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ABSTRACT 

This paper reviews the basic properties of the SiGe alloy, presents some new results on its electronic and optical proper-
ties, and discusses the approach that has been followed to model quantum wells containing SiGe layers for applications 
in quantum cascade lasers. The shape of the confining potential, the subband energies and their eigen envelope wave 
functions are calculated by solving a one-dimensional Schrödinger equation. The calculations of optical parameters are 
used to optimize the Si/SiGe quantum cascade structures. Our results are found to be in good agreement with other cal-
culations. 
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1. Introduction 

A quantum cascade laser (QCLs) is a specific type of 
semiconductor laser that operates through principles of 
quantum mechanics. Already theoretically predicted in 
1971 [1], QCLs had not been realized until 1994 at Bell 
Laboratories [2]. They have many advantages over other 
types of semiconductors’ lasers. Some of these advan- 
tages include precise tuning from one wavelength to 
another, higher optical power, continuous wave operation 
and the ability to produce light in the terahertz range of 
the spectrum [3-6].  

From the physical point of view, the unipolarity of a 
QC laser indicates that electrons are solely responsible 
for releasing energy in the form of photons. These elec- 
trons transition from one quantum energy state to another 
within a layer, or group of layers, of semiconductor 
material releasing energy in the form of photons during 
their descent. The binding energy necessary to pull these 
electrons away from the Coulombic force of the nucleus 
in the atom is related to the extremely thin semiconductor 
layers. A property of quantum mechanics known as 
quantum confinement occurs when the electrons are 
trapped within a thin semiconductor quantum well layer. 
These electrons can freely move in only two directions 
within the plane of the thin layer. In this case quantum 
confinement, which leads to discrete energy levels that 
electrons can occupy in a material smaller than the de 
Broglie wavelength, occurs in only one dimension due to 
the quantum well structure [7]. Unlike the earliest form  

of semiconductor lasers where the energy bandgap deter- 
mines the wavelength of the light emitted, with QC lasers 
the thickness of the layers determines the wavelength. 
This is a critically important property of QC lasers 
because it allows them to be tuned to a desired frequency 
through bandgap engineering [8]. Technologically speak- 
ing, this laser type is grown by epitaxial method such as 
molecular beam epitaxy (MBE) [9]. Layers of different 
semiconductor materials each only a few atomic layers 
thin are deposited onto a thin slice of a semiconductor 
crystal. In order to optimize the electronic wave func- 
tions with respect to energy and probability distribution, 
we have to choose the sequence of the layers, their width 
and materials. 

It was established that these unipolar intersubband 
lasers might be realized not only in III-V semiconductors 
[10-13] but also in IV-IV structures [14-16]. Among 
semiconductors, the covalent semiconductors Si and Ge 
have been studied extensively both theoretically and ex- 
perimentally [17,18]. Group IV semiconductors alloys 
like Si-Ge, have the immense potential for technological 
applications whose include the optoelectronic devices 
[19-21]. By using intersubband transitions within the 
same band, one can circumvent the main obstacle to 
silicon-based lasers, the indirect band gap. The large 
band offsets in the valence band of pseudomorphic SiGe 
layers on Si substrates imply a quantum cascade scheme 
with hole subbands. 

In our previous publication [22], we were interested to 
the investigation of the structural, electronic and optical  
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properties of Si, Ge, and Si1–xGex for different compo- 
sitions using the full-potential linear muffin-tin orbital 
(FP-LMTO) method augmented by a plane-wave basis 
(PLW), implemented in Lmtar code [23-25]. All the 
obtained results showed that the weakly strained G-rich 
SiGe layers possess very promising properties for both 
electronic and optical applications. 

The aim of the present work is to provide a consistent 
and complete set of electronic and optical parameters of 
the Si/SiGe quantum well. The obtained results are going 
to be of use to a good understanding of the quantum 
phenomena of these devices. The second objective con- 
cerns the way which allows us to optimize the intrinsic 
parameters of the Si/SiGe quantum cascade structure. 

2. Method of Calculations 

Much theoretical work has been done to accompany the 
rapid experimental developments of QCLs as well as to 
better explain the design considerations of intersubband 
lasers. These include Monte Carlo simulations [26-29], 
self-consistent rate equations [30,31], as well as the non- 
equilibrium Green’s function formalism [32,33]. As was 
shown above, the quantum cascade lasers (QCL’s) are 
fabricated by stacking up alternating layers of semi- 
conducting material with nanoscale thicknesses. This 
heterostructure of layers forms a series of conduction- 
band quantum wells in the z direction which trap the 
electrons into subband states [2] (Figure 1). The calcula- 
tion procedures described here follows the envelope 
function approach based on the effective-mass approxi- 
mation [34,35]. This approximation was found to be 
much more computationally efficient than atomistic 
methods, making it more suitable as a design tool for 
QCLs [36]. 

The eigenstate of an electron in the unperturbed Ham- 
iltonian of a QCL is the product of the Bloch envelope 
function B(x, y, z), the free electron wavefunction in the x 
and y direction, and the bound quantum-well eigen-func- 
tions ψn(z) in the z direction. 

The Bloch function factor contains the effects on the 
electron state due to the non-uniform nature of the crystal 
potential on the atomic scale. 

We assume the semiconductor layer widths are large 
compared to the atoms, so we make the approximation 
that the Bloch function factor is negligible. Each electron 
is pseudo-free in the x and y dimensions because the ma- 
terial is uniform in those dimensions. Even though each 
electron is bound to the crystal in these dimensions, we 
can treat each as free if we use the effective mass of the 
electron. The bound-state z component wave functions 
ψn(z) are found by numerically solving the one-dimen- 
sional Schrödinger equation when the potential profile is 
known. The potential profile is a combination of the  

 
Figure 1. Conduction band profile in two adjacent stages of 
a generic QCL under an applied bias. 
 
conduction-band edge quantum well profile of the mate- 
rial layers, the bias voltage, and the built-in potential 
which accounts for the effects of space charge. This 
minimum energy can be calculated as one of the eigen 
values of the Schrödinger equation along the growth di- 
rection z, 
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where h is the Planck constant and Ei is the minimum 
energy of subband i in a QW structure. By solving this 
equation, one obtains the energy Ei (eigenvalues) and the 
wave function ψn (eingenfunctions) of the n electron 
state. In this method, we have taken into account the 
boundary conditions for the wavefunction.  

An analytical solution provided by solving the Schrö- 
dinger equation for the conduction minimum energy of 
subband i has the following form  

Bas du formulaire 
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Haut du formulaire where Lz represent the depth of the 
quantum well.  

Bas du formulaire. 
For a given temperature T, the population ni for each 

subband i is expressed by  
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Two simplified expressions can be established for the 
population ni: 

For the subband situated below the Fermi level  
, the population is  
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m
n E E

h
= − . 

For the subband situated above the Fermi level  
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( )i F BE E k T  − , the population becomes  
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Haut du formulaire 
The effective states density according to x concentra- 

tion for the Si/SiGe quantum well is given by 

( )

( )

SiGe

Si

4 2

6

cb BE k Te−Δ+ ⋅

( ) ( )2 4c cE E−

c

c

N

N
≈          (4) 

where ΔEcb is the limit energy of the conduction band 
which is differentiated in two terms Ec(2) and Ec(4). Ec(2) 
is the value linked to both identical directions [001] and 
[001] while Ec(4) is the value linked to the four other 
identical directions [010], [010], [100] et [100]. 

Bas du formulaire 
We have then  
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The term eT(x) is the difference between the strain 
tensors ezz – exx, according to directions zz and xx. These 
strain tensors depend of the silicon lattice parameter as 
well as the SiGe bowing parameter. 

3. Results and Discussions 

To design a desired QW structure such as the quantum 
cascade laser and improve a device performance, a nu- 
merical simulation is needed to compute the energy lev- 
els and for different electrons states, the corresponding 
envelope functions, the intersubband transition dipole 
moments, carrier densities, relaxation times and other 
parameters. Then, subband formation and energy disper- 
sion are described in the framework of envelope func- 
tions with the effective-mass approximation for both 
conduction and valence band. In Figure 2, we displayed 
the profiles of the envelope function for different elec- 
tron states.  

In Figure 3, we have illustrated the calculated elec- 
tronic energy-band structure (a) and total DOS (b) of 
Si1–xGex alloy for x = 0.5. For the calculations, we have 
used the full-potential linear muffin-tin orbital (FP-LMTO) 
method augmented by a plane-wave basis (PLW), im- 
plemented in Lmtar code [23-25]. The effects of the ap- 
proximations to the exchange-correlation energy were 
treated by the local density approximation (LDA). 

Figure 4 shows the variation of the confinement en- 
ergy with respect to different width wells. This energy is 
carried out by solving the Schrodinger equation for the 
Si/SiGe quantum cascade structure. It is clear from this  

 

Figure 2. The profiles of the envelope function for different 
electron states. 
 

 
(a) 

 
(b) 

Figure 3. The calculated electronic energy-band structure 
(a) and total DOS (b) of Si1−xGex alloy for x = 0.5. 
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Figure 4. The confinement energy vs the width well for dif- 
ferent states. 
 
results that for the low width wells the confinement en- 
ergy is very important. This leads favorably to the inter- 
subband transition. Hence, the emitted wavelength of the 
QCL only depends on the thicknesses of the layers. One 
can notice that the use of semiconductor with small ef- 
fective mass excites well the confinement effects what is 
not the case for the material SiGe of which its effective 
mass is important compared to those of GaAs, InAs, 
equal to 0.067 m0 and 0.023 m0, respectively.  

Figure 5 illustrated the variation of the effective states 
density with respect to germanium concentration x. We 
can see that the effective states density of the barrier ma- 
terial is very important to that of the well. Then we shall 
have continued and a strong carrier’s injection in the well 
to minimize the losses and increase the laser gain. 

Figure 6, shows the relative position of minibands for 
two consecutive transport zones under an applied bias for 
our quantum cascade structure. By varying the thickness 
of the wells and barriers of the Si/SiGe super lattice, we 
modify the position and the size of these minibands. We 
can extract from this scheme the main functions of the 
transport zone, which guarantees, the transport of elec- 
trons towards the excited subband of the emission zone, 
the blocking by the miniband gap of the electrons trans- 
port of the excited subband towards the continuum, 
causing then the electron excitations by the inter subband 
transition. The next step is the injection of the extracted 
carriers from the fundamental subband towards the next 
emission zone. 

Let us to turn now to the description of the electronic 
relaxation process with the aim of showing the various 
rates occurring to describe the intersubband transitions. 
We consider an emission zone with 3 subbands where the 
intersubband transition 3 - 2 being radiative. Figure 7 
schematizes the various interactions involve for the pe- 
riod where J is the current density, η3 is the current in- 
jection efficiency in the subband 3 and η1,2 the propor-  

 

Figure 5. The effective states density vs the germanium con- 
centration x. 
 

 

Figure 6. The relative position of minibands for two con- 
secutive transport zones under an applied bias. 
 

 

Figure 7. The schematic of the electronic relaxation process. 
 
tions of current of flight (leak) in subbands 1 and 2.  

In the present model, we shall suppose that the injec- 
tion is completed (η3 = 100%). Each subband is associ- 
ated a life time of electrons noted τi, i = 1, 2, 3. The 
Electron-phonon interaction was represented by the rate 

ij  for an electron transition from the subband i towards 
the subband j. The electron escape rate towards the con- 
tinuum was represented by esc . Finally out  denotes 
the extraction rate of electrons in the miniband of the  

1τ −

1τ − 1τ −
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following transport zone.  
According to these notations [3], the electronic relaxa- 

tion process is then describes by the following equations: 
1 1

3 32

1 1
32 31

τ τ

τ τ

− = +

≈ +

1 1 1
31
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τ τ τ

τ

− − − −
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+ +

+
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         (5) 

 

For lasing to occur between two subbands, it is neces- 
sary to induce stimulated emission between them. To 
sustain such emission of photons, there must be sufficient 
optical gain to compensate various losses in the laser 
structure. The intersubband optical gain can be obtained 
by analyzing transition rates between two subbands. 

We note that the optimization of the active zone has 
for an essential purpose to control the electrons phonons 
interactions, the injection and the extraction of the carri- 
ers from the emission zone to the other one and to maxi- 
mize the strength of oscillator of the radiative transition 
of this QCL. It is found that the oscillator strength, in the 
case of our considered system Si/SiGe, corresponding to 
the intersubband transition between the sub states i and j 
depends only on the electron effective mass. Hence, a 
high intersubband optical gain requires a high oscillator 
strength. 

On the other hand, the optical gain is very sensitive to 
the values of the width well and the doping of the wave 
guide used in this structure. 

In Table 1, we have listed the optimized parameters 
for our waveguide based on the Si1–xGex/Si system. These 
results are in good agreement with other calculation [37].  

4. Conclusions 

In this paper, we have carried out the background know- 
ledge necessary to appreciate the quantum cascade laser 
structure and operation. It begins with a discussion of 
laser fundamentals and quantum wells and concludes 
with information on Si1–xGex/Si QC Lasers. 

The shape of the confining potential, the subband en- 
 
Table 1. The optimized parameters for the Si1–xGex/Si wave 
guide. 

Materials The well width (μm) Doping (cm−3)

Substrat Si n+ 1 ∼1018 cm−3 

Si0.9Ge0.1 1 ~1017 cm−3 

Si n 2.5 ~1016 cm−3 

Si1−xGex/Si (x = 0.3) 1.63  

Si n 2.5 ~1016 cm−3 

Si0.9Ge0.1 1 ~1017 cm−3 

Si n+ 1 ~1018 cm−3 

ergies and their eigen envelope wave functions are cal- 
culated by solving a one-dimensional Schrödinger equa- 
tion. The calculation of optical parameters is used to op- 
timize the Si/SiGe quantum cascade structures. Our re- 
sults are found to be in good agreement with other calcu- 
lations. Further works are in progress. 
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