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ABSTRACT 

Budding yeast are a fundamental organism at the 
center of systems biology research. Understanding 
the physiology and kinetics of their growth and di-
vision is fundamental to the design of models of 
gene regulation and the interpretation of experi-
mental measurements. We have developed a Leslie 
model with structured volume and age classes to 
understand population growth and cell cycle syn-
chrony in budding yeast. The model exhibits broad 
agreement with a variety of experimental data. The 
model is easily annotated with volume milestones 
and cell cycle phases and at least three distinct 
goals are realizable: 1) One can investigate how any 
single cell property manifests itself at the popula-
tion level. 2) One can deconvolve observed popula-
tion averages into individual cell signals structured 
by volume and age. 3) One can investigate control-
lability of the population dynamics. We focus on the 
latter question. Our model was initially designed to 
answer the question: Can continuous volume filtra-
tion extend synchrony? To date, most general ex-
perimental methods can produce an initially syn-
chronous population whose synchrony decays rap-
idly over three or four cell cycles. Our model pre-
dicts that continuous volume filtration can extend 
this maintenance of synchrony by an order of mag-
nitude. Our data inform the development of simple 
fluidic devices to extend synchrony in continuous 
culture at all scales from nanophysiometers to bio-
reactors. 
Keywords: Quantitative Biology, Systems Biology, 
Volume Filtration, Cell Cycle 
 
1. INTRODUCTION 

Unlike the simple volume symmetric division of E. Coli 

[1], an initially synchronous culture of budding yeast 
become asynchronous and stationary very rapidly. While 
stable, synchronous, autonomous oscillations have been 
observed and are of enormous interest, they do not occur 
generically and are far from understood [2-5]. Popu- 
lation synchrony is often monitored by tracking the 
percent of a culture that is budded as a function of time. 
The physiological factors influencing the rapid decay of 
cell cycle synchrony in budding yeast were investigated 
three decades ago. It was found that new daughter cells 
take longer to traverse the mitotic cycle than their 
mothers because of a volume asymmetry at division. 
That is, daughter cells at the time of division, are smaller 
in volume than their mothers. Furthermore as mothers 
age they give rise to progressively smaller daughters on 
average [6], compounding the problem. Currently there 
is renewed interest in the physiology of replication in 
relation to aging and the asymmetric partitioning of 
biomolecules between mother and daughter [1,7,8]. 

As yeast are now routinely the subject of expression 
analysis, synchronous growth and division has important 
and largely unexplored implications for attaching mean- 
ing to commonly measured population signals [5,9]. Our 
interest in developing a model for the volume growth and 
population synchrony of budding yeast stems from our 
previous work on an ostensibly simple gene regulatory 
circuit involved in nitrogen catabolite repression (NCR). 
An analysis of a minimal model of the NCR-circuit 
indicates that the components of the system oscillate in 
phase with the cell cycle [10,11]. In order to understand 
how a cellular oscillation is observable at the population 
level, and further, how one could engineer an experiment 
to convincingly demonstrate periodic oscillation at the 
cellular level from a population measurement, we under- 
took the development of a structured population model of 
yeast growth and division to be described. 

The central observations of this study are theoretical 
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in nature and can be summarized as follows. Theore- 
tically, volume symmetric division leads to persistent 
synchrony. Each strain of budding yeast has a charac- 
teristic mean daughter—mother division volume asym- 
metry, some more and some less pronounced. Paren- 
thetically, this asymmetry is a function of growth rate 
and has been shown to be inversely proportional to it 
[12]. As the asymmetry between mother and daughter 
division volume increases, synchrony decays in a predic- 
table way. For a given strain of yeast, growing exponen- 
tially in a bioreactor, our model predicts that continuously 
filtering out the smallest and largest cells extends the 
synchrony of the system. Our model predicts that with 
judicious choices of filtration cutoff volumes, synchrony 
can be extended by an order of magnitude. Given strain 
specific measurements our model can be used to predict 
design parameters such as the filtration cutoff volumes. 
The filtration process can be conceived of, in a way that 
we shall make precise, as a means to restore partial 
symmetry. While it is true that continuous filtration will 
skew the population of cells under observation, it can be 
accomplished without inducing a generic stress response 
within the yeast. This trade off may for certain experi- 
ments be useful. 

The cell cycle synchrony of a population of yeast, its 
persistence, decay and control are essentially an ontolo- 
gically dynamical systems phenomena. There is a long 
and fruitful history associated with the modeling of 
population growth. Budding yeast and their mitotic cell 
cycle continue to be an interesting and important area of 
mathematical cell biology. We make no formal attempt 
to review this enormous literature but restrict our 
attention to those models of which we are aware have 
dealt with volume growth and the effects of a mixed 
population of cells growing with potentially different 
growth rates. The mixed mother-daughter model [13] 
was developed based on the mathematical results of 
branching processes [14,15] to explain the variations in 
the 1G  phase of the cell cycle. This model was used to 
derive a stationary distribution of mothers and daughters 
as a function of the cell cycle. A model developed in [16] 
and expanded on by [12] considered the properties of an 
asynchronous population growing exponentially. A 
central result of their pioneering work was to derive a 
formula for the replicative age distribution at stationarity 
that depends on only two parameters, the culture growth 
rate and the parental doubling time. The formulas and 
analysis derived by Lord and Wheals have continued to 
underpin current models of cell cycle dynamics and 
division [17, see for instance the reset rule at the bottom 
of Table 1]. An admitted limitation of their work 
however is that it explicitly assumes that the growth 
rates among the age classes are the same. Their paper 

presented compelling evidence to support this claim. 
There is also a wealth of evidence to the contrary [6,18], 
and evidence that older mothers grow larger with each 
division. Age structured models that take into account 
this finer but important level of detail were proposed and 
utilized to analyze population signals of a critical protein 
[19], in search of the still elusive link between size 
control and division [20]. 

Population balance models that extend that of 
Hartwell and Unger have been proposed to explore the 
links between metabolism and the cell cycle during 
asynchronous as well as synchronous growth. These 
models are extensively reviewed in [2]. Recently, 
sophisticated population balance models have been cons- 
tructed that take into account the mass changes that 
accompany growth and division and that can vary among 
distinct age classes [21]. The Leslie model that we 
present is a discrete version of the continuous population 
balance model, although our focus is explicitly on 
volume as opposed to mass. The obvious advantage of 
this class of model is that it naturally allows one to 
describe any variation among age classes since they are 
explicitly represented. An important reason for utilizing 
and exploring a volume and age structured model is that 
it captures the effects that influence synchrony and, 
because it is a dynamical systems model, it can directly 
be used to examine the dynamical phenomena of 
synchrony and the effects of filtration as a control 
mechanism. That is the goal of this paper. 

There is a long history of elutriation as a means of 
preparing and examining yeast sub-populations in the 
biological literature [22]. There is also a long history in 
the chemical engineering literature of filtration and 
sedimentation as a means to separate and control the 
growth of micro-organisms [23-25]. These two literatures 
are now converging as systems biology has hit its stride 
and seeks to leverage every available technology to 
 
Table 1. A glossary of milestones and their meaning. 

Symbol  Definition 

k Denotes replicative age.  

kV  The minimal volume of yeast cell of age k.  

kV  The maximal volume of yeast cell of age k.  

k  The exponential growth rate of a yeast cell of age k. 

k--MDV 
The expected volume at which a yeast cell of age k 
will divide. 

k--MEDV
The expected volume of a daughter born from a 
division in age class k. 

k--MEPV
The expected volume of a mother immediately after a 
division event in age class k. 

k--BE 
The expected volume at which a cell of age k begins 
to bud. 
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examine and understand the physiology of networks. As 
described in this paper, the main result of our modeling 
work suggests that continuous volume filtration can 
maintain the synchrony of an initially synchronous 
population for 20 to 30 cycles: An order of magnitude 
improvement. This theoretical result can be put into 
practice utilizing current microfluidic techniques at every 
population scale of investigation from the nanophysio- 
meter up to the bioreactor. 

2. THE LESLIE MODEL 

In a culture of budding yeast, the mitotic cell cycles of 
distinct cells need not be in phase with each other. We 
want to model the dynamics of the mitotic cell cycles of 
a population of budding yeast growing in a bioreactor. A 
description of the dynamics requires a model describing 
the rate at which single cells progress through the mito- 
tic cell cycle. The vital rates correspond to growth, divi- 
sion, aging and death. We describe the vital rates through 
a consideration of two variables, cell volume and 
replicative age, with the aid of a Leslie matrix. Leslie 
models are an important and well studied class of 
structured population models. Structured population 
models are commonly used to describe the life cycle of 
an organism or process. A comprehensive review of their 
mathematical properties can be found in [26]. While we 
wish to highlight certain aspects of the model for its  
utility we in no way want to obscure or jeopardize the 
biological punchline: Continuous volume filtration can 
extend cell cycle synchrony. A heuristic understanding of 

our model can be obtained without recourse to equations 
through the process flow diagram in Figure 1. Figure 1 
is analogous, but not identical, to those described in [19, 
Figure 5] and [21, Figure 3]. 

2.1. Variables 

The model is organized around two variables: 
1) Replicative cell age. As a yeast cell buds during the 
mitotic cell cycle, a chitinous bud scar is permanently 
formed on the mother cell. The bud scars can be 
visualized with calcoflour white staining [27], and like the 
rings of a tree, can be used to determine a replicative age. 
Each generation can be quantitatively identified with the 
equivalence class of those yeast that carry precisely the 
same number of bud scars. Traditionally generations, or 
bud scar equivalence classes, have been denoted by 

0 1 2, , , ,k nP P P P P  . Replicative age has been identified 
as a variable that directly impacts synchrony [6]. 
Replicative age is properly a discrete variable that we will 
index by k , the number of bud scars. 

2) The volume of an individual yeast cell. Cell volume 
has been observed to increases monotonically with time 
until division, within a given age class, and thus is often 
used as a proxy for progression through the mitotic cell 
cycle. The volume of a budded cell is taken as the total 
volume of both the mother cell and the bud, until divi- 
sion at which point they become distinct. The results of 
this paper confirm that volume is intimately connected 
with synchrony. Volume is consistently expressed in units 
of cubic microns throughout. 

 

 
Figure 1. The Leslie model. volume intervals are open circles. Arrows indicate growth or division.           
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2.2. Volume Intervals and Time 

Yeast cells of a given replicative age k, are observed to 
grow in volume between well defined limits. The 
minimum and maximum cell volumes observed from 
experiment are random variables that naturally delimit 
and define intervals, ( ) := [ , ]kkk V V . We consider the 
temporal evolution of the system at a sequence of 
equally spaced times, :=s ot t s t  . The volume 
intervals, ( )k , are partitioned into subintervals 

 ( , ) := ( , ), ( 1, ) ( )I i k V i k V i k k   , with  
( ) = ( , )ik I i k , = 0,1,... ki n , where (0, ) := kV k V , 

and ( 1, ) := kkV n k V . The partitions are chosen 
according to the growth law, within each age class, such 
that any cell with volume in the interval ( , )I i k  now, 
would have a volume in ( 1, )I i k , precisely t  later. 
The unit of time is minutes and we have taken = 1t  
throughout. The choice of the time step was chosen 
based on experimental time series observations of yeast 
growth and model stability. The number of time intervals 

kn  is determined from the choice of time step and the 
experimental values of the volume limits and the growth 
rate equation relating them. The state of the yeast 
population at time st  is described by a vector, 

( , )( ) :

=

( , ).

si k t

number of cells of generation k with volume

v I i k




 

Each of the ( , )( )si k t  cells living in ( , )I i k  at time 

st  are faced with the following possibilities: 
1) The cell dies 
2) The volume of the cell increases 
3) The cell divides 
Each individual yeast does not die or divide at exactly 

the same volume and age. The population distributions 
governing each of these possibilities are functions of our 
independent variables namely volume and age, and are 
indexed by i and k. We describe the relevant details of 
these events and their distributions in the following 
sections. 

2.3. Cell Death 

The probability that cell death occurs is denoted by 

,i kd . Mortality curves have been measured for several 
strains of yeast under a variety of conditions 
[18,28,29](In particular see Table 1 of the latter). These 
data can be used to determine an age class specific death 
rate. In [12] the authors observe that the death rate on 
average amounts to 1010 / ( )cell generation  . 

2.4. Volume Growth 

The probability that growth occurs is denoted by kig , , 
and the fraction of cells that survive and grow is 

)(1:= ,,, kikiki dg  . Volume growth has been measured 
and is generally considered to increase exponentially 
with time. For all of the experiments and analysis in this 
paper we have considered exponential volume growth. 
Let k  denote the age class specific growth rate. Then, 
the volume intervals are conveniently described by 







(0, ) = ,

( , ) = ( , ), ( , )

( , ) = ( , ),

tk
k k

tk

kk k

I k V V e

I i k V i k V i k e

I n k V n k V





















 

2.5. Cell Division 

All cells do not divide precisely at the same volume. The 
probability that a division occurs, at a given volume 
indexed by i, within a given age class indexed by k, is 
denoted , ,:= 1i k i kc  . The importance of including 
sloppy size control in models of growth and division is 
discussed in [30]. We have implemented a variety of 
distributions. Two of the most natural are a Poisson 
process [31] to model division as time to failure, and 
second a Brownian process using a normal distribution. 
As will be described in the results section, qualitatively 
this choice makes little or no difference. The conditional 
mean volume at which a division happens, with respect 
to the distribution kic ,  for fixed k(age), is referred to as 
the k--mean division volume and denoted as k--MDV. 

We assume that the division of a cell of volume v  in 
age class kP  results in a cell of age class 0P  with 
volume v  and a cell of age class 1kP   with volume 
v . Furthermore, =v v v  . We sometimes denote the 
division process as 1k kP P  . It has been 
experimentally observed [6] that after a cell has budded, 
the ensuing volume growth is concentrated almost 
entirely in the bud. This implies that there is a 
conditional probability distribution for v  that depends 
on the size and age of the mother. Let , ,i j k  be the 
probability that after a cell division, 1k kP P  , we get a 
cell of age class 0P  with volume in ( ,0)I i  from a 
dividing cell in ( , )I j k . The conditional expected 
volume, conditioned on a fixed k, with respect to the 
distribution , ,i j k  is referred to as the mean emergent 
daughter volume and denoted k--MEDV. Let, , ,i j k  
represent the probability that a parent cell of volume 

( , 1)I j k   emerges from a division event in ( , )I i k . 
The conditional expected volume of the parent after 
division is denoted k--MEPV. Generally, the distribution 
of division volumes has been observed to be normal 
[32,33]. 

Given these definitions we can present the projection 
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formula that updates the population in time. 

1 1,0 , , ,
,

( ,0)( ) = ( 1,0)( ) ( , )( )s l s l i k i k s
k i

l t l t c i k t         (1) 

1

1, , , 1 , 1

( , )( )

= ( 1, )( ) ( , 1)( );

> 0

s

l m s l i m i m s
i

l m t

l m t c i m t

m


   



      (2) 

),(=))(,( 00 mltml   (3) 

The first summand in each equation represents the 
volume growth contribution while the second summation 
term represents the density coming from division. The 
term , ( , )( )i k sc i k t  represents the fraction of dividing 
cells in volume interval ( , )I i k  and , , , ( , )( )l i k i k sc i k t   
is the fraction of those that end up in the volume interval 

,0)(lI . The first equation represents daughters and is 
distinguished because every division results in a 
daughter. In the higher age classes, > 0m , density from 
division arrives from only one source, namely the age 
class 1mP  . 

2.6. Milestones 

The parameters of the model that we have described in 
the previous three subsections such as kV , k , 

,i kd , ,i kg , k--MDV, k--MEDV, and k--MEPV are 
experimentally measurable quantities associated to a 
particular strain of yeast that often depend on growth 
conditions. We refer to these parameters as general 
volume milestones. For convenience a glossary is 
provided in Table 1. 

An experimentally important measure of cell cycle 
synchrony is the percent of cells in the culture that are 
budded, also known as the bud index. This quantity can 
be computed from ))(,( stki , given an age class 
dependent, bud emergence cumulative distribution 
function, ,i kB . That is, ,0 1i kB  , is a monotonically 
increasing function of i , for each k , and describes the 
probability that the cells in ( , )I i k  are budded. The 
function is monotone because once a cell has budded it 
remains that way until it divides. The mean of the bud 
emergence distribution, for fixed k , is denoted as 
k--BE. The bud index at time st  is the normalized inner 
product: 

,
,

,

( , )( )

( ) :=
( , )( )

s i k
i k

s
s

i k

i k t B

BI t
i k t








 

Careful measurements of bud emergence have been 
made [45] and reveal that the cumulative distribution 
function of the fraction budded cells relative to volume 
derives from an underlying normal distribution. 

Bud emergence is also a hallmark at the end of the 

1G  phase and the beginning of the S-phase of the cell 

cycle. Likewise, other cell cycle phases can be demar- 
cated within each age class. This annotation enhances 
the power and utility of the Leslie model. As discussed 
above the general outline of the process flow in the 
Leslie model is similar to that outlined in [19,21] 
although there are some qualitative differences. In their 
process it is tacitly assumed that the k--MEDV form a 
monotone increasing series as a function of k. We make 
no such assumptions. The model can be implemented 
with measured or arbitrary values. In fact the data 
described in [6] indicate that in fact the k--MEDV form 
a monotone decreasing series as a function of age class k. 

We have utilized the volume milestones of two strains 
in this work. To the best of our knowledge the most 
comprehensive set of milestones have been measured in 
the diploid strain X2180. For this strain the model was 
parameterized with yeast physiology data derived from 
experiments performed over the past four decades [6, 
13,16,33-38]. Among these the data of Woldringh et al. 
[6] are particularly comprehensive, and well suited for 
our modeling. A list of the volume milestones and their 
description are summarized in Table 2. 

Additionally we have utilized the haploid,  -factor 
sensitive strain LHY3865, which is much larger than 
X2180, and for which we have measured many, but not 
all, of the volume milestones, see Table 3. 

The behavior of the model can be investigated with 
arbitrary parameters. For instance we were interested to 
examine how the mother daughter volume asymmetry 
impacts synchrony, all other factors being equal. For this 
part of the study we used a data set that has no analog in 
nature that we are aware of, but was constructed to 
coincide with realistic volume values and exponential 
growth rates, see Table 4. 

2.7. Initial Conditions 

In order to compare the dynamics of our model with data 
we considered several natural initial conditions for our 
computational work. For instance, most experiments that 
follow the bud index oscillations are performed starting 
from an initially synchronized population of cells. 
Historically, several different experimental methods 
have been used to synchronize yeast. These include 
metabolic starvation, elutriation, and pheromone blocks. 
These are described in [22]. Perhaps the most common 
of these is the use of mating pheromones like  -factor, 
that arrests cells in 1G  prior to the cdc28 delimited start. 
Computationally we created an initial condition to 
mimic this population of cells by pruning the time 
invariant population density of each class such that no 
cells exist outside of the terminal 20% of the 1G  
volume intervals prior to the mean bud emergence. The 
pruned population density was then renormalized.  
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Table 2. A list of volume milestones and growth parameters for 
the strain X2180. 

Age(k)  kV    kV   k   BE  MDV MEDV. 

0  14   75   0.0062   38.5  70.7  28.5  

1  40   85   0.0061   46.8  75  24.4  

2  48   87   0.0044   56.1  82.4  24.2  

3  56   94   0.0047   63.9  88.9  22.3  

4-13   64   125   0.0047   76.3  95  22.2  

 

Table 3. A list of volume milestones and growth parameters for 
the strain LHY3865. 

Age(k)  kV  kV  k  BE  MDV  MEDV 

0 30 105 0.0054 59.0 98.0  46.0 

1 45 105 0.0049 69.5 97.5  43.0 

2 53 104 0.0049 68.9 96.6  36.5 

3 60 115 0.0049 78.8 110.4  36.5 

4 73 140 0.0049 95.7 134.1  36.5 

5 97 185 0.0049 155.0 179.1  36.5 

6-13 129 190 0.0049 155.0 179.1  36.5 

 
Table 4. A list of growth parameters to study the impact of the 
daughter to mother volume asymmetry on the decay of 
synchrony. 

Age(k)  kV  kV  k   BE  MDV  MEDV 

0-13  40 110 0.0047 60  100  50  

 
Correspondingly, we will refer to this distribution as the 
 -factor initial condition. 

In the late 1960's Helmstetter [39] had the ingenious 
insight to create what is now referred to as the baby 
machine. The concept can be made to work with 
virtually any dividing cells, but was conceived for yeast. 
Cells are adhered to a membrane and perfused with 
media. As the cells divide the daughters fall into a 
receptacle. The collected 0P  cells can be re-adhered to 
a fresh membrane and the process iterated, with or 
without pheromones, limited only by imagination. In this 
way one can experimentally create and subsequently 
analyze coherent populations. Other clever ways of 
preparing and separating cells also exist [29,40]. 

With the help of a baby machine we have collected 
coherent 0P  cells and run these cells through a Coulter 
counter to measure their volume distribution. Such 
distributions are easy to import into the computer and in 
this way we have created what we will refer to as a baby 
initial condition. 

2.8. Filtration 

The main objective of this study was to observe the 
behavior of a computational population of yeast under- 
going continuous filtration. Here we wish to formally 

define what we mean by filtration. Figure 2 depicts how 
the process works. Two volumes are specified, *V  and 

*V , and together these define a volume interval, 
 *

*:= , ( )kV V k   . In Figure 2, the vertical red 
lines indicate the volumes *V  and *V  and how they 
intersect the various intervals ( )k . All cells, 
regardless of age, whose volume lies outside of   are 
removed from the system at every timestep. 

*
*( , ) ( , ) ( , )( ) = 0sV i k V or V i k V i k t   

This is intended to mimic what one imagines a perfect 
volume filter might do to a real yeast culture. In 
engineering practice this would be called a two stage 
filtration because each of the two defining inequalities 
would be implemented by a separate filter and the 
process carried out in series. 

3. LABORATORY MATERIALS AND 
METHODS 

Yeast cells of Saccharomyces cerevisiae strain LHY3865 
(mat a-URA, LEU, bar1 ) were grown in YNB media 
without ammonia or amino acids and with 100 mg/L 
leucine, 20 mg/L uracil, 0.2%  glutamine, and 2% 
glucose at 30℃. Batch shake flask cultures were grown 
with an agitation of 225 rpm in a New Brunswick 
Scientific Innova 44 orbital incubator/shaker. 1.5 L bio- 
reactor cultures were grown in a 3 L New Brunswick 
Scientific bioreactor with a dilution rate of D = 0.35 hr-1, 
air was sparged through the reactor at a rate of 500 mL/ 
min, and the culture was agitated with two Rushton-type 
impellers ran at 225 rpm. 

 

 
Figure 2. Volume filtration process. The vertical red lines 
indicate volume filters. Cells below the lower or above the 
upper filters are moved from the system. 
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Figure 3. Experimental measurements of bud index synchrony 
and comparison with simulation. Top bud index oscillations of 
the X2180 strain in a shake flask [10]. Bottom is LHY3865 
strain, grown in a bioreactor and synchronized with  -factor. 
 

3.1. Cell Cycle Synchronization 

A 750 mL yeast culture was arrested at a cell density of 
OD = 0.8 through the addition of 53 10 M  -factor 
mating pheromone (Sigma #  63591) and were 
incubated for 3 hours. Cells were subsequently released 
from arrest by pelleting followed by three washes with 
fresh preconditioned media, free of  -factor, con- 
taining 0.1 mg/mL Pronase E (Sigma #  P-6911). The 
pre- conditioned media was prepared by allowing 
LHY3865 yeast cells to grow within the media for 4 
hours at 600 = 0.4OD  before being removed by a 
0.2 μm filter. The synchronized cells were then 
resuspended in 1.5 L of preconditioned media and 
grown in the bioreactor as described above. 0.5 mL 
samples were taken from the bioreactor at a time 
interval of 3 minutes and were immediately frozen in 
50% glycerol by the addition to an ethanol-dry ice bath. 
For batch experiments, samples were taken at a time 
interval of 10 minutes for the first 90 minutes of the 
experiment and then every 20 minutes for the re- 
mainder of the experiment duration. 

3.2. Bud Index Analysis 

Samples were analyzed using a conventional microscope 
for bud index. Each data point consisted of more than 
100 different analyzed cells. Samples were vortexed 
briefly and then sonicated for 1 minute prior to analysis 
to minimize cell clumping to ease analysis. 10  L of 
each sample was then pippetted onto a glass slide to be 
analyzed with the microscope. Cells were individually 
interrogated using multiple focal planes and a 100X 
objective. Yeast cells were only considered budded if a 
septum did not separate the mother from the daughter 
cells. 

4. RESULTS 

When the model is parameterized with the experi- 
mentally determined volume milestones we observe 
excellent agreement between the output of the model and 
experiment for both time invariant properties such as the 
age distribution as well as dynamical properties such as 
the bud index oscillations. This congruence provides 
confidence in our main result: The synchrony of an 
initially synchronous population can be extended by at 
least an order of magnitude through continuous volume 
filtration. We define synchrony as the number of conse- 
cutive bud index oscillations whose amplitude is at at 
least 60% of maximum, that is, varies between less than 
20% budded and greater than 80% budded. 

4.1. Comparison with Experiment 

4.1.1. Bud Index Dynamics 
The Leslie model produces good agreement with 
measured experimental time series. The Leslie model 
qualitatively as well as quantitatively captures the 
dynamics of two different yeast strains with very 
different volume milestones. 

Figure 3 shows the good agreement between the 
Leslie model and the experiments described in [6] with 
strain X2180. We have made careful measurements of 
the bud index oscillations for the α-factor sensitive strain 
LHY3865, both in a batch and continuously operated 
bioreactor. The data shown in Figure 3 are typical of 
those described in the literature over the past 4 decades, 
see for instance [41]. The LHY3865 cells are initially 
synchronized with the mating pheromone  -factor that 
arrests unbudded cells in 1G . The agreement of fine 
structural features between the experiment and simu- 
lation, such as the breadth at the top of the oscillation, 
indicates that the model is capturing the essential 
features of budding yeast volume growth and division. 

Using the bud index experimental data we have 
performed a sensitivity analysis to determine how the 
individual milestones affect the congruence between 
model and system dynamics. The results indicate that the 
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milestones of the daughter generation are the most 
sensitive and the sensitivity decays monotonically with 
age. How well the model dynamics fit the data is most 
sensitive to the mean division volume of the daughter 
generation, followed by the mean bud emergence 
milestone. In general a 10% change in the milestones 
produced less than a 10% change in the overall fit 
between model dynamics and experimental time series. 
This indicates that the basic processes of the model 
robustly capture the dynamical phenomena associated 
with bud index oscillations. 

4.1.2. Stationary Properties 
The model parameterized with the X2180 milestones 
reproduces the measured stationary values within the 
measured deviations where available, see Table 5. The 
measured quantities were the fractions(F) of daughters 
(D), parents(P), budded(B) and unbudded(U). It was 
observed in [13] that a quantitative relationship exists of 
the form 1(1 ( )) =DP G k , where 1( )P G  is the 
percentage of cells in the 1G  phase, D  is the observed 
population doubling time and k  is a constant. This 
would be unremarkable save for the fact that = 1.1k  
hrs was observed over a wide range of growth rates, 
suggesting some universality. The observed population 
doubling time is in reality a population weighted average 
over all the generations and we have computed this 
quantity from the model using two natural ensemble 
averages that produce the same value of = 1.2k  hrs 
that is in close agreement with the experimental value 
for which no standard deviation was reported. 

4.2. Decay of Synchrony with Division 
Asymmetry 

As described in the introduction, it has been well known 
that the volume asymmetry between mothers and 
daughters has a profound effect on the decay of syn-
chrony of initially synchronized populations of budding 
yeast. Since budding yeast display a bewildering array of 
strain variation we felt it legitimate and interesting to ask 
how the amplitude of the bud index oscillation decays as 
a function of inherent volume asymmetry between mo- 
thers and daughters at division. This volume asymmetry 
has a constant mean value for each strain of yeast. 
Essentially this value is MEPV MEDV , when it does 
not vary with k . From the bud index curve we have 
computed the envelope of the oscillation and fit the 
amplitude decay. As expected from the theory, see for 
instance [26] (Subsection 4.7), the decay is exponential. 
The initial rates of decay are described in the top panel 
of Figure 4, while the number of corresponding syn- 
chronous cycles are shown in the bottom panel. The 
computational results show that as expected the number 
of cycles of synchrony declines dramatically with 

volume asymmetry. When the daughter to mother 
volume ratio is 80% the number of synchronous cycles 
has decayed from infinity to one for the X2180 
milestones. 

4.3. Volume Filtration 

We have examined two filtration strategies computa- 
tionally. Figure 2 describes the general filtering scheme. 
In a two stage filtration we impose both an upper and a 
lower volume limit. All cells whose volume lies in 
between are retained in the system, a bioreactor, and the 
rest are continuously removed. In a single stage filtration 
there is only a lower volume limit, and all cells smaller 
than this are removed, those that are larger remain. 

The main two stage filtration results of this paper are 
presented in Figures 5 and 6. After inspecting the 
volume-time diagram constructed in [6], we conjectured 
that it would be possible to emulate the symmetry of 
near equal volume division by filtering out cells that 
were too small or too large. We reasoned that this would 
have the abstract effect of making all the age class grids 
nearly the same. In large part this hypothesis was born 
out as the data show that by a judicious choice of 
filtration parameters we can extend the synchrony from 
1 cycle to close to 20 cell cycles in the X2180 strain and 
from 3 to 30 in the LHY3865 strain. Figure 7 shows the 
bud index profiles associated with several of the 
filtration parameters that describe the range from no 
filtering to the best that we have been able to observe at 
17 cycles for the X2180 milestones. 

Equivalently Figure 8 shows the bud index osci- 
llations of the LHY3865 milestones subject to single and 
double stage filtration. The upper panels show the results 
of single stage filtration. Figure 9 codifies the behavior 
of the single stage filtration of the LHY3865 milestones. 
This figure is annotated with the k-mean daughter 
 
Table 5. Comparison of stationary properties of the model with 
experiment for the X2180 strain. The experimental data are 
reproduced from table 1 of [47] with the exception of the last 
two entries that are taken from [36]. F(D),F(P),F(B),F(U) are 
the fractions of daughters, parents, budded and unbudded 
respectively. 

Property Model prediction Experiment 

F(D) 61.0 60.3 1.8  

F(P) 39.0 39.7 1.7  

F(B) 63.0 66.9 4.0  

F(U) 37.0 33.1 

F(B)    1.2 1.1 

( )F B    1.2 1.1 
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Figure 4. Decay of synchrony as a function of daughter:mother 
volume ratio. Synchrony is computed from bud index 
oscillations. Starting from unimodal population of daughter 
cells distributed in G1. 

 

 
Figure 5. Synchrony computed as a function of two stage 
filtration for strain X2180 milestones. The data indicate that 
there is an optimal ridge of values that produce extended 
synchrony. 

 
Figure 6. Synchrony computed as a function of two stage 
filtration for strain LHY3865 milestones. 
 
emergence volumes. It is clear from the computational 
data that the position of these milestones relative to the 
filtration volume limit determines the range of extended 
synchrony. The fact that there exists a broad volume 
range near the top of the peak ensures that the single 
stage filtration should in practice produce robust results. 

4.4. Invariant Density 

For the general volume parameters and growth kinetics 
of budding yeast, like those detailed in [6], and 
summarized in Tables 2 and 3, the population density 
generically reaches a unique, non trivial stationary state 
[43]. This behavior is observed experimentally. As a 
consequence of the primitivity of the Leslie Matrix and 
the Perron-Frobenious theorem the invariant density can 
be recovered from the model as the 1L -normalized 
eigenvector corresponding to the unique largest 
eigenvalue of the matrix. The state of the system at 
asynchronous exponential growth and is described by 

( ) = tt e X , where   is the population growth rate, 
and X  is the eigenvector that, when normalized in the 

1L  norm, represents the time invariant probability 
density of observing a yeast cell of a given volume and 
age. Figure 10 describes the properties of the invariant 
density, X  computed for the X2180 milestones. As the 
figure shows, the invariant population distribution within 
each age class are smoothed through the use of a 
distribution of emergent parent and daughter volumes 
upon division. We examined a family of normal 
distributions and the qualitative features are insensitive 
to the specific details, such as the value of  . 

The stationary daughter distribution exhibits an 
inflection point at the population weighted average of 
the k--MEDV from all age classes with > 0k . Because 
of the birth of new daughters coming from all age 
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classes, the daughter distribution is the only generation 
to exhibit bimodality. A local maximum appears just 
ahead of the 0-MEDV milestone that result from the 

0 1P P  division. The daughter density distribution 
decays with increasing volume after the global 
maximum as a linear combination of two exponentials. 
The structure of the invariant density is similar to those 
hypothesized in earlier works [3,29,35,40]. The invariant 
density within the parent age classes, kP  for > 0k  
are similar to each other in that they achieve a global 
maximum that decays exponentially with increasing 
volume. For all age classes other than the daughter  

 

 

 

 

 

Figure 7. Bud Index oscillations of strain X2180 milestones 
for various filtration parameters. Top left unfltered system, 
clockwise limits, in units of cubic microns: [34; 91], [30; 90], 
and [30; 71] respectively. 
 
generation, the invariant density is indistinguishable 
from the function 12A  , where the constant A is 
arbitrary and the simple linear function 

0 1 0= ( ) / ( )v v v v    rescales the volume interval into 
the unit interval. This agrees well with the theory 
described previously [3,29,35,40]. 

4.5. Age Distribution 

Since replicative age can be distinguished through bud 
scar analysis it is possible to determine the age 
distribution of a culture of yeast. For instance, if we 
select a cell at random from a culture of X2180 cells 
during asynchronous, exponential growth in a bioreactor 
we will have a less than 1 in 3 chance of observing a 1P  
and about a 1 in 6 chance of finding a 2P . 

It is of interest to understand how each age class is 
weighted during oscillations as well as once the density 
becomes stationary [12,19,43,44]. The age distribution 
of a symmetrically dividing organism decays like the  

geometric series 1
=0

1
( )
2

k
k

 . For budding yeast the age  

distribution is more complicated. Lord and Wheals [12] 
derived a parsimonious formula based on the culture 
doubling time and the doubling time of the parents, P . 

The age distribution computed using the X2180 
milestones, shown at lower left in Figure 10 shows 
excellent, agreement with the experimental data of Beran 
et al. [43] for a strain of Saccharomyces cerevisiae 
grown in a bioreactor at comparable dilution rates. The 
formula of Lord and Wheals was fit by least squares to 
the Leslie model data through the variable P . The best 
fit value of = 88.3P  minutes is however uninter- 
pretable in relation to the X2180 parameters. For 
instance the average, maximum doubling time of the 
parent generations is calculated as 136.6 minutes, while 
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the average minimum doubling time time is 96.8 
minutes. These latter two values should realistically 
bookend the mean doubling times. 

Based on a consideration of population flux and flux 
transit time we have been able to derive a recurrence 
relation that explains the observed non-geometric decay 
of the age distribution in terms of the growth parameters  
 

 

 

 
 
 

 

 

Figure 8. Bud index oscillations of LHY3865. Top panels 
single stage, bottom are two stage filtration. Right panels are 
best achievable. Parameters cubic microns are clockwise from 
top right: 39, 42, [37; 100] and [33; 178]. 
 
that extends previous works [12,44]. This analysis is to 
be presented elsewhere. 

Given the general exponential decay of the age 
distribution we have contented ourselves to represent 14 
generations computationally. Experimentally mortality 
curves for replicative age has been measured for some 
strains of budding yeast [18,29,30]. It has been observed 
there that some yeast can survive upwards of 60 
divisions. From the decline in the age distribution we 
have observed that practically, 20,30,40 generations or 
more, need not be represented in the model to precisely 
capture the dynamics of the system. We know of no 
experimental data sets that have completely charac- 
terized more than the first 8 age classes. The precise 
connection between senescence and replicative aging is 
currently undecided and is an interesting area of intense 
activity. 

5. DISCUSSION 

The Leslie model captures the dynamics of bud index 
oscillations and their decay. We have shown that there is 
good agreement between measured data and the 
predicted bud index oscillations for two different sets of 
strain milestones, one haploid and one diploid, of 
different volume extents and growth rates. The different 
strains of yeast display quantitatively different behavior 
with regard to their decay of synchrony as we have 
defined it. The X2180 strain exhibits 1 synchronous 
cycle while the LHY3865 strain displays 3. The model 
captures this difference. This instills confidence in the 
model predictions of synchrony. The strain milestones in 
both cases contain measurement error and are 
incomplete especially in generations higher than the 
fourth age class. The agreement of the model and the 
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experimental data, despite these errors, exposes the 
robustness of the processes and the ability of the Leslie 
model to capture the essentials of the asymmetric growth 
and division process. These claims are supported by the 
results of a sensitivity analysis. 

It is well known that theoretically volume symmetric 
division is a degenerate case that leads to persistent 
synchrony [31,42]. Several well known avenues allow 
the manipulation of the division volume asymmetry. 
Lord and Wheals observed [12], as have many others, 
that age class growth rates depend linearly on the culture 
doubling time and estimated that there exists a growth 
rate that if achievable would produce balanced and 
presumably synchronous growth. Growth rates are most 
typically affected through variation of nitrogen or carbon 
source. It has also been observed that drugs such as 
hydroxyurea can induce nearly symmetric division [39]. 
It is well known that strain variations influence division 
volume asymmetry. We have explicitly examined the 
relationship between division volume asymmetry and the 
number of synchronous cycles of bud index oscillations. 
Our intentions in doing so are two fold. First, we 
imagine that if a legitimate relationship exists then it 
may be possible through a judicious mutation to create 
strains of yeast with predefined synchrony. Second, we 
see a direct relationship between the control of syn- 
chrony through continuous volume filtration and the 
natural synchrony that results from volume symmetric 

division. What this means is that a volume filter is seen 
in the abstract as a mechanism for restoring partial 
symmetry to an underlying volume asymmetric system. 
For instance, consider Figure 2. The volume grids of the 
different generations are not a priori commensurate, 
however the volume grids that live between the filter 
cutoffs are more so. Those cells that are far from the 
symmetry conditions are removed from the system, 
leaving the remainder more synchronous. The intrinsic 
asymmetry that volume filtration cannot influence are 
the volume milestones such as k-MEDV, k-BE and 
k-MDV. These however can be influenced by mutation 
and or nutrients. The combination of mutation, media 
composition and continuous volume filtration is 
therefore expected to be able to produce budding yeast 
that are remain synchronous for long periods of time 
starting from a homogeneous initial condition. 

We have explored both single and double stage 
filtration. We explored single stage filtration and present 
it here because it is far easier to implement in practice 
and it appears to produces results that could be observed 
with even a crude device. The results indicate that there 
exist robust windows of volume that can be used to 
control synchrony. An example can be seen in the single 
stage results, Figure 9. There is a broad peak around 

3μm 41 , approximately 3μm 4  in width that produces a 
roughly 4 fold extension in synchrony. This result if 
correct implies that even a crude filtration device should  

 
 

 

Figure 9. Single stage filtration for LHY3865. Cells below cutoff continuously removed. Synchrony measures successive cycles of 
Bud index oscillation that maintains at least 60% of its total amplitude.        
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produce observable changes. We are currently exploring 
design equations for such a device. 

Continuous filtration is a control mechanism that 
will alter the population structure relative to a unfiltered  

 

 
 

 

 

Figure 10. Invariant density for X2180. Clockwise from upper: 
P0, P6 and P13 distributions. Lower left compares model age 
distribution with data of Beran et al. [43] and formula of Lord 
and Wheals [24]. 
 
population. A population structure that will be altered in 
the filtered population are the volume distributions and 
the overall age distribution. How, and to what extent the 
age distribution is affected can be analyzed with the 
model. The results of this analysis are to appear else- 
where. Continuous filtration, we think, can be accomp- 
lished experimentally without inducing a general stress 
response in the individual cells of the population. 

We observe that while we have explored here the very 
specific application of volume filtration, the Leslie 
model can be used to explore a much broader range of 
questions that are of continuing interest in yeast 
physiology and in the larger picture of systems biology. 
For instance, as has been observed previously [19,22], it 
is possible to use the model to investigate how signals 
from single cells manifest themselves at the populations 
level. With the addition of volume filtration it will be 
possible to study cell cycle dependent protein expression 
more extensively. 

A use that has been little explored to date is how a 
signal, periodic in the cell cycle, such might be 
conceived for a gene expression, manifests itself at the 
population level. When signals are routinely evaluated 
by grinding up large numbers of cells and pooling their 
mRNA for instance, such questions seem reasonable. We 
have previously observed that how one grinds up the 
cells in such a situation has quantifiable effects that 
depend on the cell cycle [45]. Any extensive quantity 
that varies in a single cell with the cell cycle can be 
examined with this model. For example oxygen con- 
sumption, glucose uptake, or mRNA production of the 
population can be studied given measured or putative 
data from single cells. Conversely, it is also possible to 
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use the model to deconvolve population ensemble ave- 
rages into individual cell signals. 

Finally, a physiological component that has not been 
included into the current model are the putative 
asymmetric effects that are now emerging in the study of 
chronological aging and senescence [7]. It is well known 
that aging occurs in organisms such as Escherichia coli 
and fission yeast that undergo morphogenically sym- 
metric division [1]. Given the success of the Leslie 
model in matching the dynamics of the bud index 
oscillations for a few cell cycles, it is tempting to sug- 
gest that deviations between the Leslie model and the 
dynamics of yeast with a variety of aging phenotypes 
may provide new and otherwise difficult to attain insight 
into the rate and effects of senescence. 
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