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ABSTRACT 

Now the six-axis force sensor (6-AFS) is used widely, and as the core components, mechanical properties of its elastic 
bodies are significant. With the increase of dynamic loads, studies on dynamic characteristics of the 6-AFS become 
more and more important. In this paper, the study focuses on the free vibration problem of a novel 6-AFS. The research 
approach is to decompose the sensor into several separate elastic bodies (four lamellas and upper and lower membranes) 
and research these elastic bodies respectively. The free vibration of the lamella is studied based on Rayleigh-Ritz 
method and the separation of variables. The analytical solutions of free vibration of the membranes are deduced ac-
cording to the nature of Bessel functions. Both the analytical results are simulated with MATLAB. Compared the simu-
lated diagrams with actual situations, they are very close. The mode shapes obtained play a major role in solving the 
forced vibration of the sensor. 
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1. Introduction 

Scientists commit themselves to improving the level of 
intelligent robots because they want to obtain an equip- 
ment that can work as human beings. In order to have the 
similar functions as human’s hand, the six-axis wrist 
force sensor is developed which can measure force com- 
ponents , ,x y zF F F  and moment components  

, ,x y zM M M  [1,2]. 
Over the years, static characteristics of multi-axis 

force sensors have been further studied by domestic and 
foreign scholars and many achievements have been 
obtained. In 1990, Tsuneo Yoshikawa, a professor at 
Kyoto University in Japan, deduced the relationship of 
stress-strain and static-coupling of a cross-shape force 
sensor under static load using Material Mechanics in 
detail [3]. In 2010, K. Q. Liang et al. used Material 
Mechanics and finite element method to analyze the 
relationship of stress-strain of a novel 6-AFS at the State 
Key Laboratory of Sensor Technology, and determined 
the cross-coupling through static calibration [4]. A. G. 
Song, a professor at Southeast University, designed a 
four-axis force sensor with low coupling and analyzed 
the cross-coupling by using Material Mechanics and 
finite element method [5]. To improve the accuracy of 
these force sensors, researchers all over the world have 
made unremitting efforts. Y. Haddab et al. at French 
FEMTO-ST Institute used Kalman filtering technique to  

reduce the output noise [6]. The author of this paper used 
matrix perturbation theory to discuss the relation between 
the value of elements in cross-coupling matrix and the 
sensor’s measuring accuracy. In this paper, an important 
conclusion was drawn that when the increments of the 
forces at six directions are the same, the measuring 
accuracy is ideal, and this conclusion received high 
attention from researchers at Institute of Intelligent 
Machines, Chinese Academy of Sciences (CAS) and was 
seen as one of the bases for the design of multi-axis force 
sensor (MAFS) [7]. Synthesizing the present research 
achievements, researches about the static characteristics 
of MAFS are indepth and sufficient. However, less 
attention is paid to dynamic characteristics of these 
sensors. AMTI Inc. is the main manufacturer of MAFS 
internationally and only the upper limit frequency is 
given in its instruction. Along with the increase of 
situations that intelligent robots work under dynamic 
loads, studies about vibration problem of the MAFS 
become more and more important. So in this paper, the 
dynamic problem is researched. 

C

For the mechanical property of a 6-AFS, the focus 
should be drawn to its sensing elements which are the 
core components of the sensor. The lightweight thin plate 
structures have been widely used as elastic bodies to 
detect the force information, e.g., the four-dimensional 
fingertip force sensor and the 6-AFS based on double 
layer E-type membrane developed by Institute of In- 
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telligent Machines, CAS, they all use thin plate as the 
elastomer to detect the outside force information. Thus, 
the knowledge of its free vibration is significant to the 
structural designers [8]. The free vibration characteristic 
of a elastic thin plate is the basis and has great 
significance for the follow-up studies of the forced 
vibration. Since the introduction of the small deflection 
theory of plate bending, people are interested in vibration 
problems of the elastic thin plate. The free vibration 
analysis of rectangular and circular plates is important 
for the design of plate-type structures. Consequently, a 
great many of research reports have been conducted on 
the dynamic behavior of such structures. Leissa offered 
comprehensive sets of research data for the free vibration 
of elastic thin plates based on Kirchhoff’s thin plate 
theory [9]. As closed form solutions for plate vibration 
problems are known only for certain special cases in 
which at least a pair of opposite sides is simply supported. 
One has to use approximate method. As a result, a large 
number of useful methods have been developed to get 
solutions for some practical problems. The Rayleigh-Ritz 
method is one of the most popular methods to obtain the 
approximate solutions for the natural frequencies of 
rectangular and annular plates [10-12]. Rayleigh-Ritz 
method uses a linear combination of some assumed basic 
functions to express the mode shape. Finite element 
methods often divide the elastic body into a number of 
smaller elements and approximate the solution by using 
local piecewise continuous shape functions [13,14]. And 
there are some other approximate methods including the 
differential quadrature (DQ) method [15], the least 
squares techniques [16], the Meshless methods [17], and 
the spline finite strip method by G. Akhras and W. Li 
[18]. 

In the present paper, Rayleigh-Ritz method and the 
separation of variables are used to obtain the natural 
frequencies and the corresponding mode shapes of the 
Kirchhoff rectangular plate. And according to the nature 
of Bessel equations and Bessel functions, the analytical 
expressions of natural frequencies and associated mode 
shapes of the Kirchhoff circular plate are derived. At last, 
the simulation diagrams of analytical results are obtained 
by the software of MATLAB. The natural frequencies 
and mode shapes deduced will be used to solve the 
dynamic response of thin plates under harmonic force in 
follow-up studies. 

2. Differential Equation of Thin Plate 

2.1. Governing Equations of Rectangular Plate 

A vast literature exists about the free vibration of 
rectangular plates. Consider a thin rectangular plate of 
length , width  and uniform thickness , oriented 

so that its middle surface contains 

a b h

x  and  axes of a 
Cartesian coordinate system (

y
, ,x y z ), as shown in 

Figure 1. Based on Kirchhoff’s thin plate theory, the free 
vibration differential equation of thin plates is: 

2 x4 , )
( , , )

y t
w x y t

D


2

( ,h w

t
0  


,     (1) 

where  is the transverse deflection; w 4  is the 
differential operator in Cartesian coordinates (i.e., 

4 2 2    ，  

2 2 2 2 2x y       ),  3 212 1D Eh   , 

is the bending rigidity; E  is Young’s modulus;   is 
Poisson’s ratio;   is mass density per unit volume;  
is the time. It is well-known that the free vibration of an 
elastic linear system is harmonic, therefore, the deflec- 
tion of free vibration of the thin plate can be assumed to 
be: 

t

     
1

, , cos ,m m m m
m

w x y t A t B t x y




  sinm  W , (2) 

where m  is the natural frequency,  is the asso- 
ciated mode shape, 

mW
,m mA B  depend on initial conditions. 

Considering one solution with the general form: 

  cos sin ,w A t B W   x yt ,     (3) 

then it is possible to obtain the following equation in 
terms of spatial variables only: 

   
2

4 , , 0
h

W x y y
D

 
W x   .      (4) 

This equation is a two-dimensional partial differential 
equation, and the exact solution is limited to vibration 
problems with simple shape, load and boundary con- 
ditions. There are no exact solutions for natural fre- 
quencies and associated mode shapes of the transverse 
vibrations except plates with four edges or one opposite 
edges simply supported. For the case of complex shape, 
load or boundary conditions, approximate method must 
be used, such as lumped mass method, finite element 
method and assumed mode method. In this paper, 
Rayleigh-Ritz method is adopted [19]. 

 

 

Figure 1. The rectangu late. lar p
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2.2. Rayleig

i-analytical method and 
ion problems of the thin 

.     (5) 

where 

h-Ritz Method 

Rayleigh-Ritz method is a sem
widely used in solving free vibrat
plate. For this method, the vibration mode shape is 
expressed in terms of the plate characteristic functions 
as: 

M N

     
1 1

, mn m n
m n

W x y x y
 

  

 m x  and  n y
e bo

 are polynomial 
depend  th undary conditions of the plate, 

functions 
ing upon

m  is own pa r that need to be found. 
The procedure of free vibration doesn’t involve any 
side force, and the expressions for the maxim

the unkn ramete

out um 
strain and kinetic energy respectively are: 

   

maxV，

24 2
22

2 2
2 1 d d

2

D W W
W u x y

x yx y

                   


,(6) 

 

2

,max

2
2

1
d d

2

         d d
2

k

w
E h

t

h W x y



 

    






 

x y
        (7) 

The principle of minimum potential energy is that for 
the constraint of boundary conditions, the potential en-
er

Minimization of the difference betw n  and 
with respect to each of the coefficient 

gy corresponding to the exact solution is less than any 
other possible potential energy. Then the variation of 
potential energy functional should be zero, namely,  

 , max ,max 0V T      . 

ee maxV，

mn,maxT    leads 
to: 

 ,max ,max 0k
mn

V E


 


,         (8) 

where  and N1,2,m M  1,2,n   . 
From Equation (8), the M N

th the u
 simultaneous linear 

neous equati nkn n coefficients homoge ons wi ow

mn  are obtained. These lin ations can be solved 
as an eigenproblem. Hence, it is possible to estimate the 

ral frequencies and mode shapes of thin plate. 

2.3. Governing Equations of Circular Thin P

ear equ

natu

late 

The vibration of an isotropic circular plate with constant 
thickness is well documented. The motion equation of a 
circular thin plate is similar to that of rectangular thin 
plate. The only difference is the conversion from Carte- 
sian coordinates to polar coordinates. In polar coordi- 
nates, the differential equation of free vibration of a thin 

plate is: 

   2 , ,w r th  4
2

, , 0w r t
D t

  


,     (9) 

where 4  is the differential operator in pol
nates, 

ar coordi- 

2 2

2 2 2 2

2 2 2 2 2 2

1 1 1 1

r r r rr r r r 



       
            

. 

Defining a solution as Equation (3) and 



4 2h D   , 
the equation be-and inserting them into Equation (9), 

comes: 

   4 4, , 0D W r W r     .      (10) 

The solution of Equation (10) can be w
sum of two distinct solutions, 

ritten as the 
W W  1 2,W r    , 

where, 
2 2 20,W W W 2

1 1 2 2 0W     )  .    (11

Use the separation of variables and assume
shape as followings: 

 the mode 

       1 , e , , ein inW r R r W r R r1 2 2
    . (12) 

Inserting Equation (12) into Equation (11) respec
one obtains: 

tively, 

2 2d d1R R n 21 1
12 2

0
dd

R
r rr r

   
 

,    (13) 

2 2
22 2

22 2

d d1
0

dd

R R n
R

r rr r

 

    
 

.    (14) 

These two are special equations which are su
in the study of some physical problems. The general so- 
lu

mmed up 

tion of Equation (13) exists in terms of Bessel’s func- 
tions with constants A  and B : 

     1 nR r AJ n BY nn   ,       (15) 

 nJ r  and  nY rhere  are, respectiv
and tego  Bessel functions

ely, the first 
. And the  second ca

oluti
ry n-order

uationgeneral s on of Eq  (14) can be expressed with 
the linear combination of  nI r  and  nK r  with 
constants C  and D : 

    n nn D 2R r CI K n   (16)  ,     

here  nI r  and  nK r  are the first 
categ der ons of imaginary argum

and second 
ent. ory n-or  Bessel functi

Above all, the complete solution for displacement on the 
surface of the circular plate is described as following [20]: 

       , , 1 2 3n n n

in i t

w r t C J r C Y r C I r

                  4 e enC K r  

     
. (17) 

 
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3. Free Vibration of 6-AFS’s Elastic Body 

The 6-AFS studied in this paper is shown in Fig
The sensor consists of the base frame 1, lower E-type 

m- 

ure 2. 

membrane 2, central solid cylinder 3, upper E-type me
brane 4, middle force-transmitting loop 5, four lamellas 6 
and upper force-transmitting loop 7. The base frame 
serving as a rigid support connects with the lower adapter 
by bolts. The lower and upper E-type membranes are 
connected by the cylinder. The middle force-transmitting 
loop links the upper E-type membrane and four lamellas. 
The upper force-transmitting loop connects with the upper 
adapter. For this sensor, components 2, 4 and 6 are elastic 
elements, and components 1, 3, 5, 7 seen as rigid bodies. 
The upper E-type membrane is used to detect tangential 
moments ( ,x yM M ), and the lower E-type membrane is 
used to sense the normal force ( zF ) and both tangential 
forces ( ,x yF F ). The four lamellas are responsive to the 
normal moment ( zM ). For the structure and material pa- 
rameters of sor, please refer to Table 1 and Table 
2. 

During the analysis, the boundary of the rec- 
tangular thin plate is seen as one opposite edges 
clamped and the others free, as shown in Figure 3. 
Th

 the sen

e boundary of the upper and lower membranes 
are both viewed as the inner and outside edges 
clamped, as shown in Figure 4. 
 

 

Figure 2. Structure of the six-axis force sensor. 
 

Table 1. Structure parameters of the sensor [m]. 

ness 
External 
diameter 

Internal 
diameter 

Length Width Thick

Upper
mem

 
brane 

0.1 0.015 - - - 

Lo
mem ane 

0.  0.  0.  

Over 0.18 - - - 0.08 

wer 
br

0.1 0.015 - - - 

Lamella 

 

- - 03 01 002

 sensor

 
Table 2. Pa eters

]  [Pa] μ ρ [k

ram  of LY12. 

Material E [Pa G

 

Figure 3. Schematic diagram of the lamella. 
 

 

Figure 4. Schematic diagram of the membrane. 

3.1. Free Vibration of Rectangular Plate 

Assume that the basic function for mod shape is ex-
presse

e 
d as the following form: 

     ,mn m nW x y x y   ,      (18) 

where:      sin sin 1,2,3m x x a m x a m     ， ; 

 0 1y  ;  1 1 2y y b   ; 

   cosh cos sinh sinn n n n

g/m3]

12LY  7.2 × 1010 2.7 × 1010 0.33 2.78 × 103

n ny y y z y        ,

2,3,n

y

  , in which: 

 2 1 2n n    ; b

   cosh cos sinh sinn n n nz b b b nb    

2,

 , 

3,n   . 

1, 2,3m In this paper, let  and  to cal- 
culate the natural frequencies and corresponding ode 
shapes of the plate. The forms of these basic fun ons  
are list in Table 3. Then the m e shape of the thin 
pl s a lin bination 

to Equations (6) and (7) 
leads to and  According to Equation (8), 
a set of 12 ear homogeneous e
with 

0,1,2,3n
m
cti

od
ate can be expressed a ear com of these 

12 basic functions as follow: 

3 3

     
0 1

, mn m n
n m

W x y x y
 

   .   (19) 

Insertion of Equation (19) in

,maxV
simu

11, ,

,maxkE .
ltaneous lin quations 

10 33,    as the unknown parameters are  
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ob
t of t tained

computation, 

e given as follow: 

       tained. Because the mode shape is existent, the de-
terminan he ob  equations must be zero and 
then get the natural frequency equation. Due to the 
huge the software MATLAB is adopted 

       

       

       

1d d d d
n n n n

n n n n

J a Y a I a K a
CJ Y I K

    
 

2d d d d
3

4d d d d

d d d d
0

n n n n

n n n n

a a a a Cr r r r
CJ b Y b I b K b

CJ Y I K
b b b b

r r r r

   

   

   

 
   
   
   
 to help calculate natural frequencies and mode shapes. 

In the present paper, the lowest six frequencies and 
mode shapes are obtained as shown in Table 4. The 
simulation diagrams of mode shapes are shown in 
Figure 5. 

3.2. Free Vibration of Membranes 

The boundary conditions of the membranes as shown in 
Figure 4 ar

 
   
  


(21) 

In order to make this homogenous equations have a 
nonzero solution, its coefficient determinant must be zero, 
namely: 

       

       

       

       

d
n n n n

n n

J a Y a I a K a

J

   
d d d

d d d d 0

d d d d

d d d d

n n

n n n n

n n n n

Y I K
a a a a

r r r r
J b Y b I b K b

J Y I K
b b b b

r r r r

   

   

   

0
w w

w w
 

  ， 0 .     (20) 

and Equation (17) into 
Equation (20) leads to the following linear equations: 


r a r br r  

Substituting Equation (9) 

 (22) 

 
Table 3. The form of Φm(x)Φn(y). 

m n    m nx y   

   sin 105 sin 105x x  m = 1 n = 0 

   sin 105 sin 210x x  m = 2 n = 0 

m = 3 n = 0    sin 105 sin 315x x  

m = 1 n = 1      sin 105 sin 105 1 200x x y  

m = 2 n = 1     sin 105 sin 210 1 200x x y  

m = 3 n = 1     sin 105 sin 315 1 200x x y  

m = 1 n = 2         sin 105 sin 105 cosh785 cos785 1.0008 sinh785 sin785x x y y y    y

m = 2 n = 2         sin 105 sin 210 cosh785 cos785 1.0008 sinh785 sin785x x y y y    y

m = 3 n = 2         sin 105 sin 315 cosh785 cos785 1.0008 sinh785 sin785x x y y y    y

m = 1 n = 3        sin 105 sin 105 cosh1099 cos1099 1.0008 sinh1099 sin1099x x y y y   y  

m = 2 n = 3        sin 105 sin 210 cosh1099 cos1099 1.0008 sinh1099 sin1099x x y y y   y  

m = 3 n = 3        sin 105 sin 315 cosh1099 cos1099 1.0008 sinh1099 sin1099x x y y y   y  

 
Table 4. Natural frequencies and mode shapes. 

NF [Hz]  ,mnW x y  Mode shapes 

ω  = 26150 x10     2

10 0.9996sin 105 0.0277sin 105 sin 315W x x   

        20 0.9998sin 105  sin 210 0.0184sin 105 sin 210 1 200W x x x x   ω20 = 74370 y

ω  = 110120 y

ω30 = 138270 y

ω21 = 220050 

11        2

11 0.991sin 105 1 200 0.1339sin 105 sin 315 1 200W x y x x    

         2

30 0.3035sin 105 0.9519sin 105 sin 315 0.039 sin 105 sin 315 1 200W x x x x x    

     21 sin 105 sin 210 1 200W x x  y  

ω31 = 341700 y        2

31 0.2461sin 105 1 200 0.9691sin 105 sin 315 1 200W x y x x    
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Figure 5. Simulation diagrams of the mode shapes. 
 

 

Figure 6. Simulation diagrams of the mode shapes. 
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Table 5. Values of λnm. 

m 
n 

1 2 3 4 

0 111 184 258 332 

1 113 187 261 335 

2 125 197 270 342 

3 144 215 285 355 

 
Table 6. Natural frequencies and mode shapes. 

m n NF (Hz) Mode shape 

     0 10 0 10 0 100.4720 0.4571 0.7487J r N r K     r1 0 37230 

     0 20 0 20 0 200.4502 0.1125 0.8914J r N r K    2 0 104310 r

3 0 206140      0 30 0 30 0 300.2813 0.0894 0.9613J r N r K     r

4 0 342030      0 40 0 40 0 400.1106 0.1400 0.9787J r N r K     r

1 1 39980           1 11 1 11 1 11 1 110.4125 0.6903 0.4092 0.6101  cosJ r N r Y r K r       

2 1 107750         1 21 1 21 1 210.0097 0.5596 0.8201  cosJ r N r K r      

3 1 210630         1 31 1 31 1 310.1701 0.3100 0.8876  cosJ r N r K r      

4 1 347070         1 41 1 41 1 410.1806 0.1101 0.9810  cosJ r N r K r      

 
Equation (22) is the natural frequency equation of the 

annular thin plate. According to the nature of Bessel 
functions, for any nonnegative integer , it has infi-
nitely many solutions 

n
    . O1,2,n m

m   ne defines 
 nm  
ferential 
four ro

as the mth roo
mode num

ots when tively. Then 
the nat frequency is given by: 

t of Equation (
ber is n . Tab
is set to 1,2,3,4 respe

22) when the circum-
le 5 shows the first 

n  c
ural 

2
mn mn D h              (

Substituting 

23) 

 nm  
2, 3, 4C C
gure 6 
ode shape

LAB with 

into Equation (21) leads to
values o and then obtains the mode sh p
Table 6 p c ly show the natural
quencies a s simulation diagram

ftware

4. Conclusion 

In s p r, Ra itz method and the separation of 
variables method troduced to analyze the free vi-
brations of the elastic bodies (the lamellas and the mem-
bra ) of the  based on double layer E-type 
m brane. Thro rivation, the analytical expres-
sions of atu uencies and corresponding mode 
shapes are obtained and simulated by MATLAB. And the 
theoretical results are in good agreement with the actual 
situation. he a l results of free vibrations have 
great significance to the follow-up studies about the dy-
na c response vibration of thin plates. And 

it is also available to verify the correctness of the nu-
merical methods. 
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