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ABSTRACT

Now the six-axis force sensor (6-AFYS) is used widely, and as the core components, mechanical properties of its elastic
bodies are significant. With the increase of dynamic loads, studies on dynamic characteristics of the 6-AFS become
more and more important. In this paper, the study focuses on the free vibration problem of anovel 6-AFS. The research
approach is to decompose the sensor into several separate elastic bodies (four lamellas and upper and lower membranes)
and research these elastic bodies respectively. The free vibration of the lamella is studied based on Rayleigh-Ritz
method and the separation of variables. The analytical solutions of free vibration of the membranes are deduced ac-
cording to the nature of Bessel functions. Both the analytical results are simulated with MATLAB. Compared the simu-
lated diagrams with actual situations, they are very close. The mode shapes obtained play a major role in solving the

forced vibration of the sensor.
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1. Introduction

Scientists commit themselves to improving the level of
intelligent robots because they want to obtain an equip-
ment that can work as human beings. In order to have the
similar functions as human’s hand, the six-axis wrist
force sensor is developed which can measure force com-
ponents F_,F ,F, and moment components

M M, M. [12].

Over the years, static characteristics of multi-axis
force sensors have been further studied by domestic and
foreign scholars and many achievements have been
obtained. In 1990, Tsuneo Yoshikawa, a professor at
Kyoto University in Japan, deduced the relationship of
stress-strain and static-coupling of a cross-shape force
sensor under static load using Material Mechanics in
detail [3]. In 2010, K. Q. Liang et al. used Materia
Mechanics and finite element method to analyze the
relationship of stress-strain of a novel 6-AFS at the State
Key Laboratory of Sensor Technology, and determined
the cross-coupling through static calibration [4]. A. G.
Song, a professor at Southeast University, designed a
four-axis force sensor with low coupling and analyzed
the cross-coupling by using Material Mechanics and
finite element method [5]. To improve the accuracy of
these force sensors, researchers all over the world have
made unremitting efforts. Y. Haddab et al. a French
FEMTO-ST Institute used Kalman filtering technique to
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reduce the output noise [6]. The author of this paper used
matrix perturbation theory to discuss the relation between
the value of elements in cross-coupling matrix C and the
sensor’'s measuring accuracy. In this paper, an important
conclusion was drawn that when the increments of the
forces at six directions are the same, the measuring
accuracy is ideal, and this conclusion received high
attention from researchers at Ingtitute of Intelligent
Machines, Chinese Academy of Sciences (CAS) and was
seen as one of the bases for the design of multi-axis force
sensor (MAFS) [7]. Synthesizing the present research
achievements, researches about the static characteristics
of MAFS are indepth and sufficient. However, less
atention is paid to dynamic characteristics of these
sensors. AMTI Inc. is the main manufacturer of MAFS
internationally and only the upper limit frequency is
given in its instruction. Along with the increase of
situations that intelligent robots work under dynamic
loads, studies about vibration problem of the MAFS
become more and more important. So in this paper, the
dynamic problem is researched.

For the mechanical property of a 6-AFS, the focus
should be drawn to its sensing elements which are the
core components of the sensor. The lightweight thin plate
structures have been widely used as elastic bodies to
detect the force information, e.g., the four-dimensional
fingertip force sensor and the 6-AFS based on double
layer E-type membrane developed by Institute of In-
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telligent Machines, CAS, they al use thin plate as the
elastomer to detect the outside force information. Thus,
the knowledge of its free vibration is significant to the
structural designers [8]. The free vibration characteristic
of a elastic thin plate is the basis and has great
significance for the follow-up studies of the forced
vibration. Since the introduction of the small deflection
theory of plate bending, people are interested in vibration
problems of the elastic thin plate. The free vibration
analysis of rectangular and circular plates is important
for the design of plate-type structures. Consequently, a
great many of research reports have been conducted on
the dynamic behavior of such structures. Leissa offered
comprehensive sets of research data for the free vibration
of elastic thin plates based on Kirchhoff’'s thin plate
theory [9]. As closed form solutions for plate vibration
problems are known only for certain specia cases in

which at least a pair of opposite sidesis simply supported.

One has to use approximate method. As a result, a large
number of useful methods have been developed to get
solutions for some practical problems. The Rayleigh-Ritz
method is one of the most popular methods to obtain the
approximate solutions for the natural frequencies of
rectangular and annular plates [10-12]. Rayleigh-Ritz
method uses a linear combination of some assumed basic
functions to express the mode shape. Finite element
methods often divide the elastic body into a number of
smaller elements and approximate the solution by using
local piecewise continuous shape functions [13,14]. And
there are some other approximate methods including the
differentiad quadrature (DQ) method [15], the least
sguares techniques [16], the Meshless methods [17], and
the spline finite strip method by G. Akhras and W. Li
[18].

In the present paper, Rayleigh-Ritz method and the
separation of variables are used to obtain the natural
frequencies and the corresponding mode shapes of the
Kirchhoff rectangular plate. And according to the nature
of Bessal equations and Bessal functions, the analytical
expressions of natural frequencies and associated mode
shapes of the Kirchhoff circular plate are derived. At last,
the simulation diagrams of analytical results are obtained
by the software of MATLAB. The natura frequencies
and mode shapes deduced will be used to solve the
dynamic response of thin plates under harmonic force in
follow-up studies.

2. Differential Equation of Thin Plate
2.1. Governing Equations of Rectangular Plate

A vast literature exists about the free vibration of
rectangular plates. Consider a thin rectangular plate of
length a, width » and uniform thickness #, oriented
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so that its middle surface contains x and y axesof a
Cartesian coordinate system ( x,y,z ), a shown in
Figure 1. Based on Kirchhoff’ s thin plate theory, the free
vibration differential equation of thin platesis:
h 0*w(x,p,t)
VAT CRTN) Pl L ALV 1
W)+ &)
where w is the transverse deflection; V* is the
differential operator in Cartesian coordinates (i.e.,
V*=V3V?,

V2 =0*fox® +0%[ey? ), D = ER*[12(1- p?),

is the bending rigidity; E is Young's modulus, y is
Poisson’'s ratio; p is mass density per unit volume; ¢
is the time. It is well-known that the free vibration of an
elastic linear system is harmonic, therefore, the deflec-
tion of free vibration of the thin plate can be assumed to
be:

w(x,y.0)=>(4, cosm,t+B, sinw,t W, (x,y), (2)

m=1

where o, is the natural frequency, W, is the asso-
ciated mode shape, A4,,B,, depend oninitial conditions.
Considering one solution with the general form:

w=(Acoswt+Bsinwt)W (x,y), ©)

then it is possible to obtain the following equation in
terms of spatia variables only:

2

VAW(x,y)— phe

W(x,y)zO. 4

This equation is a two-dimensional partial differential
equation, and the exact solution is limited to vibration
problems with simple shape, load and boundary con-
ditions. There are no exact solutions for natura fre-
guencies and associated mode shapes of the transverse
vibrations except plates with four edges or one opposite
edges simply supported. For the case of complex shape,
load or boundary conditions, approximate method must
be used, such as lumped mass method, finite element
method and assumed mode method. In this paper,
Rayleigh-Ritz method is adopted [19].

Figure 1. The rectangular plate.
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2.2. Rayleigh-Ritz Method

Rayleigh-Ritz method is a semi-analytical method and
widely used in solving free vibration problems of the thin
plate. For this method, the vibration mode shape is
expressed in terms of the plate characteristic functions
as.

M N
W(xy)= Zlfiﬁm,@m (x), (v)- ©)
where @, (x) and @, (y) are polynomial functions
depending upon the boundary conditions of the plate,
p, istheunknown parameter that need to be found.
The procedure of free vibration doesn’t involve any
outside force, and the expressions for the maximum
strain and kinetic energy respectively are:

Vs,max
D b2 ow  (owY (6)
E/c,max :”.%ph(aﬁ_j}j dXdy

i (7)
=2 ([ ph(W ) cxd
S 1P by
The principle of minimum potential energy is that for
the constraint of boundary conditions, the potential en-
ergy corresponding to the exact solution is less than any

other possible potential energy. Then the variation of
potential energy functional should be zero, namely,

M =5V, e =T ) = 0-

Minimization of the difference between 7V, . and

T, . With respect to each of the coefficient 4, leads
to:
i(chax_E‘kmax):O' (8)
B ™ '

where m=12,---M and n=12,---N .

From Equation (8), the M xN simultaneous linear
homogeneous equations with the unknown coefficients
p,, areobtained. These linear equations can be solved
as an eigenproblem. Hence, it is possible to estimate the
natural frequencies and mode shapes of thin plate.

2.3. Governing Equations of Circular Thin Plate

The vibration of an isotropic circular plate with constant
thickness is well documented. The motion equation of a
circular thin plate is similar to that of rectangular thin
plate. The only difference is the conversion from Carte-
sian coordinates to polar coordinates. In polar coordi-
nates, the differential equation of free vibration of athin
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plateis:

h 62w(r,;0,t)
Viw(r )+ 22, 9
w(row) D ot? ®
where V* is the differential operator in polar coordi-
nates,
VAv?
(o ,10 188 ) 1o 1)
or* ror r*op’ \or* ror r?og°

Defining a solution as Equation (3) and 1* = phw® /D,
and inserting them into Equation (9), the equation be-
comes:

DV*W (r,0)= AW (r,0)=0. (20
The solution of Equation (10) can be written as the

sum of two distinct solutions, W (r,@)=W,+W, ,
where,

VW, + AW, =0,V W, - A*W,=0.  (11)

Use the separation of variables and assume the mode
shape as followings:

Wy (r,@) =R (r)€" . W,(r,p)=R,(r)€" . (12)

Inserting Equation (12) into Equation (11) respectively,
one obtains:

d’R, 1dR, (., n°
——+| A"——|R, =0, 13
dr? +r dr +( P (13
d’R, 1dR, (., n®
—=—|A"+— |R,=0. 14
dr? +r dr +r2 2 (14

These two are specia equations which are summed up
in the study of some physical problems. The general so-
lution of Equation (13) exists in terms of Bessdl’s func-
tionswith constants 4 and B:

R (r)=A4J,(An)+BY,(An), (15)

here J,(Ar) and Y,(Ar) are, respectively, the first
and second category n-order Bessdl functions. And the
general solution of Equation (14) can be expressed with
the linear combination of /,(Ar) and K, (Ar) with
constants ¢ and D:

R,(r)=CI,(An)+ DK, (An), (16)
here 1,(Ar) and K, (Ar) are the first and second
category n-order Bessal functions of imaginary argument.

Above al, the complete solution for displacement on the

surface of the circular plate is described as following [20]:
w(r.p.t)=[CLJ, (Ar)+C2Y, (Ar)+C3I, (Ar) 7
+CAK, (Ar)]e"e” '
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3. Free Vibration of 6-AFS’s Elastic Body

The 6-AFS studied in this paper is shown in Figure 2.
The sensor consists of the base frame 1, lower E-type
membrane 2, central solid cylinder 3, upper E-type mem-
brane 4, middle force-transmitting loop 5, four lamellas 6
and upper force-transmitting loop 7. The base frame
serving as arigid support connects with the lower adapter
by bolts. The lower and upper E-type membranes are
connected by the cylinder. The middle force-transmitting
loop links the upper E-type membrane and four lamellas.
The upper force-transmitting loop connects with the upper
adapter. For this sensor, components 2, 4 and 6 are elastic
elements, and components 1, 3, 5, 7 seen as rigid bodies.
The upper E-type membrane is used to detect tangential
moments (M, M), and the lower E-type membrane is
used to sense the normal force (£, ) and both tangential
forces (F,,F, ). The four lamellas are responsive to the
normal moment (/). For the structure and material pa-
rameters of the sensor, please refer to Table 1 and Table
2.

During the analysis, the boundary of the rec-
tangular thin plate is seen as one opposite edges
clamped and the others free, as shown in Figure 3.
The boundary of the upper and lower membranes
are both viewed as the inner and outside edges
clamped, as shown in Figure 4.

z

Figure 2. Structure of the six-axis force sensor.

Table 1. Structure parameters of the sensor [m].

External  Internal

diameter  diameter Length ~ Width  Thickness
Upper 01 0015 - - -
membrane
Lower 01 0.015 - - -
membrane
Lamella - - 0.03 0.01 0.002
Over sensor 0.18 - - - 0.08
Table 2. Parameters of LY12.
Material E [Pa] G[Pa] u p [kg/m?
LY12 72%x10°  27x10% 0.33 2.78 x 10°
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Figure 3. Schematic diagram of the lamella.

Figure 4. Schematic diagram of the membrane.

3.1. Free Vibration of Rectangular Plate

Assume that the basic function for mode shape is ex-
pressed as the following form:

W (x,y)=0,(x)®,(y), (18)
where: @, (x)=sin(nx/a)sin(mnx/a), m=12,3--,
©(1)=1;0,() =1-29/p:

®,(y)=coshA,y+cosid,y—z, (sinhA,y+sind,y),
n=2.3,--, inwhich:

2, =(2n+1)m/2b ;

z, =(coshA,b—cosA,b)/(sinhA,b—sinA,b),
n=23:.

In this paper, let m=1,2,3 and n=0,1,2,3 to cal-
culate the natural frequencies and corresponding mode
shapes of the plate. The forms of these basic functions
are list in Table 3. Then the mode shape of the thin
plate can be expressed as a linear combination of these
12 basic functions as follow:

3 3
W(x.y)=2 2 Bu®, ()0, (y). (19

n=0m=1
Insertion of Equation (19) into Equations (6) and (7)
leadsto V, ,and E, . . According to Equation (8),
a set of 12 simultaneous linear homogeneous equations
with B, B, B @ the unknown parameters are
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obtained. Because the mode shape is existent, the de-
terminant of the obtained equations must be zero and
then get the natural frequency equation. Due to the
huge computation, the software MATLAB is adopted
to help calculate natural frequencies and mode shapes.
In the present paper, the lowest six frequencies and
mode shapes are obtained as shown in Table 4. The
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[ J,(4a)  Y,(la) I,(2a) K,(Za) ]
Yo (ta) Se(ia) S(a) () 212
J,(Ab) Y, (2b) I,(Ab) K, (4b) | C3|(2D)
c4
) ) () ()
=0

simulation diagrams of mode shapes are shown in
Figure S.

3.2. Free Vibration of Membranes

In order to make this homogenous equations have a
nonzero solution, its coefficient determinant must be zero,
namely:

The boundary conditions of the membranes as shown in J,(Za) Y, (Aa) I,(2a) K,(1a)
Figure 4 are given asfollow: @ dy dr dK
ow ow “(a) —=(Aa) —=(Aa) “(Aa)
w=22" —o0 w=24 ~=—o. (20) dr dr dr dr —0 (22)
g ar . J,(Ab) Y, (Ab) I,(4b) K, (4b)
Eqﬁlz;tt?ztrlwu(]gg)gl eaEc(I]sutS(t;I%ne fgl)l)ovf;in r?g Iiizr?el:aer{t Ie?qrzjat(i%)?s: e %(ib) %(ib) C;I: (/Ib) %(ib)
Table 3. The form of ®m(x)®n(y).
m n @, (x)®, ()
m=1 n=0 sin(105x)sin(105x)
m=2 n=0 sin(105x)sin(210x)
m=3 n=0 sin(105x)sin(315x)
m=1 n=1 sin(105x)sin(105x) (1 200y)
m=2 n=1 sin(105x)sin(210x) (1~ 200y)
m=3 n=1 sin(105x)sin(315x) (1- 200y)
m=1 n=2 sin(105x)sin(105x ) ((cosh785y + cos785y ) — 10008(sinh785y +sin785y ) )
m=2 n=2 sin(105x)sin(210x)((cosh785y + cos785y) —10008(sinh785y + sin785y))
m=3 n=2 sin(105x)sin(315x)((cosh785y + cos785y ) —10008(sinh785y + sin785y ) )
m=1 n=3 sin(105x)sin (105x) ((cosh1099y + cos1099y) —10008(sinh1099y +sin1099y) )
m=2 n=3 sin(105x)sin(210x ) ((cosh1099y + cos1099y ) — 10008(sinh1099y + sin1099y))
m=3 n=3 sin(105x)sin(315x)((cosh1099y + cos1099y) — 10008(sinh1099 + sin1099 ) )
Table 4. Natural frequencies and mode shapes.
NF [HZ] Mode shapes W, (x,y)
w10 = 26150 W,, = 0.9996sin(105x)° +0.0277sin (105x) sin(315x)
w0 = 74370 W,, =0.9998sin(105x) sin(210x)+0.0184sin(105x)sin(210x)(1- 200y)
oy = 110120 W,, = 0.991sin(105x)’ (1~ 200y) +0.1339sin (105x) sin(315x ) (1~ 200y)
w3 = 138270 W,, = 0.3035sin(105x)’ + 0.9519sin (105x) sin(315x) - 0.039 sin (105x)sin (315x) (1 200y)
w21 = 220050 W,, =sin(105x)sin(210x) (1~ 200y)
wy = 341700 W,, =0.2461sin(105x)’ (1- 200y )+ 0.9691sin (105x ) sin (315x) (1~ 200y
Copyright © 2013 SciRes. JST
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first-order mode shape second-order mode shape ird-order mode shape

0.5
0.5 0
0.5
0 5
0.02 - ; ’ 0.005 02
X-axis (m o ' X-axis (m
0.03 0.005 0.02 y-axis (m) 0.010.03 -

y-axis (m) o 0T0.03 X-axis (m)
xth-order mode shape

fourth-order mode shape ifth-order mode shape

~0.02 ~0.02
0.005 x-axis (m) 0.005 X-axis (m)
y-axis (m) 0.07 0.03 y-axis (m) 0.01 0.03

0.02
0.005 X-axis (m)
y-axis (m) 0.010.03

Figure S. Simulation diagrams of the mode shapes.

0 0
0.05 radial direction (m) radial direction (m) 0.0520.05 radial direction (m) JER
. radial direction (m) 0.035 e
-0.05 radial direction (m)

0
radial direction (m)0.05>2§705 radial direction (m)

-0.05 radial direction (m)

radial direction (m) 0.05 radial direction (m)0.05 245 radial direction (m)

-0.05 radial direction (m)

Figure 6. Simulation diagrams of the mode shapes.
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Table 5. Values of 4,

m
n
1 2 3 4
0 111 184 258 332
1 113 187 261 335
2 125 197 270 342
3 144 215 285 355
Table 6. Natural frequencies and mode shapes.

m n NF (Hz2) Mode shape

1 0 37230 0.4720J, ( A,r) — 0.457IN, () — 0.7487K,, ( A,r)

2 0 104310 04502/, (A, ) + 0.1125N, (A1) + 0.8914K,, ( A,,7)

3 0 206140 ~0.2813/, (A1) — 0.0894N, ( A1) + 0.9613K,, ( Ay, )

4 0 342030 ~0.1106, (A7) — 0.1400N, ( A,,7") +0.9787K, (A7)

1 1 39980 (0.41257, (A4,r)+ 0.6903N, (4,r) +0.4092Y, (A,r) + 0.6101K, (4,r) )cos(¢)

2 1 107750 (~0.0097, (4,,r) — 0.5596N, ( 4,,) — 0.8201K, (4,,) )cos(¢)

3 1 210630 (~0.1701, (A,,) + 0.3100N, (A7) +0.8876K, (A,r) )cos(¢)

4 1 347070 (~0.18067, (A, )+ 0.1101N, (4,7) + 0.9810K, (4,) )cos(¢)

Equation (22) is the natural frequency equation of the
annular thin plate. According to the nature of Bessel
functions, for any nonnegative integer »n, it has infi-
nitely many solutions (4,) (m=12,---). One defines
(4,,) asthem” root of Equation (22) when the circum-
ferential mode number is »n. Table 5 shows the first
four roots when n is set to 1,2,3,4 respectively. Then

the natural frequency is given by:

Substituting (4,,) into Equation (21) leads to the
valuesof (1,C2,C3,C4 and then obtains the mode shapes.
Table 6 and Figure 6 respectively show the natural fre-
guencies and mode shapes, and simulation diagrams by
software MATLAB with m=1,234, n=0,1.

4. Conclusion

In this paper, Rayleigh-Ritz method and the separation of
variables method are introduced to anayze the free vi-
brations of the elastic bodies (the lamellas and the mem-
branes) of the 6-AFS based on double layer E-type
membrane. Through derivation, the anaytical expres-
sions of the natural frequencies and corresponding mode
shapes are obtained and simulated by MATLAB. And the
theoretical results are in good agreement with the actual
situation. The analytical results of free vibrations have
great significance to the follow-up studies about the dy-
namic response of the force vibration of thin plates. And

Copyright © 2013 SciRes.

it is also available to verify the correctness of the nu-
merical methods.
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