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ABSTRACT 

In the present article, we propose a simple equality involving the Dirac operator and the Maxwell operators under chiral 
approach. This equality establishes a direct connection between solutions of the two systems and moreover, we show 
that it is valid when the natural relation between the frequency of the electromagnetic wave and the energy of the Dirac 
particle is fulfilled if the electric field E is parallel to the magnetic field H. Our analysis is based on the quaternionic 
form of the Dirac equation and on the quaternionic form of the Maxwell equations. In both cases these reformulations 
are completely equivalent to the traditional form of the Dirac and Maxwell systems. This theory is a new quantum me- 
chanics (QM) interpretation. The below research proves that the QM represents the electrodynamics of the curvilinear 
closed chiral waves. It is entirely according to the modern interpretation and explains the particularities and the results 
of the quantum field theory. Also this work may help to clarify the controversial relation between Maxwell and Dirac 
equations while presenting an original way to derive the Dirac equation from the chiral electrodynamics, leading, per- 
haps, to novel conception in interactions between matter and electromagnetic fields. This approach may give a reinter- 
pretation of Majorana equation, neutrino mass, violation of Heinsenberg’s measurement-disturbation relationship and  
mass generation in systems like graphene devices. 
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1. Introduction 

In mathematical physics, the relation between the two 
most important first order systems of partial differential 
equations, (Dirac equation and Maxwell’s equations), is 
among those topics which attract attention because of 
their general significance and solutions of particular pro- 
blems concerning physical models. The connection be-
tween solutions of massless Dirac and Maxwell equa- 
tions was well established [1]. It is shown that the mass- 
less Dirac equation is invariant under three different rep- 
resentation of Poincaré algebra. Two coupled Dirac equa- 
tions with masses m and –m has also possesses this sym- 
metries. The Maxwell equations can be represented in a 
Dirac like form in different ways (e.g., [1-10]). The Bel- 
trami equations are another approach [11]. Also, solu- 
tions of Maxwell’s system can be related to solutions of 
the Dirac equation through some nonlinear equations (e.g., 
[12]). 

However, in [13] we find that the author shows that in 
the formulation of [12], based on spinor form there is no 
physically meaningful way to transform Maxwell’s and 
Dirac’s equations into each other. However, this state- 
ment is valid for standard Maxwell fields, but not for 

parallel electromagnetic fields that will be discussed in 
this paper. 

Maxwell’s equations are formulated in a number of 
different representations: a) As a single four-component 
spinor equation whose transformation properties are al- 
most identical with those of the Dirac equation; b) As a 
pair of uncoupled two-component spinor equations, in 
two different representations. One of these is similar to 
the Weyl equation for the neutrino field and the other to 
the two-component spinor form of the Dirac equation; c) 
As a single equation in which the field variables are 2 × 2 
matrices. 

Nevertheless, in spite of these significant efforts there 
remain some important conceptual questions. For exam- 
ple, what is the meaning of this close relation between 
the Maxwell system and the Dirac equation and how this 
relation is connected with the wave-particle dualism. In 
the present article we propose a simple equality involv- 
ing the Dirac quaternionic operator and the Maxwell qua- 
ternionic operators under chiral approach. Dirac derived 
the linear relativistic wave equation for fermions by “tak- 
ing the square root” of the Klein-Gordon equation, which 
is quadratic in time and space derivatives. In this paper, 
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we find a chiral electromagnetic wave equation of fourth 
order which can be linearized to the Dirac way to obtain 
two linear Beltrami equations. 

We propose to find an equivalence between the Dirac 
equation and the Beltrami equations in quaternionic co- 
ordinates. This equality establishes a direct connection 
between solutions of the two systems and moreover, we 
show that it is valid when a quite natural relation be- 
tween the frequency of the electromagnetic wave and the 
energy of the Dirac particle is fulfilled. This condition is 
satisfied when E is parallel to H. Our analysis is based 
on the quaternionic form of the Dirac equation [8] and on 
the quaternionic form of the Maxwell equations [7,8] 
(see also [9]). In both cases our quaternionic reformula- 
tions are completely equivalent to the traditional form of 
the Dirac and Maxwell systems. Chiral approach means 
that our Universe is observable area of basic space-time 
where temporal coordinate is positive and all particles 
bear positive masses (energies). The mirror Universe is 
an area where temporal coordinate is negative and all 
particles bear negative masses. Also, from viewpoint of 
our world observer, the mirror Universe is a world with 
reverse flow of time, where particles travel from future 
into past in respect to us. The two worlds are separated 
by a membrane—an area of space-time inhabited by 
light-like particles that travel along light-like right or 
left-handed (isotropic-chiral) spirals. On the scales of 
elementary particles such space can be attributed to par- 
ticles that possess spirality (e.g. Chiral photons). The 
membrane prevents mixing of positive and negative- 
mass particles and thus their total annihilation. The link 
between both universes is the chiral factor defined by 

c  (see Section 3). 
The aim of this work is to link the Dirac equation in 

the Weyl representation with Maxwell’s equations in the 
chiral formulation of Born Fedorov and show that only 
when the E field and H field are spatially parallel, we 
have that this field distribution can generate mass and the 
Dirac equation can be obtained from the chiral electro- 
dynamics. These fields are circulatory and stationary. 
Under this condition we have no radiation and the vector 
Poynting E H  is zero. 

2. The Dirac Equation in Quaternionic Form 

The algebra of complex quaternions is denoted by  
 H C

3

k
q 

. Each complex quaternion  is of the form  
 where , 0  is the unit and 

q
e

0 k kq


e  ka  
 

k

i

1, 2,3k ke   are the quaternionic imaginary units: 
2 2
0 0 ke e e   ; , ; 0 0k ke e e e e  1,2,3k 

1 2 2 1 3e e e e e   ; ;  2 3 3 2 1e e e e e   3 1 1 3 2e e e e e  

The complex imaginary unit  commutes with  
. We further introduce a complex conju-  

i ,ke
0,1, 2,3, 4k 

gate operation  which takes i but leaves  *    ,ke
0, ,3k   unchanged, as well as a quaternionic conju- 

gation operation  , which leaves i unchanged but takes 

 1, 2,3kk ke e ke     

We will use the vector representation of complex quat- 
ernions:    q Sc q Vec q  , where  and   0Sc q q

  3

1 k kk
Vec q q e


  q . 

That is each complex quaternion is a sum of its scalar 
part and its vector part. Complex vectors we identify 
with complex quaternions whose scalar part is equal to 
zero. In vector terms, the multiplication of two arbitrary 
complex quaternions  and  can be written as fol- 
lows: 

q b

 0 0 0 0qb q b q b      q b q b b q , 

where 

3

1

: k k
k

q b


  q b  ,  
1 2 3

3
1 2 3

1 2 3

:

e e e

q q q

b b b

  q b   

We shall consider continuously differentiable  H  - 
valued functions depending on three real variables  

 1 2 3, ,x x x x . On this set the well known (see, e.g., 
[1,2,5,8,9]) Moisil-Theodoresco operator is defined by 
the expression 

3

1

: k k
k

D e


  ,
3

1

: k k
k

D e


   where k
kx


 


. 

The action of the operator  on an -valued 
function  can be written in a vector form: 

D  H 
f

Df div rot  f f .              (1) 

In a good number of physical applications the opera- 
tors D D M 

    and D D M 
    are needed, 

where   is a complex quaternion and M   denotes 
the operator of multiplication by   from the right-hand 
side: M f f  . Here we will be interested in two 
special cases when   is a scalar, that is 0   or 
when   is a vector   . The first case corresponds 
to the Maxwell equations and the second to the Dirac 
equation (see [4,8]). 

Following [8,14,15], but by considering the chiral re- 
presentation, the Dirac equation in its covariant form 

 
3

0

1

, 0c
t kc k

k

imc Q t x
c






        
  

 . 

For a wave function with a given energy we have  

   , e
E

i t

Q t x q x  , where  satisfies the time harmonic  q

Dirac equation 

 
3

0
1

0c kc k
k

iE imc
q x

c
 



   

 


 


 .      (2) 
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Denote 
3

0
1

:c c
k

imc iE
D

c
 



   
  kc k . 

where the gamma matrices are given in the chiral repre- 
sentation. Also,  is written in terms of the two 
component complex spinor  

 q x

0 1

   T
,R Lq x q q

0
0 ,

1 0c
 

  
 

 
0

k
kc

k





   

 
 

With 0 and 1 are the 2 × 2 zero and unit matrix and 

k the Pauli matrices. 
Equation (2) can be written as a two component Weyl 

equation 
3

1

3

1

0
kc k

k R

L
kc k

k

imc i
qc

qi imc

c

 

 





           






 

 










 

Let us introduce an auxiliary notation  
 1 2 3: , , ,f f t x x x


3 4:Q  

 3:F H 

 . The transformation which allows 
us to rewrite the Dirac Equation (2) in a quaternionic 
form we denote as defined as a function  

which is transformed into a function  
 by the rule  F Q

1
,[7]. 

The inverse transformation  is  1Q F . 
The introduced transformations relates the components 
of a -valued function  with the components of an 

-valued function 

4


Q
H F : 
Following [7,8] an important equality is obtained 

1
1 2 3c c c c c cD D D           , 

where 

3 2

1
:c

E
i e mce

c
 


 

 
                (3) 

The difference between this c and   of [8,14,15] is 
that here the Dirac Equation (2) is in the Weyl or chiral 
representation. This equality shows that instead of Equa- 
tion (2) we can consider the equivalent quaternionic 
equation 

  0c c
D f D f    

This last equation can be written as the two-compo- 
nent field  T

,R Lf f f  

2 3

3 2

1 1

0
1 1

R

L

E
mce D i e

fc

fE
D i e mce

c

 


 

 
  
  

   
 

 

 

     (4) 

and the relation between solutions of (2) and (4) is estab-
lished by means of the invertible transformation  

: f q  . 

Next we develop the Maxwell equations in quarter- 
nionic representation. 

3. The Maxwell Equations in Chiral  
Quaternionic Form 

Chiral materials, in which the mirror reflection symmetry 
is broken, are ubiquitous in nature. Even the quantum 
vacuum of the standard model of particle physics is chiral 
[16], so that the behavior of the left-handed and right- 
handed elementary particles (quarks and leptons) are es- 
sentially different. One of the consequences is the chiral 
anomaly—the anomalous nonconservation of a chiral cur- 
rent, as first described by Adler [17] and by Ginzburg and 
Landau [18]. The chiral anomaly provides one explanation 
for the baryogenesis in the early Universe and the huge 
excess of matter over antimatter in the present Universe. 
Here, we consider a chiral vacuum. A Chiral Vacuum will 
be defined as a vacuum for which the constitutive matri- 
ces represented by  c  are not zero, but for which there 
are no real charge densities or current densities. Such an 
assumption, which if applicable to the vacuum, would 
imply that the chiral vacuum, and there for the universe 
itself, may not have a center of symmetry. The concept of 
spontaneous symmetry breakdown’ has proved to be ex- 
traordinarily fruitful in many areas of physics and I con- 
sider it worthwhile to try to incorporate it into chiral elec- 
tromagnetism The modern formulation of this concept 
appears to originate with the work of V. Ginzburg and L. 
Landau [18] and A. Zee [19]. 

First we consider the chiral factor 2c mc    as an 
scalar parameter and then we extend the analysis to a 
chiral matrix. We will consider the Maxwell equations 
for a sourceless anisotropic chiral homogeneous medium 
with  1t t c      [20-22]. c is a chiral pa-
rameter so the Maxwell’s equations without charges are 
expressed as: 

 1
1t crot

c
   H E ,  0div E

 1
1t crot

c
    E H ,  0div H

So the time-harmonic Maxwell equations are 

1 c

i
rot

c

    H E ,         (5) 

1 c

i
rot

c

   E H ,           (6) 

0div E ,                       (7) 

0div H .                       (8) 

Here, rot   , c is the chiral scalar parameter,   
is the frequency. Application of rot to (5) and (6) allows 
us to separate the equations for E and H  and to obtain 
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in this way the wave equation for chiral medium. 

   
2

2 2 2
2 2 2

21
0c c

t t trot rot rot rot rot
c c c

 
      E E E E  

(9) 
this chiral generalization represents an equation of fourth 
order. When 

2 2

2 21 c

c t

 
  

0



              (10) 

we have an important linearization which transforms a 
fourth order equation to a first order one. 

 2 0,c rot i E E E H      (11) 

This result corresponds to a self dual electromagnetic 
fields represented by standing waves possessing zero 
Poynting vector [23]. In this case, we can link the Dirac 
Equation (4) with the Beltrami Equation (11). Obviously 
system (11) can be written in the form of a quaternionic 
equation if we define 

3eie t E E , 3e  , 2c ce  , so Equation (10) 
is transformed to 

2 2
2 22

32
1 c e

e
c




 


 
0              (12) 

 
22 1 21 2 0

cc eD e D  E E      (13) 

where 
3

1

: k k
k

D e


   

A similar equation can be obtained for H . Taking 
into account (1) and E and H simultaneously, we in-
troduce the following quaternionic operator 

1c
cM D i

c t c t

  
  

 
D  

If we consider the purely vectorial biquaternionic fun- 
ction  and the complex conjugate  

 we have 
i F E H

i   F E H

   0, 0c cM i M i     E H E H  (14) 

The first equation is equivalent to the Maxwell system 
(5)-(8). We can rewrite this system in matrix form as 

 3 1 c

i e
D

c


 F D F

T

,           (15) 

Equation (15) can be diagonalized and transformed in 
the following way [5,6] (see also [8,14]). Following [5] 
we define 

  T

1 2 3 0 1 2 30, , , , , ,F F F F F F F F  F  

F S F   

 T
,R LF F  F  

1

2 3
R

iF
F

iF F

 
     

;     (16) 1

2 3
L

iF
F

iF F

 
    








Where the unitary matrix  is given by S

1

 1S S 

0 1 0

0 0

0 i 0

0 1 0 1

i i
S

i

 
 
 
 

              (17) 

Thus we are transformed the quaternionic Maxwell 
Equation (15) in the form of two component equations 

2 1

1 2

1 1

0
1 1

c R

L

c

mce D e
F

F
D e mce





            
 





    (18) 

   22 2
3

2
e c e     2c  is the square wave number. 

Applying the operator  and  D D D D    to the 
functions RF   and LF   respectively one can see that 

RF   satisfies the equation 

  R L

mc
D F F   


,             (19) 

and LF   satisfies the equation 

  L R

mc
D F F  


.            (20) 

Solutions of (19) and (20) are called the Beltrami 
fields (see, e.g., [11]). Thus, if we compare (19) and (20) 
with Equation (4), we infer that for parallel fields, the 
coupled system (19-20) is equivalent to Equation (4). R 
and L, subscripts are associated with circularly polarized 
photons (right or left-handed spirals or chiral photons). 

4. The Chiral Electromagnetic Dirac  
Equation 

In the preceding sections it was shown that the Dirac 
Equation (2) is equivalent to the quaternionic equation  

0
c

D f   with 3

1
:c i e mce

c

 
 

 2

  and the Max-  

well Equations (5)-(8) are equivalent to the pair of qua-
ternionic Equations (19) and (20) when the electric field 
E is parallel to the magnetic field H ,  i E H . If f is 
a solution of (4), then iE H

2 2 
 are solutions of Equa-

tions (19) and (29) with c  and the coupled 
Equations (19) and (20) are equivalent to the chiral Dirac 
Equation (4). 

2c

Now we will show a simple relation between these 
objects. Observing Equation (10) or (12) we have 

2
2

1

4 c




 .                (21) 

Note that from Equation (3) 
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2
2

2 2

1
c c c

E
m c

c

 
   

 
   2 2

 .      (22) 

Thus, when E  is parallel to H , (21) is equal to (22) 
we have the important result 

2
2

2 2 2

1 1

4 c

m c
c




 
  

 
2 2

         (23) 

Thus, relation between the Dirac operator and the 
Maxwell operators is valid if the condition (23) is ful-
filled. This happens if and only if E is parallel to H , 
that is iE H  and the vector Poynting is null. 

In general, if in (23) we formally use the de Broglie 
equality 2 cp     

4

, we again obtain the fun-
damental Einstein relation 

2 2 2 2E p c m c  .            (24) 

From 2cp     we obtain naturally the value of 
the electron spin 2  and the positron spin 2  . 

We can note that 2c mc    and  so 
the original energy photon is transformed in the pair par-
ticle-antiparticle . 

22mc 

 2mc
pIf we consider  and c  as arbitrary observable 

operators  and p̂ ˆ
c , a new Heisenberg uncertainty 

principle (HUP) is obtained 

,
ˆ ˆˆ ˆ ,

2c R L cp F p       


,R LF     (25) 

While there is a rigorously proven relationship about 
uncertainties intrinsic to any quantum system often re-
ferred to as “Heisenberg’s uncertainly principle” HUP, 
recently it has been shown experimentally violation of 
Heisenberg’s measurements-disturbance relationship by 
weak measurements, MDR [24,25]. 

     
, ,

ˆˆ ,
2 cc R Lp F p    

R LF    


 

It is formally incorrect because the disturbance  

 ˆ 0c   in some eigenstate ,R LF  . 

Equation (25) is appropriate to obtain the corrected 
MDR 

       ˆ ˆ ˆˆ ˆ ˆ
2c c cp p          


p  

The authors [24,25] have designed an apparatus to 
measure the polarization of a single photon. They needed 
to measure how much that apparatus disturbed that pho-
ton. To do this, they needed to measure the photon before 
the apparatus but how that measurement would also dis-
turb the photon. Our approach is related precisely to the 
polarization of photons (see Equations (19) and (20)). 
Our theory may be important on study of uncertainly 
relations, specifically in the setting of quantum informa-

tion and quantum cryptography. 
Also, with this theory we can explore the neutrino 

physics. The importance of neutrino electromagnetic pro- 
perties was first mentioned by Pauli in 1930. Systematic 
theoretical studies of neutrino electromagnetic properties 
started after it was shown that in the extended Standard 
Model with right-handed neutrinos the magnetic moment 
of a massive neutrino is, in general, non vanishing and 
that its value is determined by the neutrino mass [26]. 

As in known, uncharged fermions having non-zero 
mass and spin 1 2  may be subject to one of the two 
equations: the Dirac equation, similar to that for charged 
particles such electron (Equation (18)), and the Majorana 
equation in which the inversion (on our case of c ) 
takes helicity particles into antiparticles (in our theory if 
we take  c

R LF F  ). 
Neutrino electromagnetic properties are important be-

cause they are directly connected to fundamentals of par-
ticle physics. For example, neutrino electromagnetic 
properties can be used to distinguish Dirac and Majorana 
neutrinos and also as probes of new physics that might 
exist beyond the Standard Model. Equation (18) is well 
suited to study the electromagnetic properties of neutri-
nos. Our result Equation (18) is appropriate to study Di- 
rac and Majorana particles. As 2c mc    our theory 
lends itself to study mass generation in graphene devices 
[22]. Also, classically the Heisenberg expression can be 
written in terms of time and energy and can be useful in 
problems of shear waves [27]. 

5. Conclusions 

The main result of this paper is that the Dirac equation 
can be derived from the Maxwell’s equation under chiral 
quaternionic approach. Equations (15)-(20) are our main 
results which are compared with Equation (4). With this 
theory we can study electromagnetic interactions in neu-
trinos which can be considered as Majorana fermions, 
favoured by simplicity because they have only two de- 
grees of freedom. 

Also, our approach is related precisely to the polariza- 
tion of photons so this theory may be important on study 
of uncertainly relations, specifically in the setting of quan- 
tum information and quantum cryptography. 

Also, our theory lends itself to study mass generation 
in graphene devices. 

The author thanks the anonymous reviewer for helpful 
comments. 
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