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Abstract 
 
In this paper we characterize a broad class of semilinear surjective operators HG V Z   given by the fol-
lowing formula ( )HG w Gw H w   ,w V  where ,V  Z are Hilbert spaces, ( )G L V Z   and H V Z   
is a suitable nonlinear function. First, we give a necessary and sufficient condition for the linear operator G  
to be surjective. Second, we prove the following statement: If ( )Rang G Z  and H  is a Lipschitz func-
tion with a Lipschitz constant h  small enough, then ( )HRang G Z  and for all z Z  the equation 

( )Gw H w z   admits the following solution 1 1 1( ) ( ( ) )zw G GG I H G GG z         .We use these results 
to prove the exact controllability of the following semilinear evolution equation ( ) ( ( ))z Az Bu t F t z u t      , 

0z Z u U t     , where Z , U  are Hilbert spaces, ( )A D A Z Z    is the infinitesimal generator of 
strongly continuous semigroup 0{ ( )}tT t   in Z   B ( ),L U Z  the control function u  belong to 2 (0 )L U   
and [0 ]F Z U Z      is a suitable function. As a particular case we consider the semilinear damped 
wave equation, the model of vibrating plate equation, the integrodifferential wave equation with Delay, etc. 
 
Keywords: Semilinear Surjective Operators, Evolution Equations, Controllability, Damped Wave Equation 

1. Introduction 
 
In this paper we characterize a broad class of semilinear 
surjective operators 

HG V Z   given by the following formula  

( )HG w Gw H w w V               (1.1) 

Where Z , V  are Hilbert spaces, G V Z   is a 
bounded linear operator (continuous and linear) and 
H V Z   is a suitable non linear function in general 
nonlinear. First, we give a necessary and sufficient con-
dition for the linear operator G  to be surjective. Second, 
we prove the following statement: If ( )Rang G Z  and 
H  is a Lipschitz function with a Lipschitz constant h  
small enough, then ( )HRang G Z  and for all z Z  
the equation  

( )Gw H w z    admits the following solution  
1 1 1( ) ( ( ) )zw G GG I H G GG z          

We apply our results to prove the exact controllability 
of the following semilinear evolution equation 

( ) ( ( )) 0z Az Bu t F t z u t z Z u U t              (1.2) 

where Z and U are Hilbert spaces, ( )A D A Z Z    
is the infinitesimal generator of strongly continuous se- 
migroup 0{ ( )}tT t   in ( )Z B L U Z   , the control func-
tion u belong to 2 (0 )L U   and [0 ]F Z U Z      
is a suitable function. We give a necessary and sufficient 
condition for the exact controllability of the linear sys-
tem 

( ) 0z Az Bu t z Z u U t                 (1.3) 

Under some conditions on F, we prove that the control- 
lability of the linear system (1.3) is preserved by the semi- 
linear system (1.2). In this case the control 2 (0 )u L U    
steering an initial state 0z  to a final state 1z  at time 

0   (using the non linear system (1.2)) is given by the 
following formula:  

1 1
1 0( ) ( ) ( ) ( ( ) )u t B T t I K z T z        W  

where K Z Z   is non linear operator given by:  

0
( ) ( ( ) ( )( ))K T s F s z s S s ds


        

and ( )z   is the solution of (1.2) corresponding to the 
*This work was supported by the CDCHTA-PROJECT: C-1667-09-
05-AA 
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control u  define by:  
1( ) ( )( ) ( ) [0 ]u t S t B T t t           W  

As an application we consider some control systems 
governed by partial differential equations, integrodiffer-
ential equations and difference equations that can be 
studied using these results. Particularly, we work in de-
tails the following controlled damped wave equation  

( ) ( ( ) )

0 1

( 0) ( 1) 0

tt t xx tw cw dw u t x f t u t x w w

x

w t w t

t IR

        
  
    
 

  (1.4) 

where 0d  , 0c   the distributed control 2u L 1(0 t   
2 (0 1))L   and the nonlinear term ( )f t w v u    is a func-

tion 3
1[0 ]f t IRIR    . A physical interpretation of 

the nonlinear term ( )tf t u w w    could be as an eternal 
force like in the suspension bridge equation proposed by 
Lazer and McKenna (see [1]).  

The novelty in this work lies in the following facts: 
First, the main results are obtained by standard and basic 
functional analysis such as Cauchy-Schwarz inequality, 
Hahn-Banach theorem, the open mapping theorem, etc. 
Second, the results are so general that can be apply to 
those control systems governed by evolutions equations 
like the one studied in [1-3] and [4]. Third, we find a 
formula for a control steering the system from the initial 
state 0z  to a final state 1z  on time 0  , for both the 
linear and the nonlinear systems, which is very important 
from engineering point of view. Also, we present here a 
variational approach to find solutions of the semilinear 
equation ( )Gw H w z   which is motivated by the one 
used to prove the interior controllability for some control 
system governed by PDE’s, see [5]. Finally, these results 
can be used to motivate the study of semilinear range 
dense operator in order to characterize the approximate 
controllability of evolution equations. 
 
2. Surjective Linear Operator 
 
In this section we shall presents a characterization of 
surjective bounded linear operator. To this end, we de-
note by ( )L V Z  the space of linear and bounded op-
erators mapping V  to Z  endow with the norm of the 
uniform convergence, and we will use the following 
lemma from [6] in Hilbert space:  

Lemma 1.  Let ( )G L Z V    be the adjoint operator 
of ( )G L V Z  . Then the following statements holds:  
1) ( ) 0Rang G Z      such that 

V ZG z z z Z      

2) ( ) ( ) {0}Rang G Z Ker G   . 

In the same way as definition 4.1.3 from [7] we define 
the following concept:  

Definition 1. The generalize controllability gramian of 
the operator G  is define by:  

GG Z Z   W              (2.1) 

Theorem 1. An operator ( )G L V Z   is surjective if, 
and only if, the operator GGW  is invertible. Under 
this condition, for all z Z  the equation  

Gw z                   (2.2) 

admits the following solution  
1 1( )zw G GG z G z      W         (2.3) 

Moreover, this solution has minimum norm. i.e.,  

 infzw w Gw z w V          (2.4) 

and  z zw w Gw z w w     .  
Proof Suppose G  is surjective. Then, from the 

foregoing Lemma there exists 0   such that  
2 2 2
V ZG z z z Z      

Therefore,  
2 2   ZGG z z z z z z Z      W   (2.5) 

This implies that W  is one to one. Now, we shall 
prove that W  is surjective. That is to say  

( ) Range( )R Z  W W  

For the purpose of contradiction, let us assume that 
( )R W  is strictly contained in Z . Using Cauchy Sch- 

warz’s inequality and (2.5) we get  
2 ,   Zz z z Z W  

which implies that ( )R W  is closed. Then, from Hahn 
Banach’s Theorem there exists 0z Z  with 0 0z   
such that  

0 0,  .z z z Z   W  

In particular, putting 0z z  we get from (2.5) that  
2 2

0 0 00 Zz z z   W  

Then 0 0z  , which is a contradiction. Hence, W  is 
a bijection and from the open mapping Theorem 1W  is 
a bounded linear operator.  

Now, suppose W  is invertible. Then, given z Z  
we shall prove the existence of w V  such that Gw z . 
This w  can be taking as follows  

1
zw G z  W  

In fact, 
1 1( )zGw GG z GG GG z z       W  

Now, we shall see that the solution  
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1 1( )zw G GG z G z      W  of the Equation (2.2) has 
minimum norm. In fact, let w V  such that Gw z  
and consider  

2 2 2

2

( )

2Re

z z z

z z z

w w w w w

w w w w w

   

     
 

On the other hand,  
1

1 1 0

z z z

z

w w w G z w w

z Gw Gw z z z

 

 

     

       

W

W W
 

Hence, 2 2 2 0z zw w w w    .  
Therefore, zw w , and zw w  if zw w .  
Corollary 1. If an operator ( )G L V Z   is surjective, 

then the operator  
S Z V   defined by:  

1S G   W                (2.6) 

is a right inverse of G . i.e., G S I .  
Definition 2. Under the condition of the above theo- 

rem the operator  
1S G Z V    W  

is called the generalize steering operator.  
Lemma 2. An operator ( )G L V Z   satisfies  

( )Rang G Z  if, and only if, ( )Rang ZW .  
Proof Suppose that ( )Rang G Z . Then, from Lemma 

1 part (2)  we have that  

0 0z z z Z z      W       (2.7) 

For the purpose of contradiction, let us assume that  

( )Rang Z W  

Then, from Hanh Banach’s Theorem there exists 

0 0z   such that  

0 0  .z z z Z    W  

In particular, if we put 0z z , then 0 0 0z z W , 
which contradicts (2.7).  

Now, suppose that ( )Rang ZW . Then,  
( )Rang GG Z  , and consequently ( )Rang G Z .  

 
2.1. Variational Method to Obtain Solutions 
 
The Theorem 1 gave a formula for one solution of the 
system (2.2) which has minimum norma. But, it is not 
the only way allowing to build solutions of this equation. 
Next, we shall present a variational method to obtain 
solutions of (2.2) as a minimum of the quadratic 
functional Z IR  ,  

21
( )

2
G z Z              (2.8) 

Proposition 1. For a given z Z  the Equation (2.2) 
has a solution w V  if, and only if,  

0w G z Z               (2.9) 

It is easy to see that (2.9) is in fact an optimality con- 
dition for the critical points of the quadratic functional 
  define above.  

Lemma 3. Suppose the quadratic functional   has a 
minimizer z Z  . Then,  

z zw G                 (2.10) 

is a solution of (2.2).  
Proof. First, observe that   has the following form  

1
( )

2
GG z Z             

Then, if z  is a point where   achieves its minimum 
value, we obtain that  

{ }( ) 0z z

d
GG z

d
 


     

So, zGG z   and z zw G   is a solution of (2.2).  
Remark 1. Under the condition of Theorem 1, the 

solution given by the formulas (2.10) and ( 2.3) coincide.  
Theorem 2. The system (2.2) is solvable if, and only if, 

the quadratic functional   defined by (2.8) has a mini- 
mum for all z Z .  

Proof Suppose (2.2) is solvable. Then, the operator 
G  is surjective. Hence, from Lemma 1 there exists 

0   such that  
2 2 2G Z         

Then,  
2

2( )
2

z Z
         

Therefore,  

lim ( )





   

Consequently,   is coercive and the existence of a 
minimum is ensured. The other way of the proof follows 
as in proposition 1.  
 
3. Surjective Semlinear Operators 
 
In this section we shall look for conditions under which 
the semilinear operator  

HG V Z   given by:  

( ), ,HG w Gw H w w V         (3.1) 

is surjective. To this end, we shall use the following theo- 
rem from non linear analysis.  



E. ITURRIAGA  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

268 

Theorem 1. Let Z  be a Banach space and K Z Z   
a Lipschitz function with a Lipschitz constant 1k   and 
consider ˆ ( )G z z Kz  . Then Ĝ  is an homemorphisme 
whose inverse is a Lipschitz function with a Lipschitz 
constant 1(1 )k  .  

Theorem 2. If ( )Rang G Z  and H  is a Lipschitz 
function with a Lipschitz constant h  such that  

1( ) 1hG GG    , then ( )HRang G Z  and for all 
z Z  the equation  

( )HG w Gw H w z              (3.2) 

admits the following solution  
1 1 1

1

( ) ( ( ) )

( )

zw G GG I H G GG z

S I H S z

      



  

  




  (3.3) 

where 1( )S G GG   .  
Proof Suppose that ( )Rang G Z . Then, from Coro- 

llary 1 we know that the operator S  define by (2.6) is a 
right inverse of G , so if we put H HG G S  , we get 
the new operator  

( )H HG G S H S Z              (3.4) 

where 1 1( )S G GG G      W . Hence, if we define the 
operator K Z Z   by:  

( )K H S                (3.5) 

the operator HG  can be written as follows  

( )HG K I K Z                (3.6) 

On the other hand, K  is a Lipschitz function with a 
Lipschitz constant 1( ) 1hG GG     . Then, applying 
Theorem 1 we get the result.  

Theorem 3. If ( )Rang G Z  and the operator K  
given by (3.5) is linear and 0K  , then ( )HRang G Z  
and for all z Z  the equation  

( )HG w Gw H w z               (3.7) 

admits the following solution  
1 1( )zw G I K z    W  

Proof Since HG S I K  , then  
2( )HG S z z z z Z       

Then, in the same way as in the proof of Theorem 1 
we get the result.  

Corollary 1. Under the conditions of the above 
Theorems, the operator  

Z V    define by:  

1 1 1

1

( ) ( ( ) )

( )

z G GG I H G GG z

S I H S z

      



   

  




  (3.8) 

is a right inverse of HG . i.e., HG I  d  
Corollary 2. Under the conditions of the above 

Theorems, the solution  
1( )zw S I H S z    of the Equation (3.2) depends 

continuously on z . Moreover,  

1z y V Z

S
w w z y z y Z

hS
       


 

 
4. Controllability of Semilinear Evolution 

Equations 
 
In this section we shall characterize the exact controlla- 
bility of the semilinear evolution equation  

( ) ( ( ))

0

z Az Bu t F t z u t

z Z u U t

     
     

         (4.1) 

Where Z, U are Hilbert spaces, ( )A D A Z Z    is 
the infinitesimal generator of strongly continuous semi- 
group 0{ ( )}tT t   in Z, ( )B L U Z  , the control function 
u  belongs to 2 (0 )L U   and [0 ]F Z U Z      
is a suitable function. 
 
4.1. Linear Systems 
 
First, we shall study the controllability of the linear 
system (1.3), and to this end, for all 0z Z  and 

2 (0 )u L U    the the initial value problem  

0

( ) ( )  0

(0)

z Az t Bu t t

z z

    
  

       (4.2) 

admits only one mild solution given by:  

0 0
( ) ( ) ( ) ( )   [0 ]

t
z t T t z T t s Bu s ds t          (4.3) 

Definition 1. (Exact Controllability) The system (1.3) 
is is said to be exactly controllable on [0 ] , if for all 

0 1z z Z   there exists a control 2 (0 )u L U    such 
that the solution ( )z t  of (4.3) corresponding to u , ve- 
rifies: 1( )z z  .  

Consider the following bounded linear operator:  

2

0
(0 ) ( ) ( )G L U Z Gu T s Bu s ds


           (4.4) 

whose adjoint operator 2 (0 )G Z L U      is given 
by:  

( )( ) ( )  [0 ]  G s B T s s Z                 (4.5) 

Then, the gramian GG Z Z  W  takes the foll- 
owing classical form  

0
( ) ( )z T s BB T s zds


     W       (4.6) 

Then, the following Theorem from [7](pg. 47, Theorem 
4.17) is a characterization of the exact controllability of 
the linear system (1.3).  
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Theorem 1. For the system (1.3) we have the following 
condition for exact controllability. 

System (1.3) is exactly controllable on [0 ]  if, and 
only if, any one of the following condition hold for some 

0   and all z Z    

1) 2( (0 )) Range( )G L U G Z    ,  

2) 2
Zz z z   W ,  

3) 22 2

0
( )( ) ZUZ

ds zGz sG z


         

4) 
2 2

0
( ) ZU zB T s z


         

5) ( ) {0}Ker G   and ( )Rang G  is closed. 
Remark 1. One can observe that the invertibility of 

the operator W  is not proved in the foregoing theorem 
and, consequently, none formula for the control steering 
the system (4.2) from initial state 0z  to a final state 1z  
on time 0   is given.  

Now, we are ready to formulate and prove a new result 
on exact controllability of the linear system (1.3).  

Theorem 2. The system (1.3) is exactly controllable 
on [0 ]  if, and only if, the operator W  is invertible. 
Moreover, the control 2 (0 )u L U    steering an initial 
state 0z  to a final state 1z  at time 0   is given by 
the following formula:  

1
1 0( ) ( ) ( ( ) )u t B T t z T z      W      (4.7) 

Proof It follows directly from the above notation and 
applying Theorem 1.  

Corollary 1. If the system (1.3) is exactly controllable, 
then the operator  

2 (0 )S Z L U     define by:  
1 1or ( )( ) ( )S G S s B T s          W W   (4.8) 

is a right inverse of G . i.e., G S I   
In this case the Equation (2.2) takes the following form  

2 (0 ),

Gu z

u L U z Z



   
          (4.9) 

and the quadratic functional   given by (2.8) can be 
written as follows  

2

0

1
( ) ( )

2
B T s ds z Z


             (4.10) 

The following results follow from Proposition 1, 
Lemma 3 and Theorem 1 respectively.  

Proposition 1. For a given z Z  the Equation (4.9) 
has a solution 2 (0 )u L U    if, and only if,  

0
( ) ( )  < u t B T t > ds < z > Z


            (4.11) 

It is easy to see that (4.11) is in fact an optimality con- 
dition for the critical points of the quadratic functional 
  define above.  

Lemma 1. Suppose the quadratic functional   has a 
minimizer z Z  . Then,  

( ) ( ) [0 ]zu t B T t t                  (4.12) 

is a solution of (4.9).  
Theorem 3. The system (1.3) is exactly controllable if, 

and only if, the quadratic functional   define by (1) 
has a minimizer z  for all z Z .  

Moreover, under this condition we obtain that  
1( ) ( ) ( ) [0 ]zu t B T t B T t z t              W  (4.13) 

and 1
z z W . 

 
4.2. Nonlinear System 
 
We assume that F  is good enough such that the Equa- 
tion (4.1) with the initial condition 0(0)z z  and a con- 
trol 2 (0 )u L U    admits only one mild solution given 
by:  

0 0

0

( ) ( ) ( ) ( )

( ) ( ( ) ( )) , [0 ]

t

t

z t T t z T t s Bu s ds

T t s F s z s u s ds t 

   

    




    (4.14) 

Definition 2. (Exact Controllability) The system (4.1) 
is said to be exactly controllable on [0 ]   if for all 

0 1z z Z    there exists a control 2 (0 )u L U    such 
that the corresponding solution z  of (4.14) satisfies 

1( )z z     
Define the following operator: 2 (0 )

F
G L U Z     

by 

0 0

0

( ) ( ) ( ) ( ( ) ( ))

( ) ( ( ) ( ))

F
G u T s Bu s ds T s F s z s u s ds

Gu T s F s z s u s ds

 



 



     

    

 


 

(4.15) 

where ( ) ( )z t z t u   is the solution of (4.14) correspon- 
ding to the control u . Then, the following proposition is 
trivial and characterizes the exact controllability of (4.1).  

Proposition 2. The system (4.1) is exactly controllable 
on [0 ]  if, and only if,  

( )
F

Rang G Z   

So, in order to prove exact controllability of system 
(4.1) we have to verify the condition of the foregoing 
proposition. To this end, we need to assume that the 
linear system (1.3) is exactly controllable. In this case we 
know from corollary 1 that the steering operator S  
defined by (4.8) is a right inverse of G , so if we put 

F F
G G S  , we get the following representation:  

0
( ) ( ( ) ( )( ))

F F
G G S T s F s z s S s ds


           

(4.16) 

where ( )z   is the solution of (4.14) corresponding to 
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the control u  define by:  
1( ) ( )( ) ( )  [0 ]u t S t B T t t           W  

Hence, if we define the operator K Z Z   by:  

0
( ) ( ( ) ( )( ))K T s F s z s S s ds


           (4.17) 

the operator 
F

G  can be written as follows  

( )
F

G K I K              (4.18) 

Now, we shall prove some abstract results making 
assumptions on the operator K . After that, we will put 
conditions on the nonlinear term F  that imply condi- 
tion on K .  

Theorem 4. If the linear system (1.3) is exactly con- 
trollable on [0 ]  and the operator K  is globally Lip- 
schitz with a Lipschitz constant 1k    then the non 
linear system (4.1) is exactly controllable on [0 ]  and 
the control steering the initial state 0z  to the final state 

1z  is given by:  

1 1
1 0( ) ( ) ( ) ( ( ) )u t B T t I K z T z        W  

Proof It follows directly from Equation (3.6) and The- 
orem 1 or Theorem 2.  

Theorem 5. If the system (1.3) is exactly controllable 
on [0 ]  and the operator K  is linear with 0K  , 
then the system (4.1) is exactly controllable on [0 ]  
and the control ( )u t  steering the initial state 0z  to the 
final state 1z  is given by:  

1 1
0 1( ) ( ) ( ) ( ( ) )u t B T t I K z T z       W  

Proof It follows directly from Equation (3).  
The proof of the following lemma follows as in lemma 

5.1 from [1].  
Lemma 2. If F  satisfies the Lipschitz condition  

 2 2 1 1 2 1 2 1

2 1 2 1

( ) ( )

      [0 ]

F t z u F t z u L z z u u

z z Z u u U t 
        

      
 

then  

2 1 2 1 2 1( )   Kz Kz K L z z z z Z       

where 1 2( )K L LH H  and  

1 2

2 1

0

[ ] 1

sup ( )

ML

s t

H M B L e H

M B M T t s









  

    

    W
 

Theorem 6. If F  satisfies the foregoing Lipschitz 
condition, the linear system (1.3) is exactly controllable 
on [0 ]  and  

2 1( [ ] 1)( ) 1MLL M B L e M B   W  (4.19) 

then the non linear system (4.1) is exactly controllable on 
[0 ]  and the control steering the initial state 0z  to the 
final state 1z  is given by:  

1 1
1 0( ) ( ) ( ) ( ( ) )u t B T t I K z T z        W  

Proof From Lemma 2 we know that K  is a Lipschitz 
function with a Lipschitz constant k  given by:  

2 1( [ ] 1)( )MLk L M B L e M B    W  

and from condition (4.19) we get that 1k  . Hence, ap- 
plying Theorem 4 we complete the proof.  
 
5. Applications and Further Research 
 
In this section we consider some control systems gov- 
erned by partial differential equations, integrodifferential 
equations and difference equations that can study using 
these results. Particularly, we work in details the con- 
trolled damped wave equation. Finally, we propose fu- 
ture investigations an open problem. 
 
5.1. The Controlled Semilinear Damped Wave  

Equation 
 
Consider the following control system governed by a 
1D  semilinear damped wave equation  

( ) ( ( ) )

0 1

( 0) ( 1) 0

tt t xx tw cw dw u t x f t u t x w w

x

w t w t

t IR

        
  


   
 

 (5.1) 

where 0d  , 0c  , the distributed control  
2 2

1(0 (0 1))u L t L     and the nonlinear term ( )f t w v u    
is a function 3

1[0 ]f t IRIR    .  
Abstract Formulation of the Problem.  
Now we will choose the space in which problem (5.1) 

will be set as an abstract first order ordinary differential 
equation.  

Let 2[0 1]X L   and consider the linear unbounded 
operator  

( )A D A X X    defined by xxA   , where  

( ) { are a c, (0) (1) 0}x xxD A X X                 
(5.2) 

The operator A  has the following very well known 
properties:  

1) The spectrum of A  consists of only eigenvalues  

1 20 n         

each one with multiplicity one. 
2) There exists a complete orthonormal set { }n  of 

eigenvectors of A .  
3) For all ( )x D A  we have  

1 1
n n n n n

n n

Ax x E x   
 

 

            (5.3) 

where     is the inner product in X  and  
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2 2

and ( ) 2 sin( )

n n n n

n

E x x n

x n x

   

 

    

 
         (5.4) 

So, { }nE  is a family of complete orthogonal projec- 
tions in X  and  

1 nn
x E x x X




     

4) A generates an analytic semigroup { }Ate  given 
by:  

1

ntAt
n

n

e x e E x






              (5.5) 

and 
5) The fractional powered spaces rX  are given by:  

2 2

1

( ) ( )   0r r r
n n

n

X D A x X E x r




         
 

  

with the norm  
1 2

2 2

1

r r r
r n n

n

x A x E x x X
 

 
 
 

 

     

where 

1

r r
n n

n

A x E x




               (5.6) 

Also, for 0r   we define r
rZ X X  , which is a 

Hilbert Space with norm given by:  
2

2 2

r

r

Z

w
w v

v

 
   

 
 

Using the change of variables w v  , the system (5.1) 
can be written as a first order systems of ordinary diffe- 
rential equations in the Hilbert space  

1 2 1 2
1 2 ( )Z D A X X X 
      as:  

1 2( ( )) 0z Az Bu F t z u t z Z t              (5.7) 

where  

0 0 X

X X

Iw
z B A

I dA cIv

   
   
   
   
   

 
         

    (5.8) 

is an unbounded linear operator with domain  
( ) ( )D A D A X   and  

0
( )

( )
F t z u

f t u w v

 
       

          (5 9)  

and the function F: [0,t 1 1 2 1 2] Z X Z    . Since 1 2X   
is continuously included in X  we obtain for all 

1 2 1 2z z Z    and 1 2u u X   that  

 
1 22 2 1 1

2 1 1 2 2 1 1

( ) ( )

  [0 ]

ZF t z u F t z u

L z z u u t t




    

      
  (5.10) 

Throughout this section, without lose of generality, we 
will assume that  

2
14c d   

The following proposition follows from [8] and [1].  
Proposition 1. The operator A  given by (5.8), is the 

infinitesimal generator of strongly continuous group  

 ( )
t

T t IR
 in 1 2Z   given by:  

1 2
1

( ) nA t
n

n

T t z e P z z Z





             (5.11) 

where  
0n n

P


 is a family of complete orthogonal pro- 
jections on the Hilbert space 1

2
Z  given by:  

  1n n nP diag E E n             (5.12) 

and  

0 1
1n n n n

n

A B P B n
d c

 
        

  (5.13) 

This group decays exponentially to zero. In fact, we 
have the following estimate  

2( ) ( ) 0
c t

T t M c d e t
           (5.14) 

where  

2

2 2

4( )
sup 2 (2 )

2 2 4 4

n n

n
n n

c d cM c d
d

c d d c

 

 

       
   

 

(5.15) 

The proof of the following theorem follows in the 
same way as the one for Theorem 4.1 from [1].  

Theorem 1. The system  

1 2

0

0

(0)

z Az Buz Z t

z z
      

  
       (5.16) 

is exactly controllable on [0 ] .  
Theorem 2. If the following estimate holds  

  ( ) 2 1( )[1 ] 1 ( ) 1M c d LL M c d L e M c d W         (5.17) 

then the system (5.7) is exactly controllable on [0 ] .  
Proof It follows from Theorem 6 one we observe that 

in this case 1B  .  
 
5.2. Future Research 
 
These results can be applied to the following class of 
second order diffusion system in Hilbert spaces  

0 ( ) ( )

0

w A w u t f t w u

t w W u U

     

   
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Where W, U are Hilbert spaces, the control 2 (0 )u L U   , 

0 0( )A D A W W    is an unbounded linear operator 
in W  with the spectral decomposition:  

0
1 1 1

j

j k j k j j j
j k j

A w < w > E w


   
 

 
  

       

where 
1

j
j k j k jk

E w < w >
   

  , { }k j   is a complete 
orthonormal set of eigenvectors of 0A  correspondent 
to the eigenvalues 1 2 n       with multipli- 
city n  and 0A  generates a strongly continuous semi- 
group 0{ ( )}tT t   given by:  

1

( ) ,  ,  0j t
j

j

T t w e E w w W t







    

and [0 ]f W U W      is a suitable function.  
Examples of this class are the following well known 

systems of partial differential equations:  
Example 1. The n D wave equation with Dirichlet 

boundary conditions  
2

2

0

0

( ) ( ( ) )

0

( ) 0

0

(0 ) ( )

(0 ) ( )

w
w u t x f t u t x w

t
t x

w t x

t x

w x x

z
x x

t
x






        

  


  

  




 
   

 

   (5.18) 

where   is a sufficiently smooth bounded domain in 
NIR ,  2 2[0 ] ( )u L r L    , 2

0 0 ( )L     and f  is 
a suitable function.  

Example 2. The model of Vibrating Plate  

2
2

2

0

0

( ) ( ( ) )

0

0

0

(0 ) ( )

(0 ) ( )

w
w u t x f t u t x w

t
t x

w w

t x

w x x

w
x x

t
x






         

  


   

  




 
  
 
 

 (5.19) 

where   is a sufficiently smooth bounded domain in 

2IR ,  2 2[0 ] ( )u L r L    , 2
0 0 ( )L     and f  is 

a suitable function.  
Others type of problems are the following control 

problems:  
Example 3. Interior Controllability of the 1D Wave 

Equation  

0

1 ( ) ( ( ) )  

in (0 ) (0 1)

( 0) ( 1) 0      (0 )

(0 ) ( )           in [0 1]

tt xx ty y u t x f t u t x w w

y t y t t

y x y x







       
   

       

   

  (5.20) 

where   is an open nonempty subset of [0 1] , 1  de- 
notes the characteristic function of the set  , the 
distributed control 2 2(0 [0 1])u L L     and the nonlinear 
term ( )f t w v u    is a function 3

1[0 ]f t IRIR    . 
For the interior controllability of the linear wave equa- 
tion one can see [5].  

Example 4. Exact Controllability of Integrodifferential 
1D Wave Equation with Delay.  

0

0

1

( ) ( ( )

in (0 ) (0 1)

( 0) ( 1) 0

(0 )

( ) ( )

in [ 0]  [0 1]

( ) ( )

in [ 0]  [0 1]

t

tt xx

t

y y u t x p s y s r x ds

y t y t

t

y s x y s x

r

y s x y s x

r





       

   


    

 




  
    


   
    



 (5.21) 

where the distributed control 2 2(0 [0 1])u L L    ,  

0 1 [ 0] [0 1]y y r IR        are continuous functions 
and the nonlinear term 1([ ] [0 1])p L r      .  

Example 5. Exact controllability of Semilinear Difference 
Equations  

0

( 1) ( ) ( ) ( ) ( )

( ( ) ( )) (0)

z n A n z n B n u n

f z n u n n z zIN 

   

    
     (5.22) 

where Z , U  are Hilbert spaces, ( ( ))A l IN L Z  , 
( ( ))B l IN L U Z   , 2 ( )u l IN U  , ( )L U Z  denotes 

the space of all bounded linear operators from U  to Z  
and ( ) ( )L Z Z L Z  . The nonlinear term  
f Z U Z    is a continuous Lipschitzian function. 

That is to say: For all 2 1z z Z   and 1 2u u U   we 
have that  

 2 2 1 1 2 1 2 1( ) ( )f z u f z u L z z u u         (5.23) 
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5.3. Open Problem 
 
The solution of the following problem is very important, 
no only to study the approximate controllability of evo- 
lution Equation (1.2), it also can be used to solve others 
mathematical problems.  

The problem can be formulate as follows: Let Z , W  
be Hilbert spaces, ( )G L W Z   and H W Z   is 
a suitable nonlinear function. When the following state- 
ment holds?  

If ( )Rang G Z  and H  is a Lipschitz function with 
a Lipschitz constant h  small enough, then  

( )Rang G H Z   and for all z Z  there is a sequence 

0{ }w W     such that equation  

 
0

lim ( )Gw H w z 
 

    
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