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ABSTRACT 

In biology, signal transduction refers to a process 
by which a cell converts one kind of signal or sti-
mulus into another. It involves ordered sequences of 
biochemical reactions inside the cell. These cas-
cades of reactions are carried out by enzymes and 
activated by second messengers. Signal transduc-
tion pathways are complex in nature. Each pathway 
is responsible for tuning one or more biological 
functions in the intracellular environment as well as 
more than one pathway interact among themselves 
to carry forward a single biological function. Such 
kind of behavior of these pathways makes under-
standing difficult. Hence, for the sake of simplicity, 
they need to be partitioned into smaller modules 
and then analyzed. We took VEGF signaling path-
way, which is responsible for angiogenesis for this 
kind of modularized study. Modules were obtained 
by applying the algorithm of Nayak and De (Nayak 
and De, 2007) for different complexity values. These 
sets of modules were compared among themselves 
to get the best set of modules for an optimal com-
plexity value. The best set of modules compared 
with four different partitioning algorithms namely, 
Farhat’s (Farhat, 1998), Greedy (Chartrand and 
Oellermann, 1993), Kernighan-Lin’s (Kernighan 
and Lin, 1970) and Newman’s community finding 
algorithm (Newman, 2006). These comparisons en-
abled us to decide which of the aforementioned al-
gorithms was the best one to create partitions from 
human VEGF signaling pathway. The optimal com-
plexity value, on which the best set of modules was 
obtained, was used to get modules from different 
species for comparative study. Comparison among 
these modules would shed light on the trend of de-
velopment of VEGF signaling pathway over these 
species. 

Keywords: Signal Transduction Pathway, VEGF Path-

way, Complexity Value, KEGG Database, Modulariza-
tion, Newman’s Community Finding Algorithm, Ker-
nighan-Lin’s Algorithm, Farhat’s Algorithm, and Greedy 
Algorithm. 
 

1. INTRODUCTION 

The ability of cells to receive and act on signals from 
beyond the plasma membrane is fundamental to life. 
This ability of cells to respond correctly to their micro-
environment is the basis of development, tissue repair, 
immunity and normal tissue homeostasis. Cells respond 
to their environment by recognizing their structure, re-
gulating the activity of proteins and finally by altered 
gene expression. The stimulus for such type of responses 
is known as signal. Signals interact with the responding 
cell through molecules, called receptors [1]. For example, 
cells receive constant input from membrane proteins that 
act as information receptors, sampling the surrounding 
medium for pH, osmotic strength, and the availability of 
food, oxygen and light and the presence of noxious 
chemicals, predators or competitors for food. These sig-
nals elicit appropriate responses like motion towards 
food or away from toxic substances [2]. In multi-cellular 
organisms, cells with different functions, exchange a 
wide variety of signals. For example, plant cells respond 
to growth hormones and to variations in sunlight. Ani-
mal cells exchange information through the concentra-
tions of ions and glucose in extra-cellular fluids, the in-
terdependent metabolic activities, taking part in different 
tissues, and in an embryo, the correct placement of cells 
during development. So, we can get the concept that in 
all the cases, signal represents information that is de-
tected by specific receptors and converted to a chemical 
process. This conversion of information into a chemical 
change or signal transduction is a universal property of 
living cells. Errors in cellular information processing are 
responsible for diseases such as cancer, autoimmunity 
and diabetes. By understanding cell signaling, diseases 
may be treated effectively. Systems biology research 
helps us to understand the underlying structure of cell 
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signaling networks and how changes in these networks 
may affect the transmission and flow of information. 

Signal transduction is specific and exquisitely sensi-
tive [2]. In unicellular organisms, signals are of envi-
ronmental origin and diffusible in nature. Signals, in 
metazoans, are paracrine (e.g. neurotransmitters); they 
release from the nearby cells and diffuse over short dis-
tances. In the case of endocrine signals (e.g. hormones), 
they may be released from distant cells and vascular 
system sends them to their targets. Macromolecular sig-
nals are associated with the extra-cellular matrix or on 
the surface of the neighboring cells, and they are called 
juxtacrine signals. It requires two adjacent cells to make 
physical contact in order to communicate. Some cells 
require direct cell-cell contact; others form gap junctions 
to connect to the cytoplasm of other cells’ cytoplasm for 
communication. A molecular signal that binds to a re-
ceptor is a ligand. As signaling pathway is made up of 
many different input and output nodes that make it, 
complex network, it is difficult to study and analysis. So 
the idea to divide it into small bio-significant modules, 
through the process called modularization came into 
light. A module is a subset of the original pathway, 
which has minimal dependency on the rest part of the 
network [3]. Here, the idea is to divide a pathway in 
such a way that the complexity of resulting modules is 
much less than that of the entire pathway, which pro-
vides an easier way to study the entire pathway. Many 
methods are developed to divide a network into smaller 
divisions. 

Here, we considered Vascular Endothelial Growth 
Factor (VEGF) pathway for applying different partition-
ing algorithms. It has a receptor, i.e., VEGFR, which is 
activated by ligand. Ligand binding to the receptor leads 
to receptor homodimerization or heterodimerization. 
Dimerization of receptors leads to their activation and 
subsequent autophosphorylation on certain tyrosine re-
sidues. It has many types of receptors. The receptors for 
vascular epithelial growth factor (VEGF) and related 
ligands are VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), 
VEGFR-3 (Flt-4), neuropilin-1 and neuropilin-2. The 
interaction of VEGFR with either neuropilin-1 (NRP-1) 
or heparan sulfate proteoglycan helps in binding VEGF 
to its receptor. These receptors have multiple immu-
noglobulin G-like extra-cellular domains and intracellu-
lar tyrosine kinase activity. The human gene for VEGF 
resides on chromosome 6p21. The coding region spans 
14 kb and contains eight exons. Alternative splicing of a 
single pre-mRNA generates several distinct VEGF spe-
cies. There are several splice variants of VEGF, like 
VEGF 121, 145, 165, 189, and 206. Among them, VEGF 
165 is the predominant form [4]. VEGF family has other 

members also. These are VEGF-B, -C, and -D, and Pla-
cental Growth Factor (PlGF). VEGF binds to VEGFR-1 
and 2, and triggers angiogenesis. 

PlGF is localized to the placenta and binds only to 
VEGFR-1. VEGF-B also binds only to VEGFR-1, and 
has function in coronary vascularization and growth. 
VEGF-C and VEGF-D activate VEGFR-2 and -3 but not 
VEGF-1. VEGF-C is involved in lymphangiogenesis. 
The function of VEGF-D is unknown [5]. For activation 
of the signaling pathway, VEGF binds to at least two 
transmembrane Flt-1 (VEGF receptor-1) and Flk-1/KDR 
(VEGF receptor-2). Both these are tyrosine kinase re-
ceptors. This results in tyrosine phosphorylation, and 
activation of phosphatidylinositol 3-kinase (PI3K) and 
phospholipase Ca2+ (PLC-γ). PLC-γ forms two mole-
cules, Diacylgylcerol (DAG) and Inositol (1, 4, 
5)-trisphosphate (IP3). These two further activate PKC 
and release Ca2+. PI3K activates Akt. PKC, calcium and 
Akt activate endothelial Nitric Oxide Synthase (eNOS). 
It releases NO that is responsible for vasodilation and 
increased vascular permeability. The role for PLC-γ, 
PKC, calcium and NO in VEGF-induced hyper perme-
ability has been confirmed in isolated coronary venules, 
and the involvement of PI3K/Akt and NO was demon-
strated in human umbilical vein endothelial cell (HU-
VEC) monolayer [6]. Further, it also triggers intracellu-
lar signaling cascade that are able to recognize and dock 
at phosphorylated tyrosine residues of the activated re-
ceptors. These interactions are mediated by Src, phos-
phatidylinositol 3-kinase (PI3K), Shc, Grb2, and the 
phosphates SHP-1 and SHP-2 and other domains of the 
signaling proteins. 

VEGF receptor activation can induce activation of the 
MAPK cascade via Raf stimulation. It leads to gene ex-
pression and cell proliferation. Activation of PI3K leads 
to PKB activation and cell survival; activation of PLC-γ 
leads to cell proliferation, vasopermeability and angio-
genesis. VEGF regulates several endothelial cell func-
tions, including proliferation, differentiation, permeabil-
ity, vascular tone and the production of vasoactive mo-
lecules [5]. H. sapiens VEGF pathway taken from 
KEGG database is given in Figure 1. 

The organization of this article is as follows. The next 
section describes the methodology of algorithm of 
Nayak and De in detail, and then introductory descrip-
tion of Kernighan-Lin’s, Farhat’s, Greedy and Commu-
nity finding algorithms has been given. After that, we 
provide results in which we analyzed output got through 
implementing different partitioning algorithms. Species’ 
evolution based comparison has also been done over the 
modules got through applying the algorithm of Nayak 
and De.    
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Figure 1. VEGF signaling pathway of H. sapiens present in KEGG pathway database. 

 

2. METHODOLOGY 

Many algorithms are proposed for the partition of a net-
work. We compared the algorithm of Nayak and De [3] 
with community finding algorithm of Newman, Farhat’s, 
Greedy and Kernighan-Lin’s algorithms. Farhat’s, Greedy 
and Kernighan-Lin’s algorithms are graph partitioning 
algorithms and they need cut size and cut number for 
partitioning a network. Newman’s community finding 
algorithm has been applied to one category of bioche- 
mical networks (metabolic pathways). The chosen set 
provided a good mix of algorithms that belong to atleast 
three categories. They provide a uniform platform for the 
comparative study. But by no means, this set of chosen 
algorithms is an exhaustive one. 

Algorithm of Nayak and De works on a biochemical 
pathway which has gene products and chemical com-
pounds. Here, the pathway is considered as a graph, gene 
products and chemical compounds are nodes. Edges 
show protein-protein interaction, protein-compound in-
teraction or link to another map. The total number of 
relations with n as either a preceding or succeeding node 
is given by Tn = Rnp+Rns, where Rnp and Rns are out-
degree and indegree, respectively, of a node n. The term 
Tn is the total degree of the node. According to algo-
rithm, a node is detected which has maximum number of 

relations in the node pool E for a given network. This 
detected node is considered as a “starting node”. This is 
always considered as a “permanent member”. Permanent 
member is removed from the pool E. By defining the 
starting node, an initial module is created for relation r. 
Here, n may be a predecessor or a successor. After ini-
tialization of the module, the total number of relations of 
every individual member is considered.  

Now, a node is checked for its permanency. If the 
number of relation lying inside the module is equal to 
the total number of relation associated with the node, 
then, it is permanent member. If a node in a module has 
more than c relations lying outside the module, it is ex-
cluded from the module with decreasing the previous 
non permanent nodes’ total relation by one. This certain 
number of relations is known as complexity level c 
which can be set by the user. This process is continued 
until we have no new immediate neighboring node to be 
included or no node is left to be declared permanent. 
One important fact is that if a member X is present four 
times in a network, it will be considered four times like 
X1, X2, X3 and X4. After formation of a module, it 
searches for another starting point and repeat all above 
mentioned steps. This process will terminate when all 
the nodes of node pool E are exhausted. 

This algorithm had been applied for different c-values 
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for VEGF KEGG pathway database http://www.ge-
nome.jp/kegg/pathway.html#environmental. Then, ap-
propriate c-value had been selected for comparative 
analysis of different species present in KEGG. KEGG 
has KGML layout which has XML files. These XML 
files’ coding was used to give input for the algorithm. 
Species of which KGML layout and XML coding were 
present in KEGG were considered for the comparative 
study of VEGF pathway. The species were H. sapiens 
(human), P. troglodytes (Chimpanzee), M. musculus 
(mouse), R. norvegicus (rat), C. familiaris (dog), B. tau-
rus (cow), S. scrofa (pig). 

Kernighan-Lin’s algorithm is a heuristic algorithm 
applied for graph partitioning problems. It has important 
applications in the layout of digital circuits and compo-
nents in VLSI. B. W. Kernighan and S. Lin has proposed 
an heuristic method in paper [7] to partition of the graph 
in such a way that it would be effective in finding opti-
mal partitions. They deal with a combinatorial problem 
and partition of a graph G into subsets those would be no 
larger than a given maximum size. In this way, total cost 
of the edge cut is minimized. 

Greedy algorithm [8] works well when a problem has 
greedy choice property and optimal substructure. It 
makes local optimal choice at each stage and tries to find 
global optimum. Farhat in 1988 has presented an algo-
rithm which is an efficient non-numerical algorithm for 
the automatic decomposition of an arbitrary finite ele-
ment domain into a specified number of balanced sub-
domains [9]. It is found to be effective for the imple-
mentation of concurrent solution strategies on high per-
formance architectures. 

Community structure detection is used for social net-
works, internet and web data, biochemical networks or 
gene network. Here, it is assumed that the network of 
interest divides naturally into subgroups, and the re-
searchers find those groups. So, we can say that the 
number and size of the subgroups are determined by the 
network itself and not by the researcher. It has been ap-
plied to metabolic pathways. It divides a network in 
which good modules are not present. So, we can say that 
it is based on the properties of the network. Modularity 
score is directly dependent on the network architecture, 
adjacency matrix and eigenvalues of a symmetric matrix 
calculated from the adjacency matrix. Positive value of 
modularity means there is presence of modules in a net-
work and a negative value shows that division is not 
possible [10]. 

3. RESULTS AND COMPARATIVE 
ANALYSIS 

Species those were available in KEGG database had 

been considered for the comparative study. They are H. 
sapiens (human), P. troglodytes (Chimpanzee), M. mus-
culus (mouse), R. norvegicus (rat), C. familiaris (dog), B. 
taurus (cow), S. scrofa (pig). The gradual development 
of this pathway in some species had been studied with 
respect to VEGF pathway of H. sapiens using the algo-
rithm of Nayak and De. We applied all selected algo-
rithms to VEGF signaling pathway of H. sapiens as ob-
tained from KEGG database and compared their per-
formances. 

3.1. Modularization of VEGF Signaling Pathway 
of H. Sapiens using Different Algorithms 

We took different c-values and studied various modules 
obtained by the algorithm of Nayak and De. Then, by 
analyzing all the modules for different c-values, we 
chose a particular c-value for the comparative study of 
organisms. VEGF signaling pathway of H. sapiens has 
40 nodes and 34 relations. Modules were created for c = 
1, 2, 3, 4 and 5. 

For c = 1, we had 12 modules shown in Table 1. 
Number of modules was reduced, as complexity level 
was increased. For c = 2, node MAK1 merged with cen-
tral node (PLCG1, PLC1) as shown in Table 2. Now, 
this node had function of cell survival and migration of 
vesicular endothelial cell [11]. For the same complexity 
value, another central node, MAPK14 merged into cen-
tral node KDR. KDR has role in cell proliferation and 
growth function along with previous function of focal 
adhesion turnover and cell migration. It had paxillin and 
FAK as node members. Paxillin acts as a focal adhesion 
adaptor in focal adhesion dynamics and cell migration. 
Paxillin-FAK interaction is involved in Erk activation 
[12]. For c = 2, we had 6, and for c = 3, we had 4 mod-
ules as shown in Table 3. The node AKT3 was present 
as central node for c = 2 but it combined with PIK3R5 as 
we changed complexity to c = 3. It resulted in having 
multiple functions for the node AKT3. For c = 3, 
PIK3R5 functioned for permeability, vasodilatation as 
well as for cell survival and nitric oxide release [13]. For 
c = 2, there was a central node called CHP that had 
members (NFAT5), (PTGS2). But for c = 3, it merged 
with central node (PLCG1, PLC1). CHP, a central node 
for c = 2, had NFAT as a member, which is a family of 
transcription factors. It has at least four structurally sim-
ilar members, e.g., NFATp (NFAT1), NFATc (NFAT2), 
NFAT3 and NFAT4. NFATc is present in endocardium, 
and is involved in morphogenesis of cardiac valves, 
septum and also in heart organization during develop-
ment [14]. It regulates the properties of reserve cells. 
SMC uses NFAT signaling for adaptation. Calcineurin 
(CHP) is a Ca2+/CAM dependent phosphatase that regu-
lates the process of dephosphorylation and nuclear im-
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port of NFAT. Another member PTGS2 is a target of 
NFAT and is involved in prostaglandin synthesis during 
angiogenesis. It is necessary for the migration of endo-
thelial cells to allow the proper formation of endothelial 
tubes and postnatal angiogenesis in vivo [15]. For c = 2, 
(PRKCA) was a central node which had members (RAF1), 
(SPHK 2) and (HRAS, HRAS1), but for c = 3, the same 
central node had no members and as complexity was 
increased, it became a single node. For c = 4 and c = 5, 
the number of modules created were the same but this 
number was less as many central nodes merged. These 
modules were large enough to study and analysis. 

3.2. Changes Found with the Increased  
Complexity Values 

We found that different c-values gave different number 
and complexity of modules. Number of modules was 
decreased as we increased the c-value. This resulted in 
over splitting. Many different modules were combined  
 

Table 1. Modularization for c = 1 for H. sapiens VEGF sig-
naling pathway. 

S. No. Central Node Other Nodes 

1 (KDR) 
(VEGFA,VEGF),(SHC2), 
(PTK2), (PXN) 

2 (PLCG1, PLC1) (SH2D2A) 

3 (AKT3) (NOS3), (CASP9), (BAD) 

4 (PRKCA) - 

5 (CHP) - 

6 (PIK3R5) (RAC1),(SRC) 

7 (RAF1) - 

8 (MAPK1) (PLA2G2D), (MAP2K1) 

9 (MAPK14) (CDC42) 

10 (HRAS, HRAS1) (SPHK2) 

11 (MAPKAPK3) (HSPB1) 

12 (NFAT5) ( PTGS2) 

 
Table 2. Modularization for c = 2 for H. sapiens VEGF sig-
naling pathway. 

S. No. 
Central 
Node 

Other Nodes 

1 (KDR) 
(VEGFA, VEGF), (SH2D2A), (SHC2), 
(PTK2), (PXN), (CDC42), (SRC), 
(MAPK14), (MAPKAPK3), (HSPB1) 

2 
(PLCG1, 
PLC1) 

(PLA2G2D), (NOS3), (MAPK1), (MAP2K1)

3 (PRKCA) (RAF1), (SPHK2), (HRAS, HRAS1) 

4 (PIK3R5) (RAC1) 

5 (CHP)  (NFAT5), (PTGS2) 

6 (AKT3)  (CASP9), (BAD) 

Table 3. Modularization for c = 3 for H. sapiens VEGF sig-
naling pathway. 

S. No.
Central 
Node  

Other Nodes 

1 (KDR) 

(VEGFA, VEGF), (SH2D2A), (SHC2), 
(PTK2), (PXN), 
(CDC42), (SRC), (MAPK14), (MAP-
KAPK3), (HSPB1) 

2 
(PLCG1, 
PLC1) 

(CHP), (PLA2G2D), (NOS3), (NFAT5), 
(MAPK1), (PTGS2), 
(MAP2K1), (RAF1), (HRAS,HRAS1), 
(SPHK2) 

3 (PRKCA) - 

4 (PIK3R5) (RAC1), (AKT3), (CASP9), (BAD) 

 
and increased in size with increase in c-value. With in-
crease in c-value, new members were inserted in a cer-
tain module or changed its earlier central node. As we 
took the case of VEGF signaling pathway of H. sapiens, 
we found just half number of modules with decrease in 
c-value by one, i.e., for c-value of two, we had six mod-
ules whereas, the number was 12 for c = 1. But, for c = 4 
and 5, size and number of modules, and the number of 
their members became static (in Tables 4 and 5 respec-
tively). The names of central nodes and their members 
for different c-values are given in Tables 1-5. 

3.3. Fixing the Complexity Values 

Now, by assigning different c-values, we had different 
sets of modules. So, by analyzing all the modules thor-
oughly, we understood that for c = 5, we should have  
 
Table 4. Modularization for c = 4 for H. sapiens VEGF sig-
naling pathway. 

S. No.
Central 
Node 

Other Nodes 

1 (KDR) 

(VEGFA, VEGF), (SH2D2A), (SHC2), 
(PTK2), (PXN), 
(CDC42), (PIK3R5), (SRC),(MAPK14), 
(RAC1), (AKT3), (MAPKAPK3), (NOS3), 
(CASP9), (BAD), (HSPB1) 

2 
(PLCG1, 
PLC1) 

(CHP), (PRKCA), (PLA2G2D), (NFAT5), 
(RAF1), 
(SPHK2), (MAPK1), (PTGS2), 
(HRAS,HRAS1), (MAP2K1) 

 
Table 5. Modularization for c = 5 for H. sapiens VEGF sig-
naling pathway. 

S. No.
Central 
Node 

Other Nodes 

1 (KDR) 

(VEGFA, VEGF), (SH2D2A),(SHC2), 
(PTK2), (PXN), (CDC42), (PIK3R5), 
(SRC), (MAPK14), (RAC1), (AKT3), 
(MAPKAPK3), (NOS3), (CASP9), (BAD), 
(HSPB1) 

2 
(PLCG1, 
PLC1) 

(CHP), (PRKCA), (PLA2G2D), (NFAT5), 
(RAF1), (SPHK2), (MAPK1), (PTGS2), 
(HRAS, HRAS1), (MAP2K1) 
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stopped modularization process. Because for c = 4 and c 
= 5, we had the same set of modules. Even for c = 3, 
number of modules were less and they were merged, and 
thereby, it was unworthy to proceed. As per above anal-
ysis, it was clear that for higher c-values, number of 
nodes and relations were greater than that we got for c = 1 
as nodes started merging with other nodes. For c = 1, we 
had sufficient nodes, and relations for most of the nodes 
of this pathway. By analysis of all the modules for dif-
ferent c-values, we assumed that increase in c-value 
gave almost similar output as nodes got merged. Module 
names, their number of nodes and relations for different 
c-values for H. sapiens VEGF signaling pathway are 
shown in Table 6. We were getting a simplified and bio-
logically significant network for c = 1. We found c = 1 to 
be an optimal one, because for this c-value, network was 
modularized properly and not too much over splitting 
was occurred. This made us to fix c-value to 1 for VEGF 
signaling pathway of H. sapiens. 

3.4. Comparison of Algorithm of Nayak and De 
with Newman’s Community Finding  
Algorithm 

For the algorithm of Nayak and De, we got modules 
where central nodes were defined but it was not the case 
with Newman’s algorithm. By applying Newman’s algo- 
rithm, we got four modules while it was 12 for the algo- 
rithm of Nayak and De for c = 1. Thus, we found less  

number of modules by Newman’s algorithm. Hence, the 
complexity of the modules obtained by Newman’s algo-
rithm was quite high compared to those generated by the 
algorithm of Nayak and De. This may defeat the objec-
tive of modularizing a signal transduction pathway. 
Nodes of a created module obtained by Newman’s algo-  
 
Table 6. Module names and their number of nodes and rela-
tions for H. sapiens VEGF signaling pathway. `N’ represents 
number of nodes and `R’ stands for number of relations. 

S.No
Module 
Name 

c = 1 c = 2 c = 3 c = 4 c = 5 

  N R N R N R N R N R

1 (KDR) 5 4 11 10 11 10 17 16 17 16

2 
(PLCG1, 
PLC1) 

2 1 5 4 11 11 11 10 11 10

3 (AKT3) 4 3 3 2 1 0 1 0 1 0 

4 (PRKCA) 1 3 4 4 1 0 0 0 0 0 

5 (CHP) 1 2 3 2 1 0 0 0 0 0 

6 (PIK3R5) 3 2 2 1 5 4 0 0 0 0 

7 (RAF1) 1 3 1 0 0 0 0 0 0 0 

8 (MAPK1) 3 2 1 0 0 0 0 0 0 0 

9 (MAPK14) 2 1 1 0 0 0 0 0 0 0 

10
(HRAS, 
HRAS1) 

2 1 1 0 0 0 0 0 0 0 

11
(MAP-

KAPK3) 
2 1 1 0 0 0 0 0 0 0 

12 (NFAT5) 2 1 1 0 0 0 0 0 0 0 

 

 
Figure 2. Modules of human VEGF signaling pathway created by the algorithm of Nayak and De for c-value of 1. 
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Figure 3. Modules of human VEGF signaling pathway created by Newman’s algorithm. 

 

 
Figure 4. Modules created by Farhat’s algorithm of H. sapiens VEGF signaling pathway. 
 
rithm were placed at very much distance, so assigning 
functions for these types of modules, was difficult. 
Moreover, as we know that signaling networks work on 
the basis of interaction between the input signaling node 
and output signaling node, most of the nodes present in 

the modules created by Newman’s community finding 
algorithm had no such interaction. So, we can say that 
function and behavior of a modules generated by New-
man’s community finding algorithm were not clearly 
revealed as shown in Figure 3. 
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By analyzing the modules obtained by both the algo-
rithms, we found that MAPK1 includes MAP2K1, RAF1 
and HRAS by implementing Newman’s algorithm while 
in algorithm of Nayak and De; MAPK1 had PLA2G2 
instead of RAF1 and HRAS. Here, RAF1 and HRAS 
formed a separate module. The module MAPK1, as gen-
erated by the algorithm of Nayak and De, had 2 func-
tions regarding cell proliferation and PGI2 production. 
But in Newman’s algorithm, function of this module had 
been changed as this module was merged with RAF1 
and HRAS. Now, PLA2G2 was involved only in PGI2 
production. Another functionally important node PLC-γ 
was with SH2D2 through the algorithm of Nayak and De, 
while by Newman’s algorithm, it was included in module 
3 and had SPHK2 as a different member. In Newman’s 
algorithm, KDR emerged as a singleton node in module 
4 (Figure 3), while through the algorithm of Nayak and 
De, it was with VEGF and three other members. So we 
can say that KDR acts as a receptor for VEGF and func-
tions in focal adhesion, as it has PTK2 and PXN as its 
members. In Newman’s algorithm, node RAC was with 
NOS and other apoptotic signaling pathway components, 
functions for cell permeability as well as cell survival. 
But for this, the algorithm of Nayak and De, it was with 
PI3K and SRC having only one function, i.e., of cell 
migration. 

3.5. Comparison of Algorithm of Nayak and De 
with Farhat’s and Greedy Algorithms 

Applying Farhat’s and Greedy algorithms to this prob-

lem, we got two partitions. AKT3 appeared as a central 
node and had 3 other members by the algorithm of 
Nayak and De but both Farhat’s and Greedy algorithms 
had divisions in members of AKT3. These members 
were present in 2 different partitions. The node KDR had 
different members obtained by Farhat’s and Greedy al-
gorithms. Even the members of MAPK signaling path-
way were present in different modules created by the 
algorithm of Nayak and De but through implementation 
of Greedy and Farhat’s algorithms all the members were 
in the same partition. The modularized diagram through 
Farhat’s algorithm and Greedy algorithm are shown in 
Figures 4 and 5 respectively. 

3.6. Comparison of the algorithm of Nayak and 
De with the combined Farhat’s, Greedy and 
Kernighan-Lin’s algorithms 

Kernighan-Lin’s algorithm had been implemented in two 
ways. It was implemented by taking output of Farhat’s 
and Greedy algorithms as its input. These outputs are 
shown in Figures 6 and 7 respectively. It also gave two 
partitions that were different from the algorithm of 
Nayak and De. Module AKT3 had four members ob-
tained by the algorithm of Nayak and De, while this par-
ticular module had two different partitions through Far-
hat’s and Greedy algorithms. AKT3 and NOS3 were 
present in one partition, and CASP9 and BAD were 
found in different partitions as shown in Figures 6 and 7 
respectively. 

 
Figure 5. Modules created by Greedy algorithm of H. sapiens VEGF signaling pathway. 
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Figure 6. Modules created by combined Kernighan-Lin’s and Farhat’s algorithms for H. sapiens VEGF signaling pathway. 

 

3.7. Comparative Study of the Modules of VEGF 
Signaling Pathways for Different Species for 
c = 1 

For c = 1, we had applied the algorithm to seven different 
species present in KEGG database. In the case of H. sa-
piens, 12 modules were created which were the same for 
M. musculus (mouse) where all the modules were same 
in number and characteristics. Figure 2 shows a modu-
larized pathway for c = 1 of H. sapiens. As we further 
compared these two species with R. norvegicus (rat), we 
found difference in only one module and it was Plc –1. 
This module appeared as a single node in R. norvegicus 
(rat) whereas in H. sapiens (human being) and M. mus-
culus (mouse), it had one member SH2D2A. So this kind 
of comparison gives an idea that the VEGF pathway of 
these three species is developed almost in a similar 
manner. 

For B. taurus (cow), we had 10 modules. The module 
MAPK was fully developed and had other members. 
MAPKAP and MAP14 were present as two different 
modules in H. sapiens, which were combined in B. tau- 
rus(cow). The module LOC534LOC511224 and had a 
member COX which was absent in H. sapiens. Here the 
module AKT3, named as AKT1, had a member MGC 
127164 that made it different from others because in 
other species, it had all the three members. Even, 
PRKCA was present as a single node. For P. troglodytes 
(Chimpanzee), we had 8 modules. As in the previous 
species’ modules, MAPK, PI3K were fully developed 
and even node RAF1 was a central node and had two 

members. It was not present as a single node as we had 
seen earlier. In C. familiaris (dog), we found 7 modules. 
The modules KDR, MAPK and AKT3 were fully devel-
oped but PLC-γ, PRKCA and PIP3K were absent. In H. 
sapiens, the node Src was included in module PIK3R5 
but it was in module KDR in C. familiaris (dog). But for 
S. scrofa (pig), it was the least developed and had only 
one module for NFAT [13]. Table 7 provides the details 
of the modules obtained, for c = 1, from VEGF path-
ways of these species. So, from this comparison, we can 
say that, KDR and MAPK are said to be consistent in 
most of the studied species. 

4. CONCLUSIONS 

In this paper, different partitioning algorithms were ap-
plied to human VEGF signaling pathway in order to di-
vide it into smaller meaningful modules for analysis 
purpose. The applied partitioning algorithms are: modu- 
larization algorithm of Nayak and De, Newman’s com- 
munity finding algorithm, Graph partitioning algorithm 
of Kernighan-Lin’s, Farhat’s and Greedy algorithms. 
First of all, algorithm of Nayak and De was applied to 
human VEGF signaling pathway for different c-values. 
The best set of modules were found for c = 1. The com- 
parison of human VEGF signaling pathway modules for 
c = 1 was done with those obtained by some other parti-
tioning algorithms. We got four modules by applying 
Newman’s algorithm, while it was 12 for the algorithm 
of Nayak and De for c = 1. We got only two partitions by 
applying Farhat’s, Greedy and Kernighan-Lin’s algo-
rithms. The number of partitions and their members       
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Figure 7. Modules created by combined Kernighan-Lin's and Greedy algorithms for H. sapiens VEGF signaling pathway. 

 
Table 7. Created modules and nodes for VEGF signaling pathway of seven species for c = 1. (M- Modules names; (N) - Number of 
Nodes present in a module). 

Human and  Mouse Rat Cow Chimpanzee Dog Pig 

M(N) M(N) M(N) M(N) M(N) M(N) 

KDR(5) Kdr(5) PLCG1(1) LOC461315(3) LOC460400(2) NFATC1(3) 

PLCG, PLC1(0) Plcg1(1) PIK3CA(2) LOC455085(3) KDR(3) - 

AKT3(4) Akt1(4) flk-1(3) 
RAF1, 
LOC460182(3) 

LOC484648(3) - 

PRKCA(0) Prkca(1) LOC521196(2) LOC453202(3) AKT3(3) - 

CHP(0) Ppp3cc(1) LOC454037(3) 
PPP3R1(0) 
LOC477575(3) 

MAPK3, - - 

PIK3R5(3) Pik3ca(3) MAPK1(3) MAPK14(2) MAPK14(3) - 

RAF1(0) Raf1(1) LOC534492(3) LOC452821(3) LOC479678(2) - 

MAPK1(3) Mapk1(3) PRKCA(1) LOC460400(2) - - 

MAPK14(2) Mapk13(2) AKT1(2) - - - 

HRAS,HRAS1(2) Kras(2) LOC511224(2) - - - 

MAPKAPK3(2) Mapkapk2(2) - - - - 

NFAT5(2) Nfatc4(2) - - - - 

 
were kept the same while applying Farhat’s and Greedy 
algorithms. So again, our objective was not fulfilled of 
getting smaller biological meaningful modules. All the 
modules got through applying algorithm of Nayak and 
De are self-sufficient and have minimal dependency on 
the rest part of the network. This property works behind 
the idea of modularization of a biological signaling 
pathway. Through the result analysis, we can say that the 
algorithm of Nayak and De is superior over considered 
existing partitioning algorithms here, and better in re-
ducing the complexity of the signaling pathway. 

Moreover, the species specific modules were obtained 

for the same optimal c-value through the algorithm of 
Nayak and De. Their comparison proved that the trend 
of development, in ascending order, was “S. scrofa (pig), 
C. familiaris (dog), P. troglodytes (chimpanzee), B. tau-
rus (cow), M. musculus (mouse), R. norvegicus (rat) and 
H. sapiens (human being).” This trend shows that sig-
naling pathways become more complex in higher organ-
isms. We found that the modules KDR and PLC-γ were 
consistent in H. sapiens for all c-values and were func-
tional in all studied species. So, we can say, as per com-
parative analysis that modules KDR and PLC-γ are con-
served in all the studied species. Even the module AKT3 
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was found in all the studied species except in S. scrofa 
(pig) and B. Taurus (cow). 

This analysis makes one to study a conserved or con-
sistent module rather than considering the complex sig-
naling pathway as a whole. It is easier to determine un-
derlying mechanism of normal development as well as in 
certain disorders or diseased conditions. In a certain dis-
ease, only one molecule or a small group of molecules 
gets deregulated, so modularized study makes one to 
concentrate over a few modules containing responsible 
molecules only. This type of implementation also saves 
time and cost for experimental analysis. 
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