Applied Mathematics, 2013, 4, 449-455

http://dx.doi.org/10.4236/am.2013.43067 Published Online March 2013 (http://www.scirp.org/journal/am)

o5 Scientific
(> )
+* Research

Multiple Solutions for a Class of Concave-Convex
Quasilinear Elliptic Systems with Nonlinear Boundary
Condition

Li Wang
School of Basic Science, East China Jiaotong University, Nanchang, China
Email: wangli.423@163.com

Received June 7, 2012; revised February 6, 2013; accepted February 13, 2013

ABSTRACT

In this paper, a quasilinear elliptic system is investigated, which involves concave-convex nonlinearities and nonlinear
boundary condition. By Nehari manifold, fibering method and analytic techniques, the existence of multiple nontrivial

nonnegative solutions to this equation is verified.
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1. Introduction

In this article, we are interested in the existence of two
nontrivial nonnegative solutions of the following prob-
lem:

—Apqum(x)|u|p_2 a+ﬂ|u|a 2 u|v|ﬁ, xeQ
D—. ﬂ a —
—A,v+m(x)|v’ 2v:m|u| v xeQ
Vi S (o) o] g ()

xe@Q.

(1.1)

where Qc RY is a bounded domain with smooth boun-

is the critical Sobolev

dary, 2<p<a+ﬂ<p*:NNp

exponent for the embedding W"? (RN ) - (RN ) .
0 . o
I<g<p, n is the outer normal derivative,

(4 u)eR? \{(0,0)} , the weight m(x) is a positive
bounded function and f(x),g(x)eC(Q) are smooth
functions which may change sign in Q. By Nehari mani-
fold, fibering method and analytic techniques, the exis-
tence of multiple positive solutions to this equation is ve-
rified.

In recent years, there have been many papers con-
cerned with the existence and multiplicity of positive
solutions for semilinear elliptic problems. Some interest-
ing results can be found in Garcia-Azorero ef al. [1], Wu
[2-4] and the references therein. More recently, Hsu [5]
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has considered the following elliptic system:
2

—Au= |u|0‘_2 u |v|ﬂ + /l|u|q_2 u, xeQ,

a+pf

20 | ja _ - (1.2)
—Apv=m|u| |v|ﬂ2v+,u|v|q 2y, xeQ,
u=v=0, x € 0Q.

By variational methods, he proved that problem (1.2)
has at least two positive solutions if the pair of the para-
meters (A,u) belongs to a certain subset of R’. How-
ever, as far as we know, there are few results of problem
(1.1) in addition to concave-convex nonlinearities, i.e.,
1< g < p, including nonlinear boundary condition. We
focus on the existence of at least two nontrivial nonnega-
tive solutions for problems (1.1) in the present paper.

Set
at+f a+ﬁp
AI:[—‘D 9 S"J
a+pf—q

(1.3)
P
[a+B=p 50
a+pf—q ’
where S,S satisfy
P
Wl dx )P S <[ |Vl dx,

([ e s

E J—
( [ Juf dx)" S<[ |Vul" dx,

The main result of this paper is summarized in the fol-
lowing theorem.
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Theorem 1.1. If the parameters A,u satisfy

V4

p p P—q
(ALY el €| o £] 7 <o),

then problem (1.1) has at least two solutions (u,v) and
(UV) satisfy u,v,U,V >0 in Q and u,v,U,V #0.

It should be mentioned that the similar results about
the existence of multiplicity of positive solutions for the
Laplace problem with critical growth and sublinear per-
turbation have been discussed in the recent paper [6-8]
and the reference therein.

This paper is organized as follows. Some preliminaries
and properties of the Nehair manifold are established in
Sections 2, and Theorems 1.1 is proved in Sections 3.

2. Preliminaries

Let W"7(Q) denotes the usual Sobolev space. In the
Banach space W :=W""(Q)xW"(Q) we introduce
the norm which is equivalent to the standard one:

Gl =y, M7,
:I (|Vu|p+m x |u|p)dx
+J' (|Vv|p+m |v|p)

First, we give the definition of the weak solution of

(1.1).
Definition 2.1. We say that (u,v)e W is a weak so-
lution to (1.1) if for all ((pl,(o2 ) eW , we have

fﬂ (|Vu|pf2 VuV, + m(x)|u|pf2 ug, )dx
.[mf IBJ‘Q|u|a-2 ug, Mﬂ dx

J'Q (|Vv|p_2 Vo, + m(x)|v|p_2 Ve, )dx

()l

(24
ugpds +
a+

2 ﬂ
= Iu.[mg(x)|v|q vg,ds + p—”

a p-2
7 IQ |u| |v| v, dx.
It is clear that problem (1.1) has a variational structure.
Let [ (u,v) :W — R be the corresponding energy func-
tional of problem (1.1), and it is defined by

I(u,v):%"(u,v)"; —éR(u,v)— G(u,v),

a+pf
where

uv iJ. f |u|qu+,uJ' v|q
G(u,v)zjQ |u|a |v|ﬂdx

It is not difficult to verify that the functional 7 is not
bounded neither from below nor from above. So it is
convenient to consider / restricted to a natural constraint,
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the Nehari manifold, that contains all the critical points
of 1. First we introduce the following notation: for any
functional F:W — R we denote by F'(u,v)(gbl,(/ﬁz)
the Gateaux derivative of F at (u,v) €W in the direc-
tion of (¢.4,)eW, and

FO (uv)dy = F'(u+edv)| .
F(z)(u,v)¢2 =F'(usV+5¢z)|5:o

Define the Nehari manifold

N ={(,v) €W\ {(0,0)}[(1"(,v),(,)) = 0} . Note that
v)e N if and

N contains all solutions of (1.1) and (u,
only if

)y, = R(wv) = G (u,v), @1

Lemma 2.1. [(u,v) is coercive and bounded below
on N.

Proof. Suppose (u,v)eN. From (2.1), the Holder
inequality and the Sobolev embedding theorem, it fol-
lows that

I(u,v)
1 r 1
=—W%ﬂh—;R0m0—a+ G (u,v)
(p a+ﬂj|| W) - [q (H[JR(u,v) 2)
> LD,
a+,B w

~SEBS s ), (AL +lallel. )

Thus I is coercive and bounded below on N since
g<p<a+pf. Define <D(u,v) = <I’(u,v),(u,v)>. Then
forall (u,v)e N we have

' (u,v),(u,)

= p”(u,v)":/ —qR(u,v)—(a+B)G(u,v)

L —(a+B-q)G(u,v)
(a+p-q)R(uv)

a+B)]G(u,v).

=(p—q)|(w)|; 2.3)
[p=(a+p)J|(wr)], +
(P=a)R(wv)-[r~(
Arguing as that in [9,10], we split N into three parts:
(u,v),(u,v)> > 0},
(u,v),(u,v)> = 0},
(u,v),(u,v)> < O}.

Lemma 2.2. Suppose(u,v) is a local minimizer of 1

N* ={(u,v)eN|<CD
N° :{(u,v)eNKCD

N~ ={(u,v)e N|<(I)
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on N and (u,v)eENO. Then 1'(u,v)=0 in w.

Proof. If (u,v) is a local minimizer for 7 on N, then
(u,v) is a solution of the optimization problem mini-
mize [ subjectto

()] (u,v) =0.
Hence, by the theory of Lagrange multipliers, there
exists £e€ R such that

I'(u,v)=&0'(u,v) in W' (Q).

Here W™'(Q) is the dual space of the Sobolev space
W . Thus,

<I'(u,v),(u,v)> = §<(D'(u,v),(u,v)>

But <CD'(u,v),(u,v)>¢0 since (u,v)e N°. Hence

Lemma23. N°=@ forall

P r
(AL )7 +(ledlel, ) < 0.,)
Proof. We argue by contradiction. Suppose that for all

P P
(21,7 +(1ellel, )+ € (0.A,) there is

(u,v)e N°, then (2.3) and the Sobolev embedding the-
orem imply that

(P=a)|w), =(a+f-4)G(u.v)

wp (2.4)
<(a+p-9)S 7 |y,
and
(a+ B=q)|(wv),
=(a+pB-q)R(u,v)
<) AL, Lo aslallel. [}

=
<(a+B-a)S " (A1}, +[le]. IIVIIIP)

<(a+p-0)S* (AL, +ellel, e

(2.5)
Thus from (2.4), (2.5) we have
1
atf \a+p-p
[(v)], 2| -2=L—5 7 (2.6)
" la+pf—-q

and

1

— g
| < a+f-q p_q§p(p*q)
" \a+p-p

(u.v)

1

ICURERTRZIR
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Consequently,

(12101, )7~ + (el )=

a+p \a+ - 4
S _p-a 5 “a+ﬂ—p”§p
a+pf—q a+pf—q

=A1’

which is a contradiction.
By Lemma 2.3, we can write N=N"JN~ forall

P P
(20 )7~ +(ledlel, )=« € (0.A,)
Define
a'= inf I(u,v),a = inf I(u,v).

(14,\/)€NJr (u,v)eN7

Lemma24.(i) a'<0 forall

(A1 )7 + (el )~ < (0.8)

(i) There exists a positive constant dy depending on
Au, q,N,S,S,f,g,a,f suchthat o~ >d, forall

mwmﬂwMMJﬂ{%gﬂm}

Proof. (i) Suppose (u,v)e N*, then we have

I(u,v)
(o ez eter
!

(2Dt ;MJ(af?—q]

(u.v)

|p

w
_ (a+B-p)(p ‘1)” W[ <0
(a+B)pq i
for l<g<p<a+p.
Thus we get that a* <0.
(i1) Suppose
A A q -
(ALY el <o 2], |
and (u,v)e N~ . Then (2.4) implies that
1
_ a+b Navp-p
)], > {_afﬂq_ 5 1 L e
and (2.5) implies that
@
R(u,v) <§ 7’ "(u,v)":V
- (2.8)
P
AL+l |
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From (2.7) and (2.8) it follows that

ru)-[ - MJM {2 e

S ol

r-q

{Wwwﬁ4w¢%ﬂ”4ww;

a+,8

~ “*ﬂ el
a+/5’

P9

a+ﬂ 935 » pﬁq ﬁ B
D (A el

a+p a+ﬂ P

a+pf—q
5 P—q
Ja+p-p| p-q S, """
(a+B)p|a+pP—q

r—q

_§‘% (OH_#{G |||f|| )p q+(ﬂ"g" ) }p

which shows that
I(u,v)>d0,V(u,v)e N7,

ya . i
ﬂmeﬂﬂWL%”+GMkLqu%{%qu}

where d, =d, (ﬁ,y,q,N,S,E,f,g,a,ﬂ) is a positive
constant.
For all (u,v) €W such that G(u,v) >0, set

1

(G-l 57
Fmax _[(a+ﬂ—q)G(u,v)} 0

Lemma 2.5. Suppose that

P P
(AL )7 +(ledlel. ) e 0.8)

and (u,v)eW is a function satisfying G(u,v)>0.

(i) If R(u,v)<0, then there exists a unique t,>1,,
such that (tu,t,v)e N~ and
I(tu,tv)=sup,.o I (tu,1v).

@) If R(u,v)>0, then there exist t, and t, such
that

Copyright © 2013 SciRes.

0<t, <t

max

<ty,(tu,t,v) e N* and (u,t;v) e N~
Furthermore, 1(t,u,t,v)= 8 1tntf I(tu,tv),
I(tyu,t,v) =sup,., I (tu,tv).
Proof. Fix (u,v) eW with G(u,v) >0. For all
t>0, let

‘I’(t)—t" q" u v " e qG(u v)

then it is obvious that ¥(0) = 0, ¥Y(f) —» — as t — +o,
¥(¢)>0 as ¢>0 small enough. So we can deduce
that W(r) = 0 at t=¢_.,¥'(1)>0 for te(0,t,,).
W'(1)<0 for te&(fy,,+o). Then W(r) that achieves

max ?
its maximum at ¢, is increasing for 7€ (0,7, ) and
decreasing for ¢ e(t

s F0). Moreover,
P (tax )

(ol PP
_{(a+ﬂ—q)G(u,v)] "( ’ )"W

a+f—-q

( )
_[(a+ﬂ—q)G(u,v)J G(u,v)

P=q a+pf-q

" a+ﬂ a+ﬂqq o
[ ol ] e,

r—q

{& s pﬁ} ’ A 4NN
a+pf-q a+pf-q v

(i) If R(u,v)<0, then there exists a unique
t, >t >0 such that ‘I’(t1 ) = R(u,v) < O,‘P’(tl) <0.

max

Note that

(I'(ta,tv), (s, tv))

=t ()|} 2 R (u,v) =47 G (u,v)
G (u,v) - R(u,v))
=t/ (¥ ()~ R(u,v))=0,

thus we get (fu,4v)€N.
From

O (tu,tv),(fu,tv)
=(p=a)t! Ju)f, ~(a+ f-q) Glu.y)
=""¥'(1,) <0,

—tq(tp""uv"
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we have (fu,f,v)e N™. Forall 7>t it follows that

CD’(tu,tv),(tu,tv)

=(p=a)’ |(wr), ~(a+B-a)""G(uv)
=1"1Y'(1) <0,

max >

dZ

?I(tu,tv) <0,

d -

5I(tu,rv) =t (@(t) = R(u,v))=0forr =1,

So we get that I(tlu,tlv) = supl(tu,tv).
(ii) If R(u,v)>0, for 120

(AL ) +(edlel, ) <(0.,),
‘P(O)=O<R(u,v)

rP—q

<57 (ALl )

4 P4
<S PAT "(u,v)”;
a+p p/—;i
[t [ s
q a+pf-q
SV ()

then there exist ¢, and ¢, such that

0<t, =t,(u,v) <ty <t;,¥(1,)=R(u,v)="¥(t;) and
‘P'(t2)> 0> ‘I"(g). By the similar argument in (i), we
get (tu,t,v)e N*,(tu,;v)e N™, and

%I(fu,tv)zOfort:tz ort=t,.

2

;71(1‘14,1‘\/) >0 for te(0,t,,,)

2

§7I(tu,tv)<0 for ¢=(t,,,+).

max ?

Then it follows that
I(tu,t,v)= inf I(m,tv),

0<t<tan

I(tyu,tyv) =sup I (tu,tv).
>0

The proof of this Lemma is completed.
Foreach (u,v)eW with R(u,v)>0, we write
1

. _{ (c+B-g)R(w) J”" o
(a+B=p)|mv),

Lemma 2.6. Suppose that

.9)

max

Copyright © 2013 SciRes.

(A1, )= + (el )= <

P
g
p

and (u,v) eW is a function satisfying R(u,v) >0.
() If G(u,v)<0, then there exists a unique t, >1,,
such that (tu,tv)e N~ and
I(tu,t,v) = sup I(fu,tv).

2 lmax

@) If G(u,v)>0, then there exist t, and t, such
that 0<t, <7 <t,(tu,t,v)e N and (tu,t;v)e N .
Furthermore,

I(tyu,t,v)= inf I(tu,tv)

0<t<Tax

I(tyu,tyv) =sup (tu,tv)
>0
Proof. Fix (u,v)eW with R(u,v)>0. For all
t>0, let

‘T’(I) =g h "(u,v)"; —t17* PR (u,v) (2.10)

then it is obvii)us that \T’(t) ——oast—>0+. So we can
deduce that ¥'(¢)=0 at t=1,

max >

Y'(1)>0forre(0,7,,), ¥()<0 for te(7

> “max max ’+OO) .
Then ¥(¢) that achieves its maximum at 7, is in-
creasing for #€(0,7,,,) and decreasing for

te (tmax,—i-oo). Using the similar argument in Lemma 2.5,

we can obtain the result of Lemma 2.6.

3. Proof of Theorem 1.1

Lemma 3.1. Suppose that

(1AL )7+ (1ellell, ) < (0., ).

then the functional I has a minimizer (u,v) eN" and it
satisfies

i) I(uyv)=a".

(i1) (u,v) is a nontrivial solution of (1.1).

Proof. Let{(u",v")} < N' be a minimizing sequence
such that

I(u,,v,)=a" +0,(1),I'(u,,v,)=0,(1). (3.1)

Since [ is coercive on N, we get that {(un,v”)} is
bounded on W . Passing to a subsequence (still denoted

by {(un,vn )} ), there exists (u,v) such that
(u,,v,)— (u,v) weaklyin W,
u, >u,v, >v ae. in Q, (3.2)
u, >u,v, —>v strongly in L(6Q) and in L/ (Q).
This implies
R(u,,v,)—> R(u,v),G(un,vn) = G(u,v).
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Since {(u v )}CN+ we get

_a+p- P" " _a+f- 9 p )

u v
a+,l3

g(a+pB) "
By Lemma 2.4 (i) we get I( u,, n)—)a <0 and
then R(u,v)>0. Now we prove that (u,,v,)—> (u,v)

no

I(”n’ n

strongly in W. Suppose otherwise, then either

||u|| <lim 1nf||u || or ||v||
1,p n 1,p

n—0 n—0

(3.3)

Fix (u,v)eW with R(u,v)>0. Let
E(t) = ‘T’(t) - G(u,v) , Where ‘Tl(t) is as in (2.10).
Clearly, E(t)—>—o as t—>0+,and
E(t)—>-G(u,v) as t—>o. Since
E'(t)=¥'(t), by an argument similar to the one
in the proof of Lemma 2.6, we have that the function
E(t) achieves its maximum at 7, is increasing for
te(Ot ) and decreasing for te(7,,,+®), where
T 1S as in (2.9). Since R(u,v)>0, by Lemma 2.6,

max
max _
there is unique 0<t, <7 such that

(tyu,tyv) e N I(tutv)— inf 1(tu,1v),

O0<t<t1ny
Then
E(1,)=%(t,)-G(u.v)
=1, | (et - R
=0.

By (3.3) and (3.4), we obtain E(f,)>0 for n suffi-
ciently large for the sequence {(u v )} Since

n’

(i) = Glttyr) | G4)

(u,,v,)eN*, wehave 7, (u,,
E(1)=(u,.v

and E(t) is increasing for te(Ot (u v, )) This

> "max no

v,)>1. Moreover,

" —R u,,v ) G(u v) 0,

n’

implies E(1)<0 for all 7&(0,1] and n sufficiently
large. We obtain 1<17, <7, (u,v). But (fu,zv)eN"
and I (tyu,tyv)= 0<it1<17f I(tu,tv), this implies

I(tou,tov)< I(u,v) < lim I(un,vn ),
which is a contradiction. Hence (u,,v,)—> (u,v) strongly
in W. This implies 1(u,,v,)—>I(u,v)=a" as n—o.
Thus (u v) isaminimizer for / on N*. Since
I(u,v) (|u| |v|) and ( ) e N", by Lemma 2.2 we

may assume that (u,v) is a nontrivial nonnegative so-
lution of Equation (1.1).

Next we prove u #0,v#0. Arguing by contradiction,

without loss of generality, we may assume that v = 0.
Then as u is a nonzero solution of

Copyright © 2013 SciRes.

—Au+m )|u|p_zu =0,xeQ,

vap* & 5” LAl wx o0 )
we have
[(.0)f, =4 of (Rl ds=0. 36
Choose zeW"”(Q)\{0} such that
[(0.2)]) =4[ g (x)|" ds >0, (3.7)
then
Al S|l ds+ ] _g(x)|z[ ds>o0.
By Lemma 2.6, there is a unique 0<7 <7, such

that (tu tz)eN Moreover, from (3.6) and (3.7), it
follows that
1

- :{ (a+B-q)R(u,z) JM

= (a+p-p)|(w2)]

w

€

_(a+B-q | S,
a+p-p

and
I(tu tz)— inf I(tu tz)

0<t<t,
This implies
I(t_u,fv) < I(u,v) < I(u,O),
which contradict with that (z,0) is the minimizer and
hence u#0,v#0. So(u,v)is a nontrivial nonnegative

solution of Equation (1.1).
Lemma 3.2. Suppose that

(0171, )7 + (el e < [0(%] AIJ.

Then the functional 1 has a minimizer (U,V)e N~
and it satisfies

Q) 1(UV)=a

(i) (U.,V) is a nontrivial solution of (1.1).

Proof. Let {(u,,v,)} =N~ be a minimizing sequence
such that

I(u,,v,)=a +0,(1),1'(u,,v,)=0,(1). (3.8

n?

Since [ is coercive on N, we get that {(u vn)} is

no

bounded on W . Passing to a subsequence (still denoted
by {(un,vn )} ), there exists (U,V) such that
(u,,v,)—=~(U,V) weaklyin W,

u, ->U,y, >Vae in Q, (3.9)

AM
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u, >U,v, >V stronglyin L’(6Q) andin L’ (Q).
This implies

R(u,,v,) > R(U.V),G(u,.v,) > G(UV).
Moreover, by (2.3) we obtain
p—q

a+ﬂ—qWMWW)

then G(U,V)>C>0. Now we prove that
(u,,v,)>(U,V) strongly in W. Suppose otherwise,
then either

P
W

G(u,,v,)>

||U||l <lim inf
P n—o

un

Lp
3.10
o], <tim in[s,| (3.10)

n—w0

Lp®

By Lemma 2.6, there is unique t, such that
(t,U,t,V)e N~, Since

(u,,v,)eN"I(u,,v,)21(tu,,tv,) for all >0, we
have

[(tOU’tOV) < },EI}OI(tOun’tovn ) = }liil;](un’vn ) = (Z_,

and this is a contradiction. Hence (u,,v,)—(U,V)
strongly in W. This implies (u,,v,)—>I(U,V)=a"
as n—oo. Thus (U,V) is a minimizer for / on N~ .
Since I1(U,V)=I(|U],[7]) and (|U],|V])eN", by

Lemma 2.4 and the similar argument as that in Lemma
3.1 we can get (U ,V) is also a nontrivial nonnegative
solution of Equation (1.1).

Proof of Theorem 1.1. From Lemma 3.1 and Lemma
3.2, we obtain that Equation (1.1) has two nontrivial non-
negative solutions (u,v) and (U ,V) satisfy
(u,v)eN+ and (U,V)eN’. It remains to show that
the solutions found in Lemma 3.1 and Lemma 3.2 are
distinct. Since N (N =, this implies that (u,v)
and (U,V) are distinct. This concludes the proof.

>
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