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ABSTRACT 

We present a new derivative-free optimization algorithm based on the sparse grid numerical integration. The algorithm 
applies to a smooth nonlinear objective function where calculating its gradient is impossible and evaluating its value is 
also very expensive. The new algorithm has: 1) a unique starting point strategy; 2) an effective global search heuristic; 
and 3) consistent local convergence. These are achieved through a uniform use of sparse grid numerical integration. 
Numerical experiment result indicates that the algorithm is accurate and efficient, and benchmarks favourably against 
several state-of-art derivative free algorithms. 
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1. Introduction 

Derivative-based methods can be very efficient and have 
been widely used in solving optimization problems. In 
many applications, however, the derivative of an object- 
tive function might be unavailable, unreliable, or very 
costly to compute. Many scientific and engineering op- 
timization problems fall into this category [1]. For exam- 
ple, in the helicopter rotor blade design problem [2], the 
objective function can only be evaluated by very expen- 
sive simulation. Similar problems include the nonlinear 
optimization parameter tuning problem [3], medical im- 
age registration [4], dynamic pricing [5], and community 
groundwater problem [6]. Therefore, derivative-free me- 
thods must be used in these situations. For these prob- 
lems, not only the derivative information is not available, 
the function evaluation could be inaccurate or noisy most 
of times as well. Hence, an algorithm needs the capabil- 
ity to generate robust searching directions without using 
derivative and without overly relying on individual func- 
tion evaluations. 

There are several commonly used derivative-free algo- 
rithms in the literature. The classical Nelder-Mead me- 
thod [7] is based on simplicies and various operations 
defined on these simplicies. The method evaluates the 
objective function on a finite number of points, and de- 
cides which operation to perform accordingly. The me- 
thod is simple and able to follow the curvature of the 
objective function. Pattern search or directional direct 
search algorithm [8,9] defines a set of directions before- 

hand, such as positive spanning sets, positive bases or 
just the coordinates in its simplest form, and tests one 
candidate point on each of these directions in a so called 
polling step. An optional search step could proceed the 
polling step to accelerate the algorithm opportunistically, 
in which the algorithm makes use of some known prop- 
erties, heuristics, or a surrogate model on a finite number 
of points. The implicit-filtering method [10] is a line 
search method based on the simplex gradient, which is 
computed based on the function values at the vertices of 
a simplex set. DFO method [11], Powell’s method [12] 
and Wedge method [13] are essentially trust-region 
methods; however, additional steps are executed since in 
the derivative free optimization a quadratic or linear in- 
terpolating or regression model does not necessarily im- 
prove when the trust-region radius is reduced. For ex- 
treme problems where the mathematical structure is 
complex or poorly understood, other heuristic optimiza- 
tion algorithms such as genetic algorithms, simulated 
annealing, artificial neural networks, tabu-search and 
particle swamp are also used as methods of a last resort. 
An excellent discussion of several commonly used de- 
rivative-free optimization methods can be found in [14].  

We point out that all these derivative-free algorithms 
are local optimizer, i.e., only convergence to a local op- 
timal point is guaranteed. However, on the other hand, all 
these algorithms are highly capable of filtering out noises, 
escape from inferior local optimums, and often return a 
fairly satisfactory solution. These widely used and suc- 
cessful designs clearly convey a common principle: for 
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cases like the helicopter rotor blade design problem [2], 
where each function evaluation is an expensive simula-
tion and is known to be noisy, generating robust and effi-
cient searching directions has the highest priority. It does 
not mean that one can not conduct derivative-free global 
optimization. As a matter of fact, many derivative-free 
global optimization algorithms have been developed with 
different targeted application areas, for example, the par- 
ticle swarm method, Mesh adaptive direct search (MADS) 
[15], DIviding RETangles (DIRECT) [16], and Multileve 
coordinate search (MCS) [17]. More interestingly, some 
of the above local derivative-free algorithms have been 
extended to solve global optimization problems, for 
example, the global Direct Search, see Section 13.3 [14] 
and references therein. It appears that four categories of 
algorithms, with or without derivative, seeking local or 
global optimums, all find their suitable application ar- 
eas. 

In this paper, our goal is to generate high-quality local 
optimal solutions efficiently. Hence in this paper, we are 
concerned with the following optimization problem:  

 max ,
x B

f x


                 (1) 

where   2: df C    , but is expensive to evaluate.
In many applications, such as the helicopter rotor blade 
design problem [2],  

 

f   nown to be smooth, but 
has no analytical form, and one can only rely on expen-
sive simulations or experiments to evaluate function val-
ues. The measurements could be inaccurate or noisy 
though the function 

is

 

 k

f 

 

 itself is known to be smooth, 
see [14]. Furthermore, derivatives or reliable approxima-
tion are not available. f   could have many local op-
timums as well. The decision variable x is subject to a 
box constraint x B . For example, in the parameter 
tubing problem [3], B is a theoretically or empirically 
reasonable range of the parameters to be tuned. 

Our research is motivated by Wang et al. [18], where 
the authors proposed a novel derivative free global opti-
mization method. In this iterative method, the integral of 
the objective function over a local neighbourhood of 
each iterate is computed, which further determines the 
next iterate. The authors showed that if the neighbour-
hood size could be chosen properly at each iterate, the 
algorithm converges to a global optimum. The authors 
demonstrated a few examples, where the algorithm suc- 
cessfully found global optimums while several other 
commonly used derivative-free methods and even deri- 
vative-based methods failed. 

We have a different view of the integration based de-
rivative free optimization method. First of all, we use the 
integration to define the searching directions, rather than 
the iterates as did in [18]. We found that it is more effi-
cient to use the integration to define the search direction. 
The integration based searching direction uses informa-

tion from multiple function evaluations at strategically 
located points, which avoids unduly relying on the gra-
dient information at the current iterate. This is especially 
important since the function evaluations are noisy, espe-
cially when obtained from simulation or physical meas-
urements, hence the local gradient, even if available or 
can be approximated, has poor quality. Secondly, our 
focus is on generating high quality local optimum effi-
ciently, rather than seeking a global optimum. This mod-
erate goal actually enable us to search more effectively. 
Finding global optimum and proving its global optimality 
is known to be hard. Though [18] shows the existence of 
a series of neighbourhood sizes such that their algorithm 
can find a global optimum, the exact neighbourhood size 
is not given in theory, nor specified algorithmically. In 
this paper, we design a two stage searching strategy, 
which aims at achieving a good balance of global cover-
age and local optimality. 

First, we divide the solution seeking process into two 
stages: the global probing stage and the local conver-
gence stage. In the global probing stage, the algorithm 
search for high region of the feasible domain for a 
maximization problem; while in the local convergence 
stage, the algorithm converges to peaks of the high re- 
gion found in the first stage. The first stage steps are 
typically large; and the second stage steps are small. We 
update the neighbourhood size differently in the two 
stages, which suites the different purposes of the two 
stages well. 

Accordingly, we prove that in the local convergence 
stage the algorithm always generates locally improving 
directions and converges; while in the global probing 
stage, we are able to show that the algorithm can gener- 
ate searching directions towards a global optimum but 
against a local attraction for the mixture model functions 
commonly appeared in statistics optimization. 

We not only develop new theories to support our new 
perspective, but also design critical algorithmic compo-
nents accordingly. Our new line search method is a 
greedy algorithm which appears to have good numerical 
performance. In the contrast, [18] does not use line 
search at all. Our strategy to select the starting point is 
also new. It is well-known that the starting point is im-
portant for nonlinear optimization problem. However, 
most nonlinear optimization algorithms, including [18], 
rely on user defined starting points or starting from zero 
mechanically. We provides an innovative approach here: 
we start from the center of gravity of the whole feasible 
region, which is again computed from integration with 
function values as weights. Hence the starting point is 
close to the global optimum.  

Secondly, we use the modern sparse grid numerical 
integration method (Smolyak 1960) in computing the 
local integration. The sparse grid method is highly effi-
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cient for functions with moderate dimensions, and has 
been widely used in engineering, finance, atmosphere 
studies, see [19] the reference therein. Since the function 
evaluation is expensive for our problems, we need a full 
control of total function calls in our algorithm: not only 
in the searching process, but also in the numerical inte-
gration. We derive a new closed form formula determin-
ing exactly how many point evaluations are needed in the 
sparse grid method. To the best of our knowledge, only 
the order of number of points has been shown in the 
sparse grid literature. Based on our new formula, we 
clearly show that the number of point evaluations needed 
in the numerical integration increases with the dimension 
linearly. 

The paper is organized as follows. In Section 2.1, we 
show that the searching direction generated from local 
integration is always an improving direction; on the other 
hand, by simply enlarging the integration area, the algo-
rithm can generate a searching direction towards toward 
a area with higher average function value. We also show 
that for a class of functions, the algorithm could find a 
global optimal solution. Based on these ideas, we design 
a new algorithm and present it in Section 5. In Section 4, 
we briefly review the sparse grid method and derive a 
new formula count its function calls. In Section 6, we test 
the new algorithm and benchmark against state-of-art 
derivative free algorithms. Conclusion and discussion are 
provided in Section 7. 

2. Several Theoretical Results 

We first prove several theoretical results which moti-
vated the new method we will present in the later Section 
5. These results cover important aspects of a nonlinear 
derivative free algorithm, including our choice of the 
searching direction; starting point strategy; and a new 
closed-form formula which we developed to calculate the 
number of function calls in the sparse grid numerical 
integration at each iteration. 

Searching Direction and Local Convergence 

For a x B


 and  such that  0r 
  : ,xB r x r x Br  

y x
, we define the search direction 

to be , where  

 
 

 
 1

d , and d .
x xB r B r

y tf t t f t


   t       (2) 

We also call y the local center of gravity of  xB r  in 
this paper. We prove that y x  is a locally improving 
direction in the next Theorem. 

Theorem 2.1 The searching direction  satisfies  y x

   
 

 1.5 20, 1.5 max
x

T

t B r
y x f x r d f t



      


Especially, for a quadratic   1

2
T Tf x c x x Qx  , we 

have  

   
2

1.52
, 1.5

12

d
r

y x f t r d Q



     .  

Proof. Let , and by definition of the 
local center of gravity,  

 : ,
n

uB r r 

   
 

   
 

 
 

d

d

d d

d

d
.

d

u

u

u u

u

u

u

B

B

B B

B

B

B

x u f x u u
y

f x u u

x f x u u uf x u u

f x u u

uf x u u
x

f x u u

 




  





 






 





      (3) 

Hence  

   
   

 
d

d
u

u

T

T B

B

f x uf x u u
y x f x

f x u u

 
  






     (4) 

Since  f   ,   0
uB
f x u  , and the sign of 

 only depends on  Ty x   f x    d
uB

T f x f x u 
 duf x u u

u. 

In the following we first study . The  
uB

second Taylor expansion of  f   at x for sufficiently 
small u is  

      1
.

2
T T

uf x u f x u f x u H u      

We note that  2:u H f x u  
:

 may change with u. 
For brevity, we also define  g f  x .  

 

 

 

  2

d

1
d

2

d d

1 1
2 d ,

12 2

u

u

u u u

u

B

T T
uB

T T
uB B B

d T
uB

uf x u u

u f x u g u H u u

df x u u g uu u uu H u u

r g uu H u u




    
 

  

 





  



    (5) 

where the last equality used  and  0
u

d

B
u   R

  21
d 2

12u

r r dT
i j dB r r ij

uu u u u r I


 
       ,  

since d d 0,
r r

i j i jr r
u u u u i j

 
   ,  

2 3 31 2
r




 

d d
3 3

r

i i i ir
r

u u u u r




  , and   22 1
d d 2

12u

d

i i iB
u u u r

 .  

dI  is the d d  identity matrix. 
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For quadratic  f  , uH Q , hence  

,

1
d

2u u

T
u kj i k jB B

k j i

uu H u u Q u u u
 

  
 
  0,  

since  for all possible i, k, j com-  d d d 0
u

i k j i k jB
u u u u u u 

2binations. Since f C , a maximum of  2 f t , 
 for all x in B exists. Hence   xt B r

 

 

 

     

   

   

2

2 3

2 3

22 3

2

d

1
2 d

12
1

2 d
12
1

2 max ma
12
1 1

2 2
12 8
1

2 3 .
12

u

u
x

B

n T T
uBu

d

uBu

d

uB

d d

d

g uf x u u

d g g uu H u u

r g g u H u

r g g u H

r g H r g

g r g H r

 





 

 

 

 

 









T

  (6) 

Applying this result into (4),  

   
   

 

21
2 3

12 0.

u

d

T

B

g r g H r
y x f x

f x u

 
   


 

when  11

3
r H f x


  .                      □

Theorem 2.1 shows that the algorithm always generate 
an improving direction. Furthermore, the theorem shows 
that for a quadratic objective function, the integration 
based search direction is exactly the steepest descent 
direction. Though the analytical form of the objective 
function  is unknown, our closed form ex-
pression for quadratic case clearly indicates the capabil-
ity of interation based searching direction, especially it is 
well known that sequential quadratic approximations of 
C2 function can be effective, which sheds lights on future 
research. 

  2f  

With the aboved establied improving feasible direction, 
we can directly apply the well established idea of feasible 
direction algorithm Theorem 10.2.7 [20]. The idea is 
fairly simple: given a feasible point kx , an improving 
feasible direction k  satisfying (1) kd kx d  is feasi-
ble, and (2) the objective value is better at k kx d  for 
sufficiently small  , a one dimensional optimization 
problem is solved to determine how far to proceed along 

k , which leads to a new point d 1kx  , and the process is 
repeated. 

Theorem 2.2 Let kx  be feasible, k k ,  
obtained from (2), 1k k k

d y x 


y
x x y   x , where   is 

optimal for the one dimensional optimization problem 
 min ,k k . . k kf x d  s t x d B   . Then the sequence 

 kx  converges to a KKT point.  
Proof. See Theorem 10.2.7 [20].               □   
While our convergence analysis can take benefit of the 

well established optimization theories; in the contrast, the 
convergence analysis of the directional direct search al-
gorithm [8,9] relies on searching a predefined set of di-
rections, which spans the searching space. 

Our next example shows that when r is large, the 
searching direction generated by the algorithm is not 
necessary a locally improving direction. However, as the 
examples shows, it points to the global optimum. 

Example 2.1 Let   2
0 1 2 3: 3f x a a x a x a x    . Its  

second order Taylor expansion is   21

2 uf x gu H u  ,  

2
1 2 32 3g a a x a x   , and  2 3 32 3uH a a x a u   . It 

can be shown that  

 
 

3 2
3

1 1
2

3 5

B

gr g a r
g y x

f x u

  
 


           (7) 

We are not following the steps of (6) here since uH   

is known explicitly. For simplicity, let 3

1

3
a   , 2 1a  ,  

1 0a  , 0 4a  . With this choice,  on   0f x   2,4 . 
 2 22g x x x x     , hence  for 0g   0, 2x .  

For x in this range 2 21
3

3

5 5
g a r r    leads to conclu-  

sion 5r  . The bound is sharp as we see that with 
1x   the gradient is 1. If we choose  within the 

bound, the center of gravity for this problem is  
2r 

 

 

2 3

1,3

2 3

1,3

1
3

1.04,
1
3

x x x
y

x x





  
  






 

which is bigger than x = 1 and aligned with the gradient g. 
However, if we choose r = 3, then a similar calculation 
shows that the center of gravity on  2, 4  is 0.85, 
which points to region with larger objective values than 
the local maximum.  

It is not a surprise that when r is large, the algorithm is 
able to generate searching directions towards the global 
optimum, since more information of the function is used. 
In the contrast, a gradient only reflects the local structure 
of the function. This observation leads to our develop-
ment of a new heuristic. We use large r at beginning of 
the algorithm with an intention to explore the overall 
structure of the objective function. This global probing 
phase ends when successive iterates are close enough to 
each other, which implies that two iterates are in the 
same hump. In the next phase, we would like the algo-
rithm to find the maximum of this hump, hence we use a 
very small r and fast update to achieve the local conver-
gence. 
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3. Starting Point 

We know that the starting point is very important for a 
nonlinear optimization problem. We propose to use the 
center of gravity of  f   on B as the starting point. By 
its construction, the center of gravity tends to locate in a 
high valued neighbourhood, hence provides an effective 
starting point. In the following theorem, we show that 
this simple heuristic starting point strategy can always 
lead to a global optimum for the mixture model in statis-
tics under some assumptions. This strategy is new and 
seems effective in our numerical experiments. 

Theorem 3.1 Consider a statistical mixture model  

     1 1 2 2 ,f x p f x p f x              (8) 

where    1 2,f f   are density functions,  1 2, 0,p p 
p p

1 , 

1 2 . Without loss of generality, assume 1 2 . 
Assume that the global optimum 

1p p
x  is unique and 

satisfies . Define   f x 0

  1arg max | , 0, 1, ,ix

0 x N f x i n          , 

where    : :
x

N x x x 
   . If  1 x

N 0   and  

0
1

2
1 2

,
x

p
 

 

 



               (9) 

where  1 1 dxf x x    and  2 2 dxf x x   , then the 
algorithm converges to the global optimum if started 
from  dx xf x x  .  

Proof. Observe that  

  1 1 2 2dx xf x x p p .             (10) 

We then have  

1 1

1 1 2 2 1 1

2 1 2 1

0
1 1

0.

x x x x

p p x

p x

x x

 

   

  

  



 





 

    

    

   

    



 

This implies that  0

x
x N  , hence the local im- 

proving directions leads to x  if x x .           □
We remark that the above result is applicable to a 

broader functional class with proper normalization. For a 
composite function  

     1 2 ,g x g x g x            (11) 

where  are non-constant and nonnegative 
functions, it can be normalized as  

   1 2,g g 

 
 

 
 

 
 

 
 

 
 

1 21

1

d d
,

d d d d

g x x g x xg x g x g x

which is precisely the mixture form  
     1 1 2 2f x p f x p f x   with  

     d ,f x g x g x x   

   1 d d , 1ip g x x g x x i   , 2,  

     d , 1, 2.i i if x g x g x x i   

The condition, 2  implies that  1p p
   d1 2 .dg x x g x x  This implies that  1g   makes 

larger contribution to the total integration than  2g  . 

4. Sparse Grid Numerical Integration 

Since the algorithm relies on the numerical integration to 
calculate the local center of a gravity at each step and the 
starting point, its accuracy and efficiency is crucial to the 
success of our algorithm. We integrate the modern sparse 
grid method [21] into our algorithm. In this section, we 
first briefly introduce the sparse grid method. Then we 
present our result on this aspect: a new closed form for-
mula for the number of function calls used in the sparse 
grid numerical integration. The complexity of sparse grid 
method itself has been studied by various authors, and 
the order of complexity is shown in [19]. Our result 
makes it explicit how many function calls are used ex-
actly in the integration step in our algorithm. Since the 
sparse grid method itself is not our contribution, our in-
troduction is terse for the purpose of explaining the nec-
essary notations used in our derivation of the closed form 
formula. For details of the sparse grid method, we refer 
our readers to [22]. 

Numerical integration for univariate function (quadra-
ture) uses the weighted sum of function values as the 
approximation to the integration:  

   
1

d
K

i iB
i

.f t t w f t


             (12) 

A central problem in quadrature is to decide the 
weights i  and grid points it . In this sense, Gauss- 
Legender quadrature uses an optimal solution to the fol-
lowing optimization problem:  

w

   
1 2 1
1

, , 1, ,

min sup d .
K K

K

K

i iBt t f iw w

f t t w f t
 





     (13) 

Clearly the model minimizes the worst case approxi-
mation error for any univariate polynomial function with 
order up to 2K 1 . Different univariate quadrature rules 
have been derived. 

2

2 dg x x g x x g x x g x x g x x
  

    
 

Extension of univariate quadrature to multivariate 
quadrature is difficult due to the curse of dimensionality. 
Among various approaches, the sparse grid method uses 
an interesting tensor product of univariate quadratures. In 
the following we first outline necessary details of this 
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tensor product, on which our analysis of number of func-
tion evaluations is based on. 

We define an operator 1
jQ :  

     1 ,
j

j
t U

Q f w t f t


            (14) 

where jU
 

 specifies the set of evaluation points, and 
 provides the corresponding weights. We 

note that for Gauss-Legender univariate quadrature, the 
cardinalities for . We define a difference opera- 
tor as:  

: jw U

jU  j

    1 1 1
1:j j jf Q Q f    

 1
0 : 0.f   

Clearly the difference operator 1
j  is defined on the 

point set 1: j jU U U   , and it could also be represented 
as a weighted sum of function values:  

         

   
1

1

,

j j

j

j
t U t U

t U

f w t f t w t f t

w t f t

 



  



 


 

where the weight function : jw U   could be calcu-
lated mechanically. We define the tensor product of dif-
ference operator as  

  
     

1

1
1 1

1 1

1 1, , .

d

d
j d jd

j j

j j d
t U t U

f

w t w t f t t
 

  

  


   d

  (15) 

The sparse grid approach (Smolyak 1960) extends the 
univariate quadrature 1

jQ  to the multivariate quadrature 
rule  , A q d  (via the intermediate difference operator 

1
j ) as for :  2d

      
1

1 1

d :
d

d
q jB

j q d

.jf t t A f f
  

       (16) 

d
qA  has no approximation error [23] for polynomials 

in the space 
1 2 dj j j , , 

if each univariate quadrature rule 
    1 1dj j q d     

1
jQ  has no approxi-

mation error for the univariate polynomial space j

2 1d

. For 
smooth functions, not necessarily polynomial, the sparse 
grid method also achieves high accuracy [19]. Also see 
[22] for spare grid implementation details. In this paper, 
the most relevant question is how many function calls are 
used in a sparse grid numerical integration. Though the 
order of magnitude of this number is known, see Lemma 
3.6 in [21] and [22], we derive a new and exact formula. 
The exact formula shows that the number of function 
calls in computing the local center of gravity is  . 

Proposition 4.1 Using the Gauss-Legender sparse 
grid rule 2

dA , Subroutine 2 makes  function 
calls.  

2n d 1

Proof: Applying Theorem 4.1 for the special case 

2q  . 
Theorem 4.1 The Gauss-Legender sparse grid rule 
d
qA  uses  ,N q d  function calls, where  

 
2 1

, , for
2

q d
N q d q d

d

  
  
 

       (17) 

Furthermore,  

   
2 1

1, , , for 1
2 1

q d
N q d N q d q d

d

  
     

  (18) 

Proof. For the Gauss-Legender univariate rule 1
jQ , the 

number of points is 1
jU j , and j i . 

Furthermore, [23] shows that (combination rule):  
U U j  i 

   

  

1

1

1

1

1

1 1

1

1

1
d

q d kd
q

q j q d

j j

A f

d
Q Q

k q

  

   

 

 
    



 f

    (19) 

Hence for , 2q d d  ,  

 
1 2

1 2

1 21 1 1
1

, .
d

d

dj j j
k k k q d

N q d k k k
  

     

  


         (20) 

1) The closed formula (17) apparently holds for 2d   
and q d  since  1, 2 1N  , and  

 
1 2

1 2

1 21 1
3

2, 2 5
j j
j j

N j
 
 

j   

2) Assume the formula (17) is valid for d and q d . 
We now consider the case for .  1d 

 

 
 

1 1

1 1

1
1

1 1

1

1 2 1

1 1

1 1
1

1
1

1

, 1

2

2

2 1 1
.

2 1

d

d

d
d

d d

d

n nj j
j j q n

q

d nj j
j

j j q d j

q
n

d
j

N q d j j j j

j j

q j d
j

d

q d

d











     




    






 

 
  
 
 

  
  

 
   

   

2j j

 

 







 

 

 

The last step  

1

1 1

1

2 1 2

2 2 1 2
d

q
d

j

q d j q d j

d d






      
      
 d 




     (21) 

can be proved by the following equivalence: selections of 
2 2d   balls out of 2q d 1   identical white balls is 
equivalent to: choose one ball from the first 1dj   balls  

and there are  ways; choose the 1

1
dj  


 

  1 1dj t  h   

ball as the second ball and color it red; choose 2d balls  
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from the rest and there are  ways. Total  12

2
dq d j

d
 


 




number of balls before the red could be one to q. The 
maximal number is q since otherwise there is less than 2d 
balls behind the red. 

3) Hence the formula (17) is valid by mathematical 
induction. 

The second half of the theorem follows this identity  

1 1
.

1

n n n

j j j

      
           

            □

5. Algorithm 

Algorithm 1 Sparse Grid Derivative Free Algorithm 
(SGDF)  

1: global probing phase:  
2: , see Subroutine 2   z cg B

0.93:     
4: repeat 
5:   x z   
6:      , . . 2

d
r argmax r s t f x r  


 , 
,x r x r B  


 

7:   ,B x r x r  

 
  

8:   y cg B , see Subroutine 2  
9:   linesearch along y − x to get z, see Subroutine 3 
10: until 1x z    
11: local convergent phase:  
12: repeat 
13:   0.01    
14:   steps (4)-(10)  
15: until 2     
As shown in Algorithm 1, it has two phases: the global 

probing phase and the convergent phase. The two phases 
differs only in the parameter k , and are identical oth-
erwise. In the global probing phase,  con-
stantly; while in the convergent phase 

0.9k 
1 0.0k 1

The subroutine 2 computes the center of gravity (cg), 
which calls the sparse grid algorithm in its first step to 
generate n sparse grid points as briefly introduced in sec-
tion 4. In our numerical implementation, we called the 
public domain Matlab package Sparse Grid Toolbox by 
Andreas Klimke. We note that each numerical integra-
tion uses only 2d 1  function calls as proved in the 
Proposition 4.1. In the subroutine 2, the volume of the 
domain B  is computed in the step 3 and is used in lieu 
in the following step 4. We also point out that function 
evaluations at grid points are computed in step (2) only 
once. These values are stored and used later in steps (3) 
and (4). 

Subroutine 2: Center of gravity cg B    
1: Generate n sparse grid points ix  of the given rec- 

tangle B , see Section 4  
2: Compute     , i 1, , , 1,i i i i

d ,f x x f x x i n 

 n iV w f x
x f  

3: Compute the volume   
1 ii

4: Compute  1

1
, 1, ,

n i i
j i ji

cg w x f x j d
V 

    

In the subroutine 3 we equip a special derivative free 
line search for SGDF enhance its numerical efficiency. 
The idea is to move along the line  as much 
as possible. We observe that it is often too conservative 
to move to 

 cg B x 

 cg B  only; instead, search along the line 
often brings huge performance gain. The line search is 
greedy: it moves forward by a fixed stepsize until the 
function value is worse or it hits the boundary; then it 
bisects the stepsize and retreats a stepsize until it finds 
the first feasible and improving point or until the stepsize 
is less than 3 . 1 , 2 , 3  are all set at 1e 8  level. 

Subroutine 3: Derivative free line search 
Ensure:   , , x y f x f  y ;  

k   . 
Both phases share same iteration steps (4)-(10), which 
are essentially numerical implementation of (2) with line 
search for additional efficiency. In the global phasing 
phase, the algorithm uses 90% terrain of the feasible re-
gion to determine the search direction. This provides 
great opportunity for the algorithm to escape from local 
optimum traps. When two successive iterates ix  and 

1ix   are very close, we switch to the convergent phase, 
where we exponentially decay  . By focusing on a less 
portion of the terrain, the algorithm is able to advance to 
a local optimum accurately. Details of one iteration is the 
follows. We first approximate the radius for the given 

k  through mid-point quadrature rule in the step 6. The 
new domain B  is defined in the step 7. Step 8 com-
putes the center of gravity of the new domain B  using 
the subroutine 2. Step 9 conducts a linear search subrou-
tine 3 to accelerate the algorithm. 

1: initialize   ; 1,d y x y x s y y     ;  
2: while    f y f y 

,
 and  is feasible do y

3:   y y y y s  d       
4: end while 
5: repeat 
6:   2 ,s s y y s d       
7: until y  is feasible and either    f y f y   or 

3s    
8: return       , ,, ,max x y yarg f x f y f y   

6. Numerical Tests 

We compare SGDF with the state-of-art derivative free 
algorithms, including Pattern Search or Direct Search 
(with and without poll step) [24], Global Search [25], 
Multi-start [26], Simulated Annealing and Genetic algo-
rithm [27]. These algorithms have mature industrial 
strength implementations in MATLAB Global Optimiza-
tion Toolbox. We also implemented our new SGDF al-
gorithm in MATLAB and conducted comparative study. 

We use their default settings for the solvers from the 
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Matlab Global Optimization Toolbox. Pattern Search 
Algorithm uses only poll step by default. However, it is 
more efficient when coupled with a searching step. 
Hence we compare with the Pattern Search algorithms 
with and without the searching option. Both the Global 
Search Solver and the Multistart Solver needs a local 
solver. We followed the recommendation from Matlab 
manual and set the Interior-Point-Method as local solver 
for the Global Search, and the medium scale algorithmic 
option for the Multistart. 

In contrast to the SGDF deterministic starting point 
strategy, all these derivative free algorithms rely on ran-
dom starting points or user inputs. Global Search uses a 
scatter-search mechanism [26] for generating random 
start points. MultiStart uses uniformly distributed start 
points within bounds (default 10), or user-supplied start-
ing points. Global Search analyzes starting points and 
rejects those points that are unlikely to improve the best 
local minimum found so far. In the contrast, a MultiStart 
solver runs the local solver from all feasible starting 
points. 

Since these algorithms use random starting points, a 
single run result could be very poor or excellent. To get a 
whole picture, we run each solver 26 times (arbitrarily 
chosen) and use the median number of failures as a 
measure of its accuracy measure. A run fails if its error 
exceeds 5% in terms of the objective value:  

true

true
error:

obj obj

obj

 
             (22) 

We use the number of function calls as efficiency 
measure. This is a convention in testing derivative free 
algorithms since function evaluations are expensive for 
typical derivative free optimization problems. On the 
other side, for the purpose of constructing searching di-
rections, Newton and other high order methods spend a 
significant amount of time on inverting matrix or solving 
equations; while derivative free algorithms typically 
don’t involve this overhead. Their expense in construct-
ing search directions can also be reasonably measured in 
number of function evaluations. For SGDF, this expense 
is on the numerical integration. For other derivative free 
algorithms, this expense is also on point-wise evaluation 
based interpolation, pseudo differentiation or simplex 
derivatives. Again, due to the random starting strategy 
employed by other derivative free algorithms, we use the 
median number of function calls of their 26 runs as a 
robust measure of their efficiency. 

We use eight test functions [28]: Brianin, Six-Hump, 
Goldstein Price, Hartman3, Hartman6, Shekel5, Shekel7, 
and Shekel10. These functions have known optimal val-
ues and optimal solutions, and have been used widely for 
testing purpose in research papers. For these functions, 
their dimensions and known optimal values are tabulated 

in the Table 1. We also show the optimal values from 
SGDF side-by-side with the true optimal value in Table 
1, which clearly shows that SGDF is capable of achiev-
ing high accurate results. 

Table 2 shows number of failures for each algorithm 
as a measure of accuracy. SGDF has no failure, which is 
also achieved by MS. All other algorithms have difficulty 
for high dimensional problems. Especially the genetic 
algorithm and pattern search without polling option ex-
hibit high failure rates.The multi-start strategy (MS), 
though simple, works very well. SGDF, on the other 
hand, uses a more complicated strategy. It uses global 
information of the objective function in the global prob-
ing phase, and generates searching directions pointing to 
region with high objective values on average. This 
searching heuristics is fundamentally different from the 
local searching idea. Apparently, this innovative search-
ing heuristics can also be coupled with the simple multi- 
start idea to enhance its success rate. However, multi- 
start inherently increases the computation effort as seen 
in the next table. Hence how to efficiently combine 
strength from both methods is a subject of future re-
search. 

Table 3 shows the median number of function calls 
used by each algorithm as a measure of efficiency. It is 
clear that SGDF uses much less function calls than multi- 
start algorithm. A further calculation shows that SGDF 
uses 65% less function calls than multi-start algorithm. 
This is not a surprise since multi-start algorithm runs 
from ten starting points so as to increase its chance of 
hitting the global. Global Search also uses multiple start-
ing points, but it drops those unpromising ones sooner. 
However, Global Search does not simply run local solver 
from each starting point, it has a more complicated 
strategies including basin radius estimation, two stage 
search, and dynamic threshold, etc, which increases its 
function calls significantly. Pattern Search with addi-
tional searching option is more efficient than Pattern  
 
Table 1. Compare the true and SGDF optimal objective 
values. 

Function D objtrue objSGDF  error 

Brianin 2 0.398 0.398 0.00% 

Four-Hump Camel 2 −1.032 −1.027 0.48% 

Goldstein Price 2 3 3.083 2.77% 

Hartman3 3 −3.863 −3.827 0.93% 

Hartman6 6 −3.322 −3.318 0.12% 

Shekel5 5 −10.153 −10.152 0.01% 

Shekel7 7 −10.403 −10.359 0.42% 

Shekel10 10 −10.536 −10.500 0.34% 
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Table 2. Median number of failures. 

Function D SGDF GA SA PS PS* GS MS 

Brianin 2 0 0 0 0 0 0 0 

Four-Hump Camel 2 0 0 0 1 0 0 0 

Goldstein Price 2 0 11 0 0 8 0 0 

Hartman3 3 0 1 0 11 7 0 0 

Hartman6 6 0 0 0 0 0 0 0 

Shekel5 5 0 26 9 23 17 0 0 

Shekel7 7 0 26 10 23 19 5 0 

Shekel10 10 0 26 13 22 21 1 0 

SGDF: sparse grid derivative free; GA: genetic; SA: simulated annealing; PS: pattern search (direct search); PS*: pattern search with 
polling option on; GS: global search; MS: multi-start. 

 
Table 3. Median number of function calls. 

Function D SGDF GA SA PS PS* GS MS 

Brianin 2 112 1040 1958.5 200 171.5 2331 319 

Four-Hump Camel 2 143 1040 1812 200.5 200.5 2310 413 

Goldstein Price 2 262 1040 1588 260 210.5 2184 807 

Hartman3 3 103 1040 2512 468 316.5 4281 738 

Hartman6 6 1069 1100 5785.5 1276 1196 6229.5 1819 

Shekel5 5 372 1040 3555.5 583 467 3813 1406.5 

Shekel7 7 688 1040 3078.5 581.5 458.5 4386.5 1472.5 

Shekel10 10 583 1040 3154 605 435.5 3945 1479 

SGDF: sparse grid derivative free; GA: genetic; SA: simulated annealing; PS: pattern search (direct search); PS*: pattern search with 
polling option on; GS: global search; MS: multi-start. 

 
Search with polling step only. Simulated Annealing and 
Genetic algorithms apparently use more function calls. 

Tables 2 and 3 together show that SGDF is both ac-
curate and efficient. Multi-start is accurate but slightly 
more expensive. Global Search and Simulated Annealing 
could be accurate at the expense of more than ten times 
function calls as SGDF. The Pattern Search with or 
without searching step is efficient, but could generate a 
solution far away from optimum if started randomly. 
Genetic algorithm has reported success for more compli-
cated biological system optimization but does not advan-
tage in this experiment. 

It appears that the starting point strategy of SGDF is 
effective. By using a single starting point, i.e., the global 
center of gravity, SGDF is able to find solutions very 
close to a global optimum for eight testing problems. In 
the contrast, other algorithms use random starting points 
have more or less fails, except for multi-start algorithm. 
The multi-start algorithm uses ten starting points in each 
of the twenty six runs. It is interesting to observe that for 
this experiment there is always one good starting point 
out of the ten. 

7. Conclusions and Discussion 

In this paper, we present a new integration based deriva-
tive-free optimization algorithm. The new idea of using 
integration to generated searching direction has its ad-
vantages: we prove that when the integration area is 
small, the generated direction is always an improving one; 
we also demonstrate that by simply enlarging the integra-
tion area, the algorithm can make use of global informa-
tion, and generate a searching direction towards area with 
high objective values on average. We also propose an 
innovative starting point strategy based on integration. 
We not only use the modern sparse grid method to im-
plement the integration, but also make contribution in the 
sparse grid method theory, as we see the need in accu-
rately counting the number of function calls. The new 
algorithm is also clearly structured in two phases: a 
global probing phase and a local convergence phase. We 
equip a new derivative free robust line search method for 
the algorithm as well. Computational experiments clearly 
shows that the new heuristic algorithm is accurate and 
efficient. The result of benchmarking against state-of-art 
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derivative free optimization methods, including Pattern 
Search, Global Search, Multi-start, Simulated Annealing 
and Genetic algorithms, is favorable. 

The new algorithm is intended to solve practical prob-
lems, where derivative information is not available and 
function evaluation is expensive. For these problems, 
priority is given to generate a high quality near-optimal 
solutions within computing budget. On the other hand, 
we realize that many of these problems also involve in-
teger decision variables, which is not handled by the 
current algorithm, hence it is a topic for our future re-
search. 
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