
American Journal of Computational Mathematics, 2013, 3, 16-26
http://dx.doi.org/10.4236/ajcm.2013.31003 Published Online March 2013 (http://www.scirp.org/journal/ajcm)

A Derivative-Free Optimization Algorithm Using
Sparse Grid Integration

Shengyuan Chen, Xiaogang Wang
Department of Mathematics and Statistics, York University, Toronto, Canada

Email: chensy@mathstat.yorku.ca, stevenw@mathstat.yorku.ca

Received October 2, 2012; revised November 12, 2012; accepted December 1, 2012

ABSTRACT

We present a new derivative-free optimization algorithm based on the sparse grid numerical integration. The algorithm
applies to a smooth nonlinear objective function where calculating its gradient is impossible and evaluating its value is
also very expensive. The new algorithm has: 1) a unique starting point strategy; 2) an effective global search heuristic;
and 3) consistent local convergence. These are achieved through a uniform use of sparse grid numerical integration.
Numerical experiment result indicates that the algorithm is accurate and efficient, and benchmarks favourably against
several state-of-art derivative free algorithms.

Keywords: Nonlinear Programming; Derivative Free Optimization; Sparse Grid Numerical Integration; Conditional

Moment

1. Introduction

Derivative-based methods can be very efficient and have
been widely used in solving optimization problems. In
many applications, however, the derivative of an object-
tive function might be unavailable, unreliable, or very
costly to compute. Many scientific and engineering op-
timization problems fall into this category [1]. For exam-
ple, in the helicopter rotor blade design problem [2], the
objective function can only be evaluated by very expen-
sive simulation. Similar problems include the nonlinear
optimization parameter tuning problem [3], medical im-
age registration [4], dynamic pricing [5], and community
groundwater problem [6]. Therefore, derivative-free me-
thods must be used in these situations. For these prob-
lems, not only the derivative information is not available,
the function evaluation could be inaccurate or noisy most
of times as well. Hence, an algorithm needs the capabil-
ity to generate robust searching directions without using
derivative and without overly relying on individual func-
tion evaluations.

There are several commonly used derivative-free algo-
rithms in the literature. The classical Nelder-Mead me-
thod [7] is based on simplicies and various operations
defined on these simplicies. The method evaluates the
objective function on a finite number of points, and de-
cides which operation to perform accordingly. The me-
thod is simple and able to follow the curvature of the
objective function. Pattern search or directional direct
search algorithm [8,9] defines a set of directions before-

hand, such as positive spanning sets, positive bases or
just the coordinates in its simplest form, and tests one
candidate point on each of these directions in a so called
polling step. An optional search step could proceed the
polling step to accelerate the algorithm opportunistically,
in which the algorithm makes use of some known prop-
erties, heuristics, or a surrogate model on a finite number
of points. The implicit-filtering method [10] is a line
search method based on the simplex gradient, which is
computed based on the function values at the vertices of
a simplex set. DFO method [11], Powell’s method [12]
and Wedge method [13] are essentially trust-region
methods; however, additional steps are executed since in
the derivative free optimization a quadratic or linear in-
terpolating or regression model does not necessarily im-
prove when the trust-region radius is reduced. For ex-
treme problems where the mathematical structure is
complex or poorly understood, other heuristic optimiza-
tion algorithms such as genetic algorithms, simulated
annealing, artificial neural networks, tabu-search and
particle swamp are also used as methods of a last resort.
An excellent discussion of several commonly used de-
rivative-free optimization methods can be found in [14].

We point out that all these derivative-free algorithms
are local optimizer, i.e., only convergence to a local op-
timal point is guaranteed. However, on the other hand, all
these algorithms are highly capable of filtering out noises,
escape from inferior local optimums, and often return a
fairly satisfactory solution. These widely used and suc-
cessful designs clearly convey a common principle: for

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 17

cases like the helicopter rotor blade design problem [2],
where each function evaluation is an expensive simula-
tion and is known to be noisy, generating robust and effi-
cient searching directions has the highest priority. It does
not mean that one can not conduct derivative-free global
optimization. As a matter of fact, many derivative-free
global optimization algorithms have been developed with
different targeted application areas, for example, the par-
ticle swarm method, Mesh adaptive direct search (MADS)
[15], DIviding RETangles (DIRECT) [16], and Multileve
coordinate search (MCS) [17]. More interestingly, some
of the above local derivative-free algorithms have been
extended to solve global optimization problems, for
example, the global Direct Search, see Section 13.3 [14]
and references therein. It appears that four categories of
algorithms, with or without derivative, seeking local or
global optimums, all find their suitable application ar-
eas.

In this paper, our goal is to generate high-quality local
optimal solutions efficiently. Hence in this paper, we are
concerned with the following optimization problem:

 max ,
x B

f x


 (1)

where   2: df C    , but is expensive to evaluate.
In many applications, such as the helicopter rotor blade
design problem [2],  

f  nown to be smooth, but
has no analytical form, and one can only rely on expen-
sive simulations or experiments to evaluate function val-
ues. The measurements could be inaccurate or noisy
though the function

is

 

 k

f 

 

 itself is known to be smooth,
see [14]. Furthermore, derivatives or reliable approxima-
tion are not available. f  could have many local op-
timums as well. The decision variable x is subject to a
box constraint x B . For example, in the parameter
tubing problem [3], B is a theoretically or empirically
reasonable range of the parameters to be tuned.

Our research is motivated by Wang et al. [18], where
the authors proposed a novel derivative free global opti-
mization method. In this iterative method, the integral of
the objective function over a local neighbourhood of
each iterate is computed, which further determines the
next iterate. The authors showed that if the neighbour-
hood size could be chosen properly at each iterate, the
algorithm converges to a global optimum. The authors
demonstrated a few examples, where the algorithm suc-
cessfully found global optimums while several other
commonly used derivative-free methods and even deri-
vative-based methods failed.

We have a different view of the integration based de-
rivative free optimization method. First of all, we use the
integration to define the searching directions, rather than
the iterates as did in [18]. We found that it is more effi-
cient to use the integration to define the search direction.
The integration based searching direction uses informa-

tion from multiple function evaluations at strategically
located points, which avoids unduly relying on the gra-
dient information at the current iterate. This is especially
important since the function evaluations are noisy, espe-
cially when obtained from simulation or physical meas-
urements, hence the local gradient, even if available or
can be approximated, has poor quality. Secondly, our
focus is on generating high quality local optimum effi-
ciently, rather than seeking a global optimum. This mod-
erate goal actually enable us to search more effectively.
Finding global optimum and proving its global optimality
is known to be hard. Though [18] shows the existence of
a series of neighbourhood sizes such that their algorithm
can find a global optimum, the exact neighbourhood size
is not given in theory, nor specified algorithmically. In
this paper, we design a two stage searching strategy,
which aims at achieving a good balance of global cover-
age and local optimality.

First, we divide the solution seeking process into two
stages: the global probing stage and the local conver-
gence stage. In the global probing stage, the algorithm
search for high region of the feasible domain for a
maximization problem; while in the local convergence
stage, the algorithm converges to peaks of the high re-
gion found in the first stage. The first stage steps are
typically large; and the second stage steps are small. We
update the neighbourhood size differently in the two
stages, which suites the different purposes of the two
stages well.

Accordingly, we prove that in the local convergence
stage the algorithm always generates locally improving
directions and converges; while in the global probing
stage, we are able to show that the algorithm can gener-
ate searching directions towards a global optimum but
against a local attraction for the mixture model functions
commonly appeared in statistics optimization.

We not only develop new theories to support our new
perspective, but also design critical algorithmic compo-
nents accordingly. Our new line search method is a
greedy algorithm which appears to have good numerical
performance. In the contrast, [18] does not use line
search at all. Our strategy to select the starting point is
also new. It is well-known that the starting point is im-
portant for nonlinear optimization problem. However,
most nonlinear optimization algorithms, including [18],
rely on user defined starting points or starting from zero
mechanically. We provides an innovative approach here:
we start from the center of gravity of the whole feasible
region, which is again computed from integration with
function values as weights. Hence the starting point is
close to the global optimum.

Secondly, we use the modern sparse grid numerical
integration method (Smolyak 1960) in computing the
local integration. The sparse grid method is highly effi-

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 18

cient for functions with moderate dimensions, and has
been widely used in engineering, finance, atmosphere
studies, see [19] the reference therein. Since the function
evaluation is expensive for our problems, we need a full
control of total function calls in our algorithm: not only
in the searching process, but also in the numerical inte-
gration. We derive a new closed form formula determin-
ing exactly how many point evaluations are needed in the
sparse grid method. To the best of our knowledge, only
the order of number of points has been shown in the
sparse grid literature. Based on our new formula, we
clearly show that the number of point evaluations needed
in the numerical integration increases with the dimension
linearly.

The paper is organized as follows. In Section 2.1, we
show that the searching direction generated from local
integration is always an improving direction; on the other
hand, by simply enlarging the integration area, the algo-
rithm can generate a searching direction towards toward
a area with higher average function value. We also show
that for a class of functions, the algorithm could find a
global optimal solution. Based on these ideas, we design
a new algorithm and present it in Section 5. In Section 4,
we briefly review the sparse grid method and derive a
new formula count its function calls. In Section 6, we test
the new algorithm and benchmark against state-of-art
derivative free algorithms. Conclusion and discussion are
provided in Section 7.

2. Several Theoretical Results

We first prove several theoretical results which moti-
vated the new method we will present in the later Section
5. These results cover important aspects of a nonlinear
derivative free algorithm, including our choice of the
searching direction; starting point strategy; and a new
closed-form formula which we developed to calculate the
number of function calls in the sparse grid numerical
integration at each iteration.

Searching Direction and Local Convergence

For a x B


 and such that 0r 
  : ,xB r x r x Br  

y x
, we define the search direction

to be , where

 
 

 
 1

d , and d .
x xB r B r

y tf t t f t


   t (2)

We also call y the local center of gravity of  xB r in
this paper. We prove that y x is a locally improving
direction in the next Theorem.

Theorem 2.1 The searching direction satisfies y x

   
 

 1.5 20, 1.5 max
x

T

t B r
y x f x r d f t



      


Especially, for a quadratic   1

2
T Tf x c x x Qx  , we

have

   
2

1.52
, 1.5

12

d
r

y x f t r d Q



     .

Proof. Let , and by definition of the
local center of gravity,

 : ,
n

uB r r 

   
 

   
 

 
 

d

d

d d

d

d
.

d

u

u

u u

u

u

u

B

B

B B

B

B

B

x u f x u u
y

f x u u

x f x u u uf x u u

f x u u

uf x u u
x

f x u u

 




  





 






 





 (3)

Hence

   
   

 
d

d
u

u

T

T B

B

f x uf x u u
y x f x

f x u u

 
  






 (4)

Since  f   ,   0
uB
f x u  , and the sign of

 only depends on  Ty x   f x    d
uB

T f x f x u 
 duf x u u

u.

In the following we first study . The
uB

second Taylor expansion of  f  at x for sufficiently
small u is

      1
.

2
T T

uf x u f x u f x u H u    

We note that  2:u H f x u  
:

 may change with u.
For brevity, we also define  g f  x .

 

 

 

  2

d

1
d

2

d d

1 1
2 d ,

12 2

u

u

u u u

u

B

T T
uB

T T
uB B B

d T
uB

uf x u u

u f x u g u H u u

df x u u g uu u uu H u u

r g uu H u u




    
 

  

 





  



 (5)

where the last equality used and 0
u

d

B
u   R

  21
d 2

12u

r r dT
i j dB r r ij

uu u u u r I


 
       ,

since d d 0,
r r

i j i jr r
u u u u i j

 
   ,

2 3 31 2
r




d d
3 3

r

i i i ir
r

u u u u r




  , and   22 1
d d 2

12u

d

i i iB
u u u r

 .

dI is the d d identity matrix.

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 19

For quadratic  f  , uH Q , hence

,

1
d

2u u

T
u kj i k jB B

k j i

uu H u u Q u u u
 

  
 
  0,

since for all possible i, k, j com- d d d 0
u

i k j i k jB
u u u u u u 

2binations. Since f C , a maximum of  2 f t ,
 for all x in B exists. Hence  xt B r

 

 

 

     

   

   

2

2 3

2 3

22 3

2

d

1
2 d

12
1

2 d
12
1

2 max ma
12
1 1

2 2
12 8
1

2 3 .
12

u

u
x

B

n T T
uBu

d

uBu

d

uB

d d

d

g uf x u u

d g g uu H u u

r g g u H u

r g g u H

r g H r g

g r g H r

 





 

 

 

 

 









T

 (6)

Applying this result into (4),

   
   

 

21
2 3

12 0.

u

d

T

B

g r g H r
y x f x

f x u

 
   



when  11

3
r H f x


  . □

Theorem 2.1 shows that the algorithm always generate
an improving direction. Furthermore, the theorem shows
that for a quadratic objective function, the integration
based search direction is exactly the steepest descent
direction. Though the analytical form of the objective
function is unknown, our closed form ex-
pression for quadratic case clearly indicates the capabil-
ity of interation based searching direction, especially it is
well known that sequential quadratic approximations of
C2 function can be effective, which sheds lights on future
research.

  2f  

With the aboved establied improving feasible direction,
we can directly apply the well established idea of feasible
direction algorithm Theorem 10.2.7 [20]. The idea is
fairly simple: given a feasible point kx , an improving
feasible direction k satisfying (1) kd kx d is feasi-
ble, and (2) the objective value is better at k kx d for
sufficiently small  , a one dimensional optimization
problem is solved to determine how far to proceed along

k , which leads to a new point d 1kx  , and the process is
repeated.

Theorem 2.2 Let kx be feasible, k k ,
obtained from (2), 1k k k

d y x 


y
x x y   x , where  is

optimal for the one dimensional optimization problem
 min ,k k . . k kf x d  s t x d B   . Then the sequence

 kx converges to a KKT point.
Proof. See Theorem 10.2.7 [20]. □
While our convergence analysis can take benefit of the

well established optimization theories; in the contrast, the
convergence analysis of the directional direct search al-
gorithm [8,9] relies on searching a predefined set of di-
rections, which spans the searching space.

Our next example shows that when r is large, the
searching direction generated by the algorithm is not
necessary a locally improving direction. However, as the
examples shows, it points to the global optimum.

Example 2.1 Let   2
0 1 2 3: 3f x a a x a x a x    . Its

second order Taylor expansion is   21

2 uf x gu H u  ,

2
1 2 32 3g a a x a x   , and  2 3 32 3uH a a x a u   . It

can be shown that

 
 

3 2
3

1 1
2

3 5

B

gr g a r
g y x

f x u

  
 


 (7)

We are not following the steps of (6) here since uH

is known explicitly. For simplicity, let 3

1

3
a   , 2 1a  ,

1 0a  , 0 4a  . With this choice, on   0f x   2,4 .
 2 22g x x x x     , hence for 0g   0, 2x .

For x in this range 2 21
3

3

5 5
g a r r   leads to conclu-

sion 5r  . The bound is sharp as we see that with
1x  the gradient is 1. If we choose within the

bound, the center of gravity for this problem is
2r 

 

 

2 3

1,3

2 3

1,3

1
3

1.04,
1
3

x x x
y

x x





  
  







which is bigger than x = 1 and aligned with the gradient g.
However, if we choose r = 3, then a similar calculation
shows that the center of gravity on  2, 4 is 0.85,
which points to region with larger objective values than
the local maximum.

It is not a surprise that when r is large, the algorithm is
able to generate searching directions towards the global
optimum, since more information of the function is used.
In the contrast, a gradient only reflects the local structure
of the function. This observation leads to our develop-
ment of a new heuristic. We use large r at beginning of
the algorithm with an intention to explore the overall
structure of the objective function. This global probing
phase ends when successive iterates are close enough to
each other, which implies that two iterates are in the
same hump. In the next phase, we would like the algo-
rithm to find the maximum of this hump, hence we use a
very small r and fast update to achieve the local conver-
gence.

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 20

3. Starting Point

We know that the starting point is very important for a
nonlinear optimization problem. We propose to use the
center of gravity of  f  on B as the starting point. By
its construction, the center of gravity tends to locate in a
high valued neighbourhood, hence provides an effective
starting point. In the following theorem, we show that
this simple heuristic starting point strategy can always
lead to a global optimum for the mixture model in statis-
tics under some assumptions. This strategy is new and
seems effective in our numerical experiments.

Theorem 3.1 Consider a statistical mixture model

     1 1 2 2 ,f x p f x p f x  (8)

where    1 2,f f  are density functions,  1 2, 0,p p 
p p

1 ,

1 2 . Without loss of generality, assume 1 2 .
Assume that the global optimum

1p p
x is unique and

satisfies . Define  f x 0

  1arg max | , 0, 1, ,ix

0 x N f x i n          ,

where    : :
x

N x x x 
   . If  1 x

N 0  and

0
1

2
1 2

,
x

p
 

 

 



 (9)

where  1 1 dxf x x   and  2 2 dxf x x   , then the
algorithm converges to the global optimum if started
from  dx xf x x  .

Proof. Observe that

  1 1 2 2dx xf x x p p .    (10)

We then have

1 1

1 1 2 2 1 1

2 1 2 1

0
1 1

0.

x x x x

p p x

p x

x x

 

   

  

  



 





 

    

    

   

    



This implies that  0

x
x N  , hence the local im-

proving directions leads to x if x x . □
We remark that the above result is applicable to a

broader functional class with proper normalization. For a
composite function

     1 2 ,g x g x g x  (11)

where are non-constant and nonnegative
functions, it can be normalized as

   1 2,g g 

 
 

 
 

 
 

 
 

 
 

1 21

1

d d
,

d d d d

g x x g x xg x g x g x

which is precisely the mixture form
     1 1 2 2f x p f x p f x  with

     d ,f x g x g x x 

   1 d d , 1ip g x x g x x i   , 2,

     d , 1, 2.i i if x g x g x x i 

The condition, 2 implies that 1p p
   d1 2 .dg x x g x x This implies that  1g  makes

larger contribution to the total integration than  2g  .

4. Sparse Grid Numerical Integration

Since the algorithm relies on the numerical integration to
calculate the local center of a gravity at each step and the
starting point, its accuracy and efficiency is crucial to the
success of our algorithm. We integrate the modern sparse
grid method [21] into our algorithm. In this section, we
first briefly introduce the sparse grid method. Then we
present our result on this aspect: a new closed form for-
mula for the number of function calls used in the sparse
grid numerical integration. The complexity of sparse grid
method itself has been studied by various authors, and
the order of complexity is shown in [19]. Our result
makes it explicit how many function calls are used ex-
actly in the integration step in our algorithm. Since the
sparse grid method itself is not our contribution, our in-
troduction is terse for the purpose of explaining the nec-
essary notations used in our derivation of the closed form
formula. For details of the sparse grid method, we refer
our readers to [22].

Numerical integration for univariate function (quadra-
ture) uses the weighted sum of function values as the
approximation to the integration:

   
1

d
K

i iB
i

.f t t w f t


  (12)

A central problem in quadrature is to decide the
weights i and grid points it . In this sense, Gauss-
Legender quadrature uses an optimal solution to the fol-
lowing optimization problem:

w

   
1 2 1
1

, , 1, ,

min sup d .
K K

K

K

i iBt t f iw w

f t t w f t
 





 (13)

Clearly the model minimizes the worst case approxi-
mation error for any univariate polynomial function with
order up to 2K 1 . Different univariate quadrature rules
have been derived.

2

2 dg x x g x x g x x g x x g x x
  

    

Extension of univariate quadrature to multivariate
quadrature is difficult due to the curse of dimensionality.
Among various approaches, the sparse grid method uses
an interesting tensor product of univariate quadratures. In
the following we first outline necessary details of this

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 21

tensor product, on which our analysis of number of func-
tion evaluations is based on.

We define an operator 1
jQ :

     1 ,
j

j
t U

Q f w t f t


  (14)

where jU
 

 specifies the set of evaluation points, and
 provides the corresponding weights. We

note that for Gauss-Legender univariate quadrature, the
cardinalities for . We define a difference opera-
tor as:

: jw U

jU  j

    1 1 1
1:j j jf Q Q f  

 1
0 : 0.f 

Clearly the difference operator 1
j is defined on the

point set 1: j jU U U   , and it could also be represented
as a weighted sum of function values:

         

   
1

1

,

j j

j

j
t U t U

t U

f w t f t w t f t

w t f t

 



  



 



where the weight function : jw U  could be calcu-
lated mechanically. We define the tensor product of dif-
ference operator as

  
     

1

1
1 1

1 1

1 1, , .

d

d
j d jd

j j

j j d
t U t U

f

w t w t f t t
 

  

  


   d

 (15)

The sparse grid approach (Smolyak 1960) extends the
univariate quadrature 1

jQ to the multivariate quadrature
rule  , A q d (via the intermediate difference operator

1
j) as for : 2d

      
1

1 1

d :
d

d
q jB

j q d

.jf t t A f f
  

      (16)

d
qA has no approximation error [23] for polynomials

in the space
1 2 dj j j , ,

if each univariate quadrature rule
    1 1dj j q d     

1
jQ has no approxi-

mation error for the univariate polynomial space j

2 1d

. For
smooth functions, not necessarily polynomial, the sparse
grid method also achieves high accuracy [19]. Also see
[22] for spare grid implementation details. In this paper,
the most relevant question is how many function calls are
used in a sparse grid numerical integration. Though the
order of magnitude of this number is known, see Lemma
3.6 in [21] and [22], we derive a new and exact formula.
The exact formula shows that the number of function
calls in computing the local center of gravity is  .

Proposition 4.1 Using the Gauss-Legender sparse
grid rule 2

dA , Subroutine 2 makes function
calls.

2n d 1

Proof: Applying Theorem 4.1 for the special case

2q  .
Theorem 4.1 The Gauss-Legender sparse grid rule
d
qA uses  ,N q d function calls, where

 
2 1

, , for
2

q d
N q d q d

d

  
  
 

 (17)

Furthermore,

   
2 1

1, , , for 1
2 1

q d
N q d N q d q d

d

  
     

 (18)

Proof. For the Gauss-Legender univariate rule 1
jQ , the

number of points is 1
jU j , and j i .

Furthermore, [23] shows that (combination rule):
U U j  i 

   

  

1

1

1

1

1

1 1

1

1

1
d

q d kd
q

q j q d

j j

A f

d
Q Q

k q

  

   

 

 
    



 f

 (19)

Hence for , 2q d d  ,

 
1 2

1 2

1 21 1 1
1

, .
d

d

dj j j
k k k q d

N q d k k k
  

     

  


  (20)

1) The closed formula (17) apparently holds for 2d 
and q d since  1, 2 1N  , and

 
1 2

1 2

1 21 1
3

2, 2 5
j j
j j

N j
 
 

j 

2) Assume the formula (17) is valid for d and q d .
We now consider the case for . 1d 

 

 
 

1 1

1 1

1
1

1 1

1

1 2 1

1 1

1 1
1

1
1

1

, 1

2

2

2 1 1
.

2 1

d

d

d
d

d d

d

n nj j
j j q n

q

d nj j
j

j j q d j

q
n

d
j

N q d j j j j

j j

q j d
j

d

q d

d











     




    






 

 
  
 
 

  
  

 
   

   

2j j

 

 







 

 

The last step

1

1 1

1

2 1 2

2 2 1 2
d

q
d

j

q d j q d j

d d






      
      
 d 




 (21)

can be proved by the following equivalence: selections of
2 2d  balls out of 2q d 1  identical white balls is
equivalent to: choose one ball from the first 1dj  balls

and there are ways; choose the 1

1
dj  


 

  1 1dj t  h

ball as the second ball and color it red; choose 2d balls

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 22

from the rest and there are ways. Total 12

2
dq d j

d
 


 




number of balls before the red could be one to q. The
maximal number is q since otherwise there is less than 2d
balls behind the red.

3) Hence the formula (17) is valid by mathematical
induction.

The second half of the theorem follows this identity

1 1
.

1

n n n

j j j

      
           

 □

5. Algorithm

Algorithm 1 Sparse Grid Derivative Free Algorithm
(SGDF)

1: global probing phase:
2: , see Subroutine 2  z cg B

0.93:  
4: repeat
5: x z
6:    , . . 2

d
r argmax r s t f x r  


 ,
,x r x r B  



7: ,B x r x r  

 

8: y cg B , see Subroutine 2
9: linesearch along y − x to get z, see Subroutine 3
10: until 1x z  
11: local convergent phase:
12: repeat
13: 0.01 
14: steps (4)-(10)
15: until 2 
As shown in Algorithm 1, it has two phases: the global

probing phase and the convergent phase. The two phases
differs only in the parameter k , and are identical oth-
erwise. In the global probing phase, con-
stantly; while in the convergent phase

0.9k 
1 0.0k 1

The subroutine 2 computes the center of gravity (cg),
which calls the sparse grid algorithm in its first step to
generate n sparse grid points as briefly introduced in sec-
tion 4. In our numerical implementation, we called the
public domain Matlab package Sparse Grid Toolbox by
Andreas Klimke. We note that each numerical integra-
tion uses only 2d 1 function calls as proved in the
Proposition 4.1. In the subroutine 2, the volume of the
domain B is computed in the step 3 and is used in lieu
in the following step 4. We also point out that function
evaluations at grid points are computed in step (2) only
once. These values are stored and used later in steps (3)
and (4).

Subroutine 2: Center of gravity cg B 
1: Generate n sparse grid points ix of the given rec-

tangle B , see Section 4
2: Compute     , i 1, , , 1,i i i i

d ,f x x f x x i n 

 n iV w f x
x f

3: Compute the volume
1 ii

4: Compute  1

1
, 1, ,

n i i
j i ji

cg w x f x j d
V 

  

In the subroutine 3 we equip a special derivative free
line search for SGDF enhance its numerical efficiency.
The idea is to move along the line as much
as possible. We observe that it is often too conservative
to move to

 cg B x 

 cg B only; instead, search along the line
often brings huge performance gain. The line search is
greedy: it moves forward by a fixed stepsize until the
function value is worse or it hits the boundary; then it
bisects the stepsize and retreats a stepsize until it finds
the first feasible and improving point or until the stepsize
is less than 3 . 1 , 2 , 3 are all set at 1e 8 level.

Subroutine 3: Derivative free line search
Ensure:   , , x y f x f  y ;

k   .
Both phases share same iteration steps (4)-(10), which
are essentially numerical implementation of (2) with line
search for additional efficiency. In the global phasing
phase, the algorithm uses 90% terrain of the feasible re-
gion to determine the search direction. This provides
great opportunity for the algorithm to escape from local
optimum traps. When two successive iterates ix and

1ix  are very close, we switch to the convergent phase,
where we exponentially decay  . By focusing on a less
portion of the terrain, the algorithm is able to advance to
a local optimum accurately. Details of one iteration is the
follows. We first approximate the radius for the given

k through mid-point quadrature rule in the step 6. The
new domain B is defined in the step 7. Step 8 com-
putes the center of gravity of the new domain B using
the subroutine 2. Step 9 conducts a linear search subrou-
tine 3 to accelerate the algorithm.

1: initialize   ; 1,d y x y x s y y     ;
2: while    f y f y 

,
 and is feasible do y

3: y y y y s  d   
4: end while
5: repeat
6: 2 ,s s y y s d    
7: until y is feasible and either    f y f y  or

3s 
8: return       , ,, ,max x y yarg f x f y f y

6. Numerical Tests

We compare SGDF with the state-of-art derivative free
algorithms, including Pattern Search or Direct Search
(with and without poll step) [24], Global Search [25],
Multi-start [26], Simulated Annealing and Genetic algo-
rithm [27]. These algorithms have mature industrial
strength implementations in MATLAB Global Optimiza-
tion Toolbox. We also implemented our new SGDF al-
gorithm in MATLAB and conducted comparative study.

We use their default settings for the solvers from the

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG 23

Matlab Global Optimization Toolbox. Pattern Search
Algorithm uses only poll step by default. However, it is
more efficient when coupled with a searching step.
Hence we compare with the Pattern Search algorithms
with and without the searching option. Both the Global
Search Solver and the Multistart Solver needs a local
solver. We followed the recommendation from Matlab
manual and set the Interior-Point-Method as local solver
for the Global Search, and the medium scale algorithmic
option for the Multistart.

In contrast to the SGDF deterministic starting point
strategy, all these derivative free algorithms rely on ran-
dom starting points or user inputs. Global Search uses a
scatter-search mechanism [26] for generating random
start points. MultiStart uses uniformly distributed start
points within bounds (default 10), or user-supplied start-
ing points. Global Search analyzes starting points and
rejects those points that are unlikely to improve the best
local minimum found so far. In the contrast, a MultiStart
solver runs the local solver from all feasible starting
points.

Since these algorithms use random starting points, a
single run result could be very poor or excellent. To get a
whole picture, we run each solver 26 times (arbitrarily
chosen) and use the median number of failures as a
measure of its accuracy measure. A run fails if its error
exceeds 5% in terms of the objective value:

true

true
error:

obj obj

obj

 
 (22)

We use the number of function calls as efficiency
measure. This is a convention in testing derivative free
algorithms since function evaluations are expensive for
typical derivative free optimization problems. On the
other side, for the purpose of constructing searching di-
rections, Newton and other high order methods spend a
significant amount of time on inverting matrix or solving
equations; while derivative free algorithms typically
don’t involve this overhead. Their expense in construct-
ing search directions can also be reasonably measured in
number of function evaluations. For SGDF, this expense
is on the numerical integration. For other derivative free
algorithms, this expense is also on point-wise evaluation
based interpolation, pseudo differentiation or simplex
derivatives. Again, due to the random starting strategy
employed by other derivative free algorithms, we use the
median number of function calls of their 26 runs as a
robust measure of their efficiency.

We use eight test functions [28]: Brianin, Six-Hump,
Goldstein Price, Hartman3, Hartman6, Shekel5, Shekel7,
and Shekel10. These functions have known optimal val-
ues and optimal solutions, and have been used widely for
testing purpose in research papers. For these functions,
their dimensions and known optimal values are tabulated

in the Table 1. We also show the optimal values from
SGDF side-by-side with the true optimal value in Table
1, which clearly shows that SGDF is capable of achiev-
ing high accurate results.

Table 2 shows number of failures for each algorithm
as a measure of accuracy. SGDF has no failure, which is
also achieved by MS. All other algorithms have difficulty
for high dimensional problems. Especially the genetic
algorithm and pattern search without polling option ex-
hibit high failure rates.The multi-start strategy (MS),
though simple, works very well. SGDF, on the other
hand, uses a more complicated strategy. It uses global
information of the objective function in the global prob-
ing phase, and generates searching directions pointing to
region with high objective values on average. This
searching heuristics is fundamentally different from the
local searching idea. Apparently, this innovative search-
ing heuristics can also be coupled with the simple multi-
start idea to enhance its success rate. However, multi-
start inherently increases the computation effort as seen
in the next table. Hence how to efficiently combine
strength from both methods is a subject of future re-
search.

Table 3 shows the median number of function calls
used by each algorithm as a measure of efficiency. It is
clear that SGDF uses much less function calls than multi-
start algorithm. A further calculation shows that SGDF
uses 65% less function calls than multi-start algorithm.
This is not a surprise since multi-start algorithm runs
from ten starting points so as to increase its chance of
hitting the global. Global Search also uses multiple start-
ing points, but it drops those unpromising ones sooner.
However, Global Search does not simply run local solver
from each starting point, it has a more complicated
strategies including basin radius estimation, two stage
search, and dynamic threshold, etc, which increases its
function calls significantly. Pattern Search with addi-
tional searching option is more efficient than Pattern

Table 1. Compare the true and SGDF optimal objective
values.

Function D objtrue objSGDF error

Brianin 2 0.398 0.398 0.00%

Four-Hump Camel 2 −1.032 −1.027 0.48%

Goldstein Price 2 3 3.083 2.77%

Hartman3 3 −3.863 −3.827 0.93%

Hartman6 6 −3.322 −3.318 0.12%

Shekel5 5 −10.153 −10.152 0.01%

Shekel7 7 −10.403 −10.359 0.42%

Shekel10 10 −10.536 −10.500 0.34%

Copyright © 2013 SciRes. AJCM

S. Y. CHEN, X. G. WANG

Copyright © 2013 SciRes. AJCM

24

Table 2. Median number of failures.

Function D SGDF GA SA PS PS* GS MS

Brianin 2 0 0 0 0 0 0 0

Four-Hump Camel 2 0 0 0 1 0 0 0

Goldstein Price 2 0 11 0 0 8 0 0

Hartman3 3 0 1 0 11 7 0 0

Hartman6 6 0 0 0 0 0 0 0

Shekel5 5 0 26 9 23 17 0 0

Shekel7 7 0 26 10 23 19 5 0

Shekel10 10 0 26 13 22 21 1 0

SGDF: sparse grid derivative free; GA: genetic; SA: simulated annealing; PS: pattern search (direct search); PS*: pattern search with
polling option on; GS: global search; MS: multi-start.

Table 3. Median number of function calls.

Function D SGDF GA SA PS PS* GS MS

Brianin 2 112 1040 1958.5 200 171.5 2331 319

Four-Hump Camel 2 143 1040 1812 200.5 200.5 2310 413

Goldstein Price 2 262 1040 1588 260 210.5 2184 807

Hartman3 3 103 1040 2512 468 316.5 4281 738

Hartman6 6 1069 1100 5785.5 1276 1196 6229.5 1819

Shekel5 5 372 1040 3555.5 583 467 3813 1406.5

Shekel7 7 688 1040 3078.5 581.5 458.5 4386.5 1472.5

Shekel10 10 583 1040 3154 605 435.5 3945 1479

SGDF: sparse grid derivative free; GA: genetic; SA: simulated annealing; PS: pattern search (direct search); PS*: pattern search with
polling option on; GS: global search; MS: multi-start.

Search with polling step only. Simulated Annealing and
Genetic algorithms apparently use more function calls.

Tables 2 and 3 together show that SGDF is both ac-
curate and efficient. Multi-start is accurate but slightly
more expensive. Global Search and Simulated Annealing
could be accurate at the expense of more than ten times
function calls as SGDF. The Pattern Search with or
without searching step is efficient, but could generate a
solution far away from optimum if started randomly.
Genetic algorithm has reported success for more compli-
cated biological system optimization but does not advan-
tage in this experiment.

It appears that the starting point strategy of SGDF is
effective. By using a single starting point, i.e., the global
center of gravity, SGDF is able to find solutions very
close to a global optimum for eight testing problems. In
the contrast, other algorithms use random starting points
have more or less fails, except for multi-start algorithm.
The multi-start algorithm uses ten starting points in each
of the twenty six runs. It is interesting to observe that for
this experiment there is always one good starting point
out of the ten.

7. Conclusions and Discussion

In this paper, we present a new integration based deriva-
tive-free optimization algorithm. The new idea of using
integration to generated searching direction has its ad-
vantages: we prove that when the integration area is
small, the generated direction is always an improving one;
we also demonstrate that by simply enlarging the integra-
tion area, the algorithm can make use of global informa-
tion, and generate a searching direction towards area with
high objective values on average. We also propose an
innovative starting point strategy based on integration.
We not only use the modern sparse grid method to im-
plement the integration, but also make contribution in the
sparse grid method theory, as we see the need in accu-
rately counting the number of function calls. The new
algorithm is also clearly structured in two phases: a
global probing phase and a local convergence phase. We
equip a new derivative free robust line search method for
the algorithm as well. Computational experiments clearly
shows that the new heuristic algorithm is accurate and
efficient. The result of benchmarking against state-of-art

S. Y. CHEN, X. G. WANG 25

derivative free optimization methods, including Pattern
Search, Global Search, Multi-start, Simulated Annealing
and Genetic algorithms, is favorable.

The new algorithm is intended to solve practical prob-
lems, where derivative information is not available and
function evaluation is expensive. For these problems,
priority is given to generate a high quality near-optimal
solutions within computing budget. On the other hand,
we realize that many of these problems also involve in-
teger decision variables, which is not handled by the
current algorithm, hence it is a topic for our future re-
search.

REFERENCES
[1] J. D. Pinter, “Global Optimization in Action,” Kluwer,

Dordrecht, 1996. doi:10.1007/978-1-4757-2502-5

[2] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. W. Moore
and D. B. Serafini, “Managing Surrogate Objectives to
Optimize a Helicopter Rotor Design: Further Experi-
ments,” Proceedings of 8th AIAA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St. Louis,
1998.

[3] C. Audet and D. Orban, “Finding Optimal Algorithmic
Parameters Using Derivative-Free Optimization,” SIAM
Journal on Optimization, Vol. 17, No. 3, 2006, pp. 642-
664.

[4] R. Oeuvary and M. Bierlaire, “A New Derivative-Free
Algorithm for the Medical Image Registration Problem,”
International Journal of Modelling and Simulation, Vol.
27, No. 2, 2007, pp. 115-124.

[5] T. Levina, Y. Levin, J. Mcgill and M. Nediak, “Dynamic
Pricing with Online Learning and Strategic Consumers:
An Application of the Aggregation Algorithm,” Opera-
tions Research, Vol. 57, No. 2, 2009, pp. 327-341.

[6] P. Mugunthan, C. A. Showmaker and R. G. Regis, “Com-
parison of Function Approximation, Heuristic and Deri-
vative-Based Methods for Automatic Calibration of Com-
putationally Expensive Groundwater Bioremediation Mod-
els,” Water Resources, Vol. 41, 2005.

[7] J. A. Neldder and R. Mead, “A Simplex Method for Fun-
ction Minimization,” The Computer Journal, Vol. 7, No.
4, 1965, pp. 308-313. doi:10.1093/comjnl/7.4.308

[8] C. Audet and J. E. dennis Jr., “Analysis of Generalized
Pattern Searches,” SIAM Journal on Optimization, Vol.
13, No. 3, 2003, pp. 889-903.
doi:10.1137/S1052623400378742

[9] T. G. Kolda, R. M. Lewis and V. Torczon, “Optimization
by Direct Search: New Perspectives on Some Classical
and Modern Methods,” SIAM Review, Vol. 45, No. 3, 2003,
pp. 385-482. doi:10.1137/S003614450242889

[10] T. A. Winslow, R. J. Trew, P. Gilmore and C. T. Kelley.
“Doping Profiles for Optimum Class B Performance of
GaAs MESFET Amplifiers,” Proceedings of the IEEE/
Cornell Conference on Advanced Concepts in High Speed
Devices and Circuits, Ithaca, 5-7 August 1991, pp. 188-
197.

[11] A. R. Conn, K. Scheinberg and P. L. Toint, “On the Con-
vergence of Derivative-Free Methods for Unconstrained
Optimization,” Approximation Theory and Optimization:
Tributes to M. J. D. Powell, Cambridge University Press,
Cambridge, 1997, pp. 83-108.

[12] M. J. D. Powell, “The NEWUOA Software for Uncon-
strained Optimization without Derivatives,” Technical
Report, DAMTP 2004/NA08, Department of Applied Ma-
thematics and Theoretical Physics, University of Cam-
bridge, Cambridge, 2004.

[13] M. Marazzi and J. Nocedal, “Wedge Trust Region Meth-
ods for Derivative Free Optimization,” Mathematical Pro-
gramming, Vol. 91, No. 2, 2002, pp. 289-305.
doi:10.1007/s101070100264

[14] A. R. Conn, K. Scheinberg and L. N. Vicent, “Introduc-
tion to Derivative-Free Optimization,” MOS-SIAM Se-
ries on Optimization, SIAM, Philadelphia, 2009.
doi:10.1137/1.9780898718768

[15] C. Audet and J. E. Dennis Jr., “Mesh Adaptive Direct
Search Algorithms for Constrained Optimization,” SIAM
Journal on Optimization, Vol. 17, No. 1, 2006, pp. 188-
217. doi:10.1137/040603371

[16] D. Jones, C. Perttunen and B. Stuckman, “Lipschitzian
Optimization without the Lipschitz Constant,” Journal of
Optimization Theory Applications, Vol. 79, No. 1, 1993,
pp. 157-181, doi:10.1007/BF00941892

[17] W. Huyer and A. Neumaier, “Global Optimization by
Multileve Coordinate Search,” Journal of Global Opti-
mization, Vol. 14, No. 4, 1999, pp. 331-355.
doi:10.1023/A:1008382309369

[18] X. Wang, D. Liang, X. Feng and L. Ye, “A Derivative-
Free Optimization Algorithm Based on Conditional Mo-
ments,” Journal of Mathematical Analysis and Applica-
tions, Vol. 331, No. 2, 2006, pp. 1337-1360.

[19] G. W. Wasilkowsi and H. Wozniakowski, “Explicit Cost
Bounds of Algorithms for Multivariate Tensor Product
problems,” Journal of Complexity, Vol. 11, No. 1, 1995,
pp. 1-56. doi:10.1006/jcom.1995.1001

[20] M. S. Bazarra, H. D. Sherali and C. M. Shetty, “Nonlin-
ear Programming: Theory and Algorithms,” 3rd Edition,
Wiley, John & Sons, Hoboken, 2006.

[21] H.-J. Bungartz and M. Griebel, “Sparse Grids,” Acta Nu-
merica, Vol. 13, 2004, pp. 147-269.

[22] T. Gerstner and M. Griebel, “Numerical Integration Using
Sparse Grid,” Numerical Algorithms, Vol. 18, 1998, pp.
209-232.

[23] F.-J. Delvos, “D-Variate Boolean Interpolation,” Journal
of Approximation Theory, Vol. 34, No. 2, 1982, pp. 99-
114. doi:10.1016/0021-9045(82)90085-5

[24] A. R. Conn, N. I. M. Gould and P. L. Toint, “Trust-Re-
gion Methods,” MOS-SIAM Series on Optimization, SIAM,
Philadelphia, 2000. doi:10.1137/1.9780898719857

[25] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly and
R. Marti, “Scatter Search and Local NLP Solvers: A Mul-
tistart Framework for Global Optimization,” INFORMS
Journal on Computing, Vol. 19, No. 3, 2007, pp. 328-340.
doi:10.1287/ijoc.1060.0175

[26] F. Glover, “A Template for Scatter Search and Path Re-

Copyright © 2013 SciRes. AJCM

http://dx.doi.org/10.1007/978-1-4757-2502-5
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1137/S1052623400378742
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1007/s101070100264
http://dx.doi.org/10.1137/1.9780898718768
http://dx.doi.org/10.1137/040603371
http://dx.doi.org/10.1007/BF00941892
http://dx.doi.org/10.1023/A:1008382309369
http://dx.doi.org/10.1006/jcom.1995.1001
http://dx.doi.org/10.1016/0021-9045(82)90085-5
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1287/ijoc.1060.0175

S. Y. CHEN, X. G. WANG

Copyright © 2013 SciRes. AJCM

26

linking,” In: J.-K. Hao, E. Lutton, E. Ronald, M. Schoe-
nauer and D.Snyers, Eds., Artificial Intelligence, Springer,
Berlin, Heidelberg, 1998, pp. 13-54.

[27] D. E. Goldberg, “Genetic Algorithms in Search,” Opti-
mization & Machine Learning, Addison-Wesley, Boston,

1989.

[28] L. C. W. Dixon and G. P. Szegö, “The Global Optimiza-
tion Problem: An Introduction,” Towards Global Opti-
misation 2, North-Holland Pub. Co, Amsterdam, 1978, pp.
1-15.

