (20) (20) (20) 2 2 (20) 2 3 

0 0 0 0 0 0 0 0 (20) 2 2 2 (20) (20) (20) (20) 

 
Table 3.  
Two dimensional values of the result of MDS for each object. 

objects Dimension 1 Dimension 2 

1 −0.000000 −0.968246 

2 −0.000000 −0.968246 

3 −0.000000 −0.968246 

4 −0.000000 −0.968246 

5 −0.000000 −0.968246 

6 −0.000000 −0.968246 

7 −0.000000 −0.968246 

8 −0.000000 −0.968246 

9 −1.414214 0.968246 

10 −1.414214 0.968246 

11 −1.414214 0.968246 

12 −1.414214 0.968246 

13 1.414214 0.968246 

14 1.414214 0.968246 

15 1.414214 0.968246 

16 1.414214 0.968246 
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two dimensional. The upper 8 rows indicates the coordinate 
values of inanimate objects. The lower 8 rows show the coor-
dinate values of animate objects. The result insisted that the 
data employed in this study could not discriminate in the 
meaning of multidimensional scaling. Therefore, in case that 
there is an object near another object, this object might be a 
possible candidate of the nearest solution. If we could consider 
the obtained result as described above, it could explain that 
intra and inter category errors might occur upon the attractor 
neural network model. If we can modify the data set more real-
istic, result obtained might differ. Further works need to answer 
the question about the double dissociation which showed brain 
damaged patients in real. 

Discussion 

Interpretation of Each Condition 

If the attractor network can be regarded as a concept formation 
model of human brain, then the diag condition can be regarded 
as a model of recognition when a shape of dog was exposed in 
retina, we can recognise this retinal image as “dog”. The cate-
gory condition might be considered that subjects and/or patients 
can recognize this visual image of dog as animal, analogous to 
category judgement task. The same condition can be considered 
such that subjects or patients recognize a “dog” per se. In this 
way, the three conditions adopted in this study can be inter-
preted as models of the brain. The results showed that the at-
tractor neural network might utilize the loop between output 
and cleanup layers for problem solving. In addition, we ob-
served the effect of category specific disorders in the destruc-
tion experiment which destroyed the mutual connections be-
tween output and cleanup layers. This results should not be 
considered as accidental artifacts of the computer simulations. 

Although the results here showed the category specificity in 
animate objects, it might not be explained another kind of 
specificity for inanimate objects or inanimate specific category 
disorder. If our semantic memory could be consisted of micro 
features like presented in this study, the correlation matrix 
among objects calculated from the micro features is the one and 
the only one source for explaining the category specificity. If so, 
it might be difficult to explain inanimate specific disorders 
without any additional assumptions. 

Comparison with Previous Studies 

Hinton and Shallice (1991) and Plaut and Shallice (1993) in-
troduced the same attractor neural network model as this study. 
They investigated types of errors the model produced. Here, the 
four points enumerated below must be taken into consideration: 

1) The task: input and output pairs the network trained on. 
2) The network architecture: type of unit used in simulation, 

the way of organisation into groups, and manner of groups 
connected. 

3) The training procedure: examples presented to the network, 
the procedure to adjust the weights to accomplish the task, and 
the criterion for halting training. 

4) The testing procedure: the performance of the network to 
be evaluated, the way of lesions carried out to the network, and 
the way of interpretation of the damaged network in terms of 
overt responses which can be compared with those of patients. 

The same data set developed by Tyler et al. (2000) was em-
ployed in this study. Therefore, the conclusion also corresponds 

to this study, while the network architecture was different from 
the one they employed. They employed the three layered per-
ceptron, on the other hand, the attractor neural network was 
employed in this study. Tyler et al. (2000) claimed that the 
distinctiveness of functional features correlated with perceptual 
features varies across semantic domains. They also insisted that 
category structure emerges from the complex interaction of 
these variables. The representational assumptions that follow 
from these claims make predictions about what types of seman-
tic information are preserved in patients with category specific 
deficits. The model showed, when damaged, patterns of pres-
ervation of distinctive and shared functional and perceptual 
information which varies across semantic domains. The data 
might be interpreted that dissociation between knowledge about 
animate and inanimate objects. According to their claim, the 
category specific deficits can emerge as a result of differences 
in the content and structure of concepts in different semantic 
categories rather than from broad divisions of semantic memory 
in independent stores. In this framework, category specific 
deficits are not necessarily the result of selective damage to 
specific stores of one or other type of semantic information. 

The basic assumption based upon this study was the same as 
the one of Tyler et al. (2000). That is the patterns of correlation 
over features, the semantic neighborhood of concepts in the 
different domains plays a part in determining the probability of 
errors of different types. For animate objects, within category 
errors are likely because concepts within these categories are 
close together. 

Neural Correlates of the Model 

As mentioned in introduction, a lot of neuroimaging studies 
related to this study were conducted so far. The findings about 
neural correlates of the model, or the responsible areas which 
might cause category specificity must be taken into considera-
tion. The possible candidates might be the fusiform gyrus and 
the left lateral temporal gyrus (Martin & Chao, 2001; Martin & 
Caramazza, 2003; Josephs, 2001; Lewis, 2006; Thompson- 
Schill, 2003). However, as mentioned in the former section, 
there is no need to postulate the independent area to process the 
information from one category selectively. Rather, it can pos-
tulate that category errors might occur the correlation matrix 
based upon the similarity. If so, we would rather consider a 
wide spread expression of category information in the brain. 
This might be the reason why neuroimaging studies revealed 
that there are many areas related in the category specificity. The 
distributed manner of expression of micro features as inputs to 
the neural network system might be interpreted as a basic idea 
to process information in the brain. The neural network study 
must play an important role to understand such situations. 

Limitation and Prospect 

The model succeeded in explaining robustness against damages 
(see Figures 6-8). On the other hand, the model did not succeed 
in explaining the double dissociation between categories. This 
dissociation might be considered to be reasonable when the 
origin of this effect would depend on the input signals and their 
similarity. The attractor neural network model per se could not 
explain the inanimate specific category disorder without any 
additional assumptions, while this model can easily explain the 
animate specific category disorder. Taking into account the 
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results obtained in neuroimaging studies and clinical neuro-
psychology, the computational approach using neural network 
model must be worth considering. Hereafter, it is tried to de-
scribe the relationship to the areas of cognitive neuropsychol-
ogy and neural network. 

Contribution to Cognitive Neuropsychology 

The attractor neural network model employed in this study was 
originally developed with an intention to explain neuropsy-
chological evidence (Hinton & Shallice, 1991; Plaut & Shallice, 
1993). Therefore, the model can apply directly to the data in 
neuropsychology. The model could explain three different tasks: 
categorisation, naming, and identification tasks (see the condi-
tions section in numerical experiments). This is one of the 
promising ways to bring our knowledge to further understand-
ings. The more phenomenon which the model can explain, the 
better in the sense of parsimony. 

Contribution to Neural Network 

The model employed in this study was one of applications of 
the generalised neural network model. The method of learning 
was also the general one known as the generalised delta rule 
(e.g. the back propagation method). The relation between the 
generalised model and its application to the particular area or 
evidence would make fruitful discussion to understand the 
concerning phenomenon. 

Bridge between Neuroimaging and 
Neuropsychological Studies 

Synthesis between neuroimaging and neuropsychological stud-
ies must be required. While neuroimaging studies reveal that 
there are many related areas in the brain for category specificity, 
neuropsychological studies have tendency to emphasize the 
asymmetry or the double dissociation between animate and 
inanimate objects. Both findings must be explained simultane-
ously based upon one integrated model. The value of the model 
employed in this study can exist in this point of view. This 
study was conducted to try to explain along with this point of 
view. 

Finally, what the author is thinking is enumerated as follow: 
1) The disorder in semantic memory might reflect the struc-

ture of the semantic memory. 
2) This disorder might emerge neuropsychological level, 

which means that it occurs as the size of gyri and sulci. It is 
neither individual neuron nor whole system levels. 

3) Attractor neural network can be considered as a model for 
semantic memory disorder. It might be a useful tool to investi-
gate category specificity. 

4) Synthesis between heterogeneous (category specific) and 
homogeneous (no neuroanatomical specialisation) point of view 
is possibly a promising way to describe phenomenon. 

Conclusion 

In spite of the simplicity, the attractor neural network could 
describe at least three cognitive neuropsychological tasks; 
categorisation, identification, and naming tasks. This is one of 
major advantages of this model. The model could succeed in 
predicting patients’ behaviour with animate specific memory 
disorder, however, the model could not explain inanimate spe-

cific memory disorder without any additional assumptions. So, 
the possibility for this model to explain the double dissociation 
between animate and inanimate objects should be discussed 
further in separate papers. However, there still are possibilities 
for this model to account for the double dissociation between 
animate and inanimate objects. In this study, non-dichotomous 
memory representation like Figures 1 and 9 was adopted as the 
data set to be learned. The model’s behaviour depends on both 
its network architecture and its input data representation, which 
is defined by micro features. This micro feature constrains the 
model’s behaviour through the correlation matrix among ob-
jects. The difference between intra- and inter-correlations shown 
in Figure 1 might cause the category specificity, because one 
category has higher inner-category correlations than that of the 
other category. The representations could be considered such 
that there needs no local representations to deal with both ani-
mate and inanimate objects in our brains. On the contrary, 
category specificity might emerge necessarily and naturally as 
consequences of exposure of both categories. In addition to this 
consideration, these object representations adopted in this study 
might also produce category specific memory disorders when 
the system suffered damages. Therefore, the attractor neural 
network could be considered as the one of possible candidates 
to explain various cognitive neuropsychological phenomena. 
This model also provides useful suggestions about our semantic 
memory organisation. However, the model failed in explaining 
patients’ behaviour with inanimate specific memory disorder, 
while this model succeeded in explaining patients behaviour 
with animate specific disorder. It is obvious that the model has 
both advantage and shortcoming. The fact that three kinds of 
tasks could be explained by this model is clearly one of mani-
fest advantages of this model. Further studies must be con-
ducted to reveal the shortcoming. It is also obvious that the 
model might not be able to explain this shortcoming without 
any additional assumptions or modification of network archi-
tecture. However, it can be considered that this study would be 
valuable because the model succeeded in showing clear insight 
about a direction of studies in the future. 
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