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Abstract 
 
The Gardner equation with a variable-coefficient from fluid dynamics and plasma physics is investigated. 
Different kinds of solutions including breather-type soliton and two soliton solutions are obtained using bi-
linear method and extended homoclinic test approach. The proposed method can also be applied to solve 
other types of higher dimensional integrable and non-integrable systems. 
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1. Introduction 
 
In nonlinear science, many important phenomena in vari- 
ous fields can be describe by the nonlinear evolution 
equations. Seeking exact solutions of nonlinear partial 
differential equations is of great significance as it ap-
pears that these (NLPDEs) are mathematical models of 
complex physics phenomena arising in physics, mechan-
ics, biology, chemistry and engineers. In order to help 
engineers and physicists to better understand the mecha-
nism that governs these physical models or to better pro-
vide knowledge to the physical problem and possible 
applications, a vast variety of the powerful and direct 
methods have been derived. Various powerful methods 
for obtaining explicit travelling solitary wave solutions to 
nonlinear equations have proposed such as [1-8]. 

One of the most exciting advances of nonlinear sci-
ence and theoretical physics has been a development of 
methods to look for exact solutions for nonlinear partial 
differential equations. A search of directly seeking for 
exactly solutions of nonlinear equations has been more 
interest in recent years because of the availability of 
symbloic computation Mathematica or Maple. These 
computer systems allow us to perform some complicated 
and tedious algebraic and differential calculations on a 
computer. 

Much attention has been paid to the variable coeffi- 

cients nonlinear equation which can describe many 
nonlinear phenomena more realistically than their con- 
stant coefficient ones [9]. The Gardner equation, or ex- 
tended KdV equation can describe various interesting 
physics phenomens, such as the internal waves in a stra-  
tified Ocean [10], the long wave propagation in an inho- 
mogeneous two-layer shallow liquid [11] and ion acous-
tic waves in plasma with negative ion [12], we consider a 
generalized variable-coefficient Gardner equation [13] 

2( ) ( ) ( ) ( ) ( ) 0,t xxx x x xf t g t h t r t t             (1) 

where ( , )x t  is a function of x  and t . The coeffi-
cients ( )f t , ( )g t , ( )h t , ( )r t and ( )t are differential func-
tions of t . Equaion (1) is not completely integrable in 
the sense of the inverse scattering scheme it contains 
some important special cases: 

In case of ( ) 0h t  , ( ) 0r t  and ( ) 0t  , Equation (1) 
reduces to 

( ) ( ) 0,t xxx xf t g t              (2) 

and 

( ) ( ) ( )f t g t a b f t dt    .         (3) 

Equation (2) possesses the Painleve property [14,15]. 
The Bäcklund transformation, Lax pair, similarity reduc-
tion and special analytic solution of Equation (2) have 
been obtained [16-20]. 

For ( ) 6 ( )g t a t  , ( ) 6h t r  and ( ) ( ) 0r t t  , 
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Equation (1) reduces to 
26 ( ) 6 ( ) 0,t x x xxxa t r f t             (4) 

which describe strong and weak interactions of different 
mode internal solitary waves, etc. When ( )f t r , 

( ) 6g t  , ( ) 6h t  , ( ) ( ) 0r t t  , Equation (1) be- 
comes the constant-coefficient Gardner equation 

26 6 0,t x x xxxr                (5) 

where r ,   and   are constants. It is widely applied 
to physics and quantum fields, such as solid state physics, 
plasma physics, fluid dynamics and quantum field the-
ory. 

When ( ) 6g t  , ( ) 1f t  , ( ) ( ) 0h t r t  , Equation (1) 
reduces to constant coefficient KdV equation 

6 ( ) 0,t x xxx t                 (6) 

which possesses the Painleve property. If ( ) 0t   or  

 0

1
( )

2
t

t t
 


, it corresponds to the well known cy-  

lindrical KdV equation. 
The structure of this paper is organized as follows; In 

Section 2, with symbolic computation, the bilinear form 
of Equation (1) are obtained. In order to illustrate the 
proposed method, we consider for a variable-coefficient 
Gardner equation from fluid dynamics and plasma phys-
ics and new periodic wave solutions are obtained which 
included periodic two solitary solution, doubly periodic 
solitary solution. Finally, conclusion and discussion are 
given in Section 3. 
 
2. Bilinear Form of the Gardner Equation  

with Variable Coefficients 
 
Making use the dependent variable transformation as 

( , ) ( ) ( , ),x t k t w x t
x

 



           (7) 

into Equation (1) and integrating once with respect to x , 
admits to [13] 

2 2

3 3

1
( ) ( ) ( ) ( ) ( ) ( )

2
1

( ) ( ) ( ) ( ) ( ) ( ) 0
3

t xxx x

x x

k t w k t w f t k t w g t k t w

h t k t w r t k t w t k t w

   

   
,   (8) 

with the integration constant to zero. Then introducing 
the transformation 

( , )
( , ) arctan ,

( , )

v x t
w x t

u x t

 
  

 
            (9) 

where ( , )u x t and ( , )v x t  are differential functions of 
x  and t  into (8) yields [13] 

2 2

3 2

2 2 2 2 2

2
3 2

2 2 2 2

3
3

2 2 2

.( , )
[ ( ) ( ) ( )]arctan ( )

( , )

. . [ ( . . )]
( ) ( ) 3

( )

. .1
8( ) ( ) ( )

2

. .1
( ) ( ) ( ) ( )

3

t

x x x

x x

x x

D v uv x t
k t t k t k t

u x t v u

D v u D v u D u u v v
f t k t

v u v u

D v u D v u
g t k t

v u v u

D v u D v u
h t k t r t k t

v u v


 

     
 

   

        

      2
0,

u

   
 

 (10) 

where the prime denotes the derivative with respect to t , 
and tD , xD , 2

xD  and 3
xD  are the bilinear derivative 

operators [7] defined as 

,

( , ). ( , )

[ ( , ) ( , )]

m n
x t

m n

x x t t

D D f x t g x t

f x t g x t
x x t t

  
                    

. (11) 

Decopling Equation (10), we obtain [13] 

( ) ( ) ( ) 0,k t t k t                  (12) 

31
8 ( ) ( ) ( ) ( ) 0,

3
f t k t h t k t             (13) 

3( ) ( ) . 0,t x xD f t D r t D v u             (14) 

2 1
3 ( ) ( . . ] ( ) ( ) . ,

2x xf t D u u v v g t k t D v u       (15) 

Via Equations (12) and (13), we have the following 
relations 

         2
0

1
,

24
t dtk t c e f t h t k t       (16) 

where 0c  is a nonzero arbitrary constant. That is to say, 
through the dependent variable transformation 

( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
   

  
 

.       (17) 

Equation (1) is transformed into its bilinear form, i.e., 
Equations (14) and (15) under constriant (16).To solve 
the reduced Equations (14) and (15) using the extended 
homoclinic test function [21-29], we suppose a solution 
of Equations (14) and (15) as follows 

1 1 1 1
1 2 2 1( , ) cos[ ] ,a x b t a x b tv x t e p a x b t q e        (18) 

and 

1 1 1 1
2 2 2 2( , ) cos[ ] ,a x b t a x b tu x t e p a x b t q e       (19) 

where ip , iq , ia , ib  ( 1, 2)i   are parameters to be 
determined later. 

Substituting Equations (18) and (19) into Equations 
(14) and (15), and equating all coefficients of 1 1( )[ j a x b te   
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( 1,0,1),j    2 2cos( ),a x b t  2 2sin( )a x b t ] to zero, we 
get the set of algebraic equation for ip , iq , ia , ib  
( 1, 2)i  . Solve the set of algebraic equations with the 
aid of Maple, we have many solutions, in which the fol-
lowing solutions are 

Case (1): 
3

2 2 1 1 1 1

2 2 1 1 2 1 1

1 2 1

1 2

0,  0,  0,  ( ) ( ) ,

( ) ( ),  ,  ,  0,  ,

12 ( ) ( )
( )

( )( )

b q q b f t a r t a

r t r t p p p p a a a

f t a p p
g t

k t p p

     
    






   (20) 

Case (2): 
3

2 2 2 2 1 1 1 1 1

2 1 2 2 1 1

1 2 1

1 2

,  ,  ,  4 ( ) ( ) ,

( ) ( ),  0,  0,  ,  ,

4 ( ) ( )
( )

( )( )

b b q q q q b f t a r t a

r t r t p p a a a a

f t a q q
g t

k t q q

     
    






 (21) 

Case (3): 

2 1 2 2 1 1

2 2 1 1 1 1 2

3
1 1 1 2 1

1 1 2

0,  0,  ,  ,  

,  ,  0,

4 ( ) 24 ( ) ( )
( ) ,  ( )

( )( )

p p q q q q

b b b b a a a

f t a b f t a q q
r t g t

a k t q q

   
   

 
   



(22) 

Case (4): 

 

2 2
2 1

1 1 2 2 1 1 2 2 2 2
1

3 22 2
1 2 2 2 12 1

1 12
21

3 2
2 2 1 2

2 1
2

( ) 0,  ,  ,  ,  ,  ,
4

2 ( ) 2 ( )
,  ,

4

( ) 3 ( )
( ) ,  

a p
g t p p b b a a a a q

a

a b f t a f t a aa p
q b

aa

b f t a f t a a
r t p p

a

     

 
 

 
   

 

(23) 

Case (5): 
2

2 2 2 2 2 1 1 2 2

2
1 2 2 1 2

2 2 1

1 2

2 2 2 2
1 1 1 2 2 2 1 1 2 2

(4 ( ) ( )),  ,  ,  ,

( ) ( ),  (4 ( ) ( )),  ,

24 ( ) ( )
( ) ,

( )( )

1 1 1 1 1 1
,  

8 4 8 8 4 8

b a f t a r t a a p p p p

r t r t b ia f t a r t a ia

if t a p p
g t

k t p p

q p p p p q p p p p

    

   





      

 

(24) 

Using Equation (20), Equations (18) and (19) can be 
written as 

3
1 1 1[ ( ) ( ) ]

1( , ) ,a x f t a r t a tv x t e p          (25) 

and 
3

1 1 1[ ( ) ( ) ]
2( , ) a x f t a r t a tu x t e p    .      (26) 

Inserting Equations (25) and (26) into Equation (17), 
admits to the new solitary wave solution of Equation (1) 
as 

( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
   

  
 

      (27) 

With the aid of Equation (21), Equations (18) and (19) 
yields 

3 3
1 1 1 1 1 1[ 4 ( ) ( ) ] [ 4 ( ) ( ) ]

1( , ) ,a x f t a r t a t a x f t a r t a tv x t e q e        (28) 

and 
3 3

1 1 1 1 1 1[ 4 ( ) ( ) ] [ 4 ( ) ( ) ]
2( , ) ,a x f t a r t a t a x f t a r t a tu x t e q e        (29) 

Knowing Equations (28) and (29) with Equation (17), 
we have the solitary wave solution of Equation (1) as 

( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
   

  
 

      (30) 

In view of case (3), Equations (18) and (19) reads 

1 1 1 1
1( , ) ,a x b t a x b tv x t e q e            (31) 

and 

1 1 1 1
2( , ) a x b t a x b tu x t e q e    .         (32) 

Inserting Equations (31) and (32) into Equation (17), 
admits to the new solitary wave solution of Equation (1) 
as 

( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
   

  
 

       (33) 

Via Equation (23) with Equations (18) and (19), we 
have 

3 2( 2 ( ) 2 ( ) )1 2 22 1
1 2

3 2( 2 ( ) 2 ( ) )1 2 22 1
1 2

2 2
2 1

2 22
1

2 2
2 1

2
1

( , ) cos[ ]
4

,
4

a b f t a f t a a

a

a b f t a f t a a

a

a x t

a x t

a p
v x t e a x b t

a

a p
e

a

 

 

 
 
  

 
  

  

 
   

 

 
  
 

 

(34) 

and 
3 2( 2 ( ) 2 ( ) )1 2 22 1

1 2

3 2( 2 ( ) 2 ( ) )1 2 22 1
1 2

2 2
2 1

2 22
1

2 2
2 1

2
1

( , ) cos[ ]
4

,
4

a b f t a f t a a

a

a b f t a f t a a

a

a x t

a x t

a p
u x t e a x b t

a

a p
e

a

 

 

 
 
  

 
  

  

 
   

 

 
  
 

 

(35) 

Using Equations (34) and (35), admits to the new soli-
tary wave solution of Equation (1) as 
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( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
   

  
 

       (36) 

According to case (5), Equations (18) and (19) be-
comes 

2
2 2 2

2
2 2 2

(4 ( ) ( ))

1 2

(4 ( ) ( ))2
2 2 1

( , ) cos[

[ (4 ( ) ( ))] ] ,

ia x ia f t a r t t

ia x ia f t a r t t

v x t e p a x

a f t a r t t q e

   

    

 

  
 (37) 

and 

2
2 2 2

2
2 2 2

(4 ( ) ( ))

2 2

(4 ( ) ( ))2
2 2 2

( , ) cos[

[ (4 ( ) ( ))] ]

ia x ia f t a r t t

ia x ia f t a r t t

u x t e p a x

a f t a r t t q e

   

    

 

  
. 

(38) 

By means of Equations (36) and (37) with Equation 
(17) we have a new solitary wave solutions as 

( )
0

( , )
( , ) arctan

( , )
t dt

x

v x t
x t c e

u x t
    

  
 

       (39) 

 
3. Conclusions 
 
In this paper, with the aid of two methods, namely, bi-
linear form and the extended homoclinic test approach, 
we obtain breather-type soliton and two soliton solutions 
for the Gardner equation with a variable-coefficient from 
fluid dynamics and plasma physics. The results reported 
here show that the extended homoclinic test approach is 
very effective in finding exact solitary wave solutions for 
nonlinear evolution equations with variable coefficients. 

Finally, it is worthwhile to mention that, the proposed 
method is reliable and effective can also be applied to 
solve other types of higher dimensional integrable and 
non-integrable systems. 
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