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ABSTRACT

In this paper, we consider a SVIR-B cholera model
with imperfect vaccination. By analyzing the corre-
sponding characteristic equations, the local asymp-
totically stability of a disease-free equilibrium and an
endemic equilibrium is established. We calculate the
certain threshold known as the basic reproduction
number R,. If R, < 1, we obtain sufficient conditions
for the global asymptotically stability of the disease-
free equilibrium, the diseases will be eliminated from
the community. By comparison arguments, it is proved
that if R, > 1, the unique endemic equilibrium is local
asymptotically stable. We perform sensitivity analysis
of R, on the parameters in order to determine their
relative importance to disease control and show that
an imperfect vaccine is always beneficial in reducing
disease spread within the community.

Keywords: Cholera Model; Stability; The Basic
Reproduction Number; Sensitivity Analysis

1. INTRODUCTION

Cholera is an acute intestinal infection caused by inges-
tion of food or water contaminated with the bacterium
vibrio cholera. Since Koch found vibrio cholera in 1883,
the research for cholera vaccine has more than one hun-
dred years. People have developed a variety of vaccines.
However, these vaccines were parenteral, which have
short effective protection and big side effects. In 1973,
the World Health Organization canceled the vaccine in-
oculation which attracted a major concern to oral vac-
cines. At present, there are three kinds of oral vaccine
(i.e., WC/BS vaccine, WC/rBS vaccine and CVD;p;-HgR
vaccine) have been proved to be safe, effective and im-
munogenic, which were approved to apply in some coun-
tries [1].

In this paper, according to the natural history of chol-
era, we improve the model of [2] in the following two
aspects. Firstly, if the cholera persists for a long time, it
will cause the death [3], especially in the area where wa-
ter and sanitation resources are not adequate [4], a pa-
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rameter d is added to describe the rate of disease-related
death. Secondly, we propose a proportion of the vaccina-
tion in susceptible individuals. As is shown in the fol-
lowing differential equations:

O gs0)8()- 40104500
—uS(t)+ov (),

(Z—It/:ng(t)—HV(t)—ylV(I),
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% = al (1)~ R (1),

B 103 (0.

(1.1)

The flow diagram of the model is depicted in Figure 1.

Since the first three and last equations in (1.1) are inde-

pendent of the variable R, it suffices to consider the fol-
lowing reduced model:

ds(z)
dr

=t =BS(t)B(t)=£.S(1)1(¢)=4S(1)
—mS(t)+0V (1),

‘L_It/zqﬁs(t)—HV(t)—ulV(f)’

%: BS(1)B(1)+ B,S (1)1 (1)~ (d +a+ 14 ) 1(1)
dift) =1 (1)~ mB(1).

(1.2)

Here, S, V, I and R refer to the susceptible individuals,
vaccinated individuals, infected individuals, and recov-
ered individuals, respectively.

The pathogen population at time ¢, is given by B(%).
The parameter x4, denotes the natural human birth and
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Figure 1. Progression of infection from susceptible (S) and
vaccinated (V) individuals through the infected (/) and recov-
ered (R) compartments for the combined human-environment
epidemiological model with an environmental component.

death rate, a denotes the rate of recovery from the dis-
ease, 7 represents the rate of human contribution to the
growth of the pathogen, and u, represents the death rate
of the pathogen in the environment. The coefficients S,
and f, represent the contact rates for the human-envi-
ronment and human-human interactions, respectively. The
rate at which the susceptible population is vaccinated is ¢,
and the rate at which the vaccine wears off is 6.

All parameters are assumed non-negative, and the ini-
tial conditions of the system (1.2) are assumed as fol-
lowing

$(0)>0,(0)>0,1(0)>0,B(0)>0. (1.3)

The organization of this paper is as follows: the posi-
tivity and boundedness of solutions are obtained in Sec-
tion 2. In Section 3, we firstly calculate the basic repro-
duction number and obtain the existence of the endemic
equilibrium. We get the local and global asymptotically
stability of the disease-free equilibrium in Section 4. In
Section 5, we show that the local asymptotically stability
of the endemic equilibrium. We analyze the sensitivity of
R, on the parameters, and we present the numerical
simulation in Section 6. The paper ends with a conclu-
sion in Section 7.

2. POSITIVITY AND BOUNDEDNESS OF
SOLUTIONS

In the following, we show that the solutions of the sys-
tem (1.2) are positive with the non-negative initial condi-
tions (1.3).

Theorem 2.1. The solutions (S(¢), ¥(¢), I(¢), B(t)) of
the model (1.2) are non-negative for all # > 0 with initial
conditions (1.3).

Proof. The system (1.2) can be put into the matrix
form

X'=M(X),
where X:(S,V,I,B)TER4 and M (X) is given by
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= BS(t)B(t)=-p,S(t)1(¢)— S (1)

—S(1)+6V (1)

= #S(t)—0V (t)—mV (1)

BS(2)B(t)+B,S(2)I(1)—(d+a+p)1(2)
71 ()~ #,B(1)

We have
d—S :y1+¢9V>0,d—V =¢S >0,
dt S$=0 dt V=0
ﬂ :,B,SBZO,% =nl=>0.
de 1=0 B=0
Therefore,
M|, o 20,i=1,23,4.

Due to Lemma 2 in [5], any solution of the system (1.2)
is such that X (T)eR; for all ¢>0. This completes
the proof of Theorem 2.1.

Theorem 2.2. All solutions (S(¢), V(¢), I(¢), B(¢)) of the
model (1.2) are bounded.

Proof. The system (1.2) is split into two parts, the
human population (i.e., S(¢), V(f), and I(¢)) and pathogen
population (i.e., B(f)). It follows from the first three
equations of the system (1.2) that

dBVel) ms—v—1)-di-ar
dt
<u(1-S-v-1I),

then it follows that limsup(S+V +1)<1. From the first

t—>+00

equation, we can get

ds
ES,LII—,UIS—¢S+9VS/11 +0—(1, +0+9)S.

u+0o

. It is easy obtain
m+0+¢

Thus d—SSO,as S(I)Z
dt

< p(1-7) -+ O)V == (1 +0+)V.

(ii—VSO, as V(t)ZL

. From the last equation,
t W +0+¢

we can obtain
dB
—<n—-uB.
a n—H
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Hence, %SO, when Bzi. Therefore, all solu-

Hy
tions (S(¢), W), I(f), B(f)) of the model (1.2) are
bounded.
From above discussion, we can see that the feasible
region of human population for system (1.2) is

#+0

Q, ={(S,V,I)|S+V+ISI,OSSS—,
m+0+¢

OSVSL,IZO
h+0+¢

and the feasible region of pathogen population for sys-
tem (1.2) is

Q, ={B|053si}.
Hy

Define Q=Q, xQ,. Let intQ denote the interior
of Q. It is easy to verify that the region Q is a positively
invariant region (i.e., the solutions with initial conditions
in Q remain in Q) with respect to the system (1.2). Hence,
we will consider the global asymptotically stability of
(1.2) in region Q.

3. THE EXISTENCE OF EQUILIBRIA

In this section, we investigate the existence of equilibria
of system (1.2). Solving the right hand side of the model
system (1.2) by equating it to zero, we obtain the fol-
lowing biologically relevant equilibria.

It is easy to see that model (1.2) always has a dis-
ease-free equilibrium (the absence of infection, that is,

[=B=0, E(S,.7.0,0), where S, =% ang
m+0+¢
=P Let X=(1,B.5.7)" . Then model (1.2)
m+0+¢
can be written as
dx
E:/ (x)=7(x),
where
BSB+ p,SI
0
e
0
(d+a+u)I
(%)= —nl(t)+ m,B .
—t, + BSB+ B,SI + ¢S + S -6V
@S+ OV + 1V

We can get
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F:(ﬂzso ﬂlSOj,V:[d+a+ﬂl 0]’
0 0 -1 iy

giving
1
d+a+y
_on 1
ﬂz(d+a+ﬂ1) H,

0
y=

FV~™' is the next generation matrix for model (1.2). It
then follows that the spectral radius of matrix FV™' is

,O(FV_] ) _ So (ﬁzﬂz +ﬂ177)
H, (d Tat+y )
[6], the basic reproduction number of model (1.2) is

_ (/ul +9)(ﬂz,u2 +ﬂ177)
7 (ll'll +6+¢)(d+a+ﬂ1)

In the following, we will discuss the case with R, > 1.
The existence and uniqueness of the endemic equilibrium
is established as follows.

The endemic equilibrium E” (S*, VeI *,B*) can be
deduced by the following system:

=PSB =BS T —¢S" — S +0V" =0, 3.)

. According to Theorem 2 in

@S =0V — V" =0, (3.2)
BS'B +BST —(d+a+u)I" =0, (3.3)
nl* = 1,B" =0. (3-4)
which gives,
S* — H +0 i
:Lll + 9+¢ Rv ’
v :LL
1ul + 9+¢ Rv ’

ot (1)
d+a+y R

v

B =L(1—i}
,le(d+a+ﬂ1) Rv

Obviously, when R,>1, I" >0, B*>0.

Theorem 3.1. The system (1.2) has a unique endemic
equilibrium when R, > 1 and no positive endemic equi-
librium when R, < 1.

4. STABILITY OF DISEASE-FREE
EQUILIBRIUM

Now, we will discuss the local and global asymptotically
stability of the disease-free equilibrium. From above and
[6], we can obtain the following theorem.

Theorem 4.1. The disease-free equilibrium Ej is lo-
cally asymptotically stable for R, < 1 and unstable for R,
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> 1.
Proof. The Jacobian matrix of the system (1.2) at X =
Eo is

J(E,)
—H ¢ 0 _:BzSO _ﬂISO
_ ¢ —0 -, 0 0
o 0 BS,~(d+va+u) BS,
0 0 n )

The characteristic polynomial of the matrix J (EO) is
given by

det( A1 —J(E,)) = a,A* + a, A’ +a,2° +a,A+a,
where
a,=1,
a =2+, +0+¢+(d+a+u - B,S,),
a,=(0+2u +¢)(d+a+u - p,S,)
+[ 1, (d+a+ 1) =(BSyr + BoSorty) |
+ 4+ 244 14, + O, + P, + duy + Op
a; =2, +¢+6)
<[y (d+a+ )= (BSyn+ B - Somsy) |
+(y1(9+u12 +¢,ul)(d+a+,ul -,-S,)
+ 1 1, +(0+ ) 11,
ay = (0+¢+ ) (d+a+u)(1-R,),
aa, —a, =(d+a+u - B,S,)
x(4y1¢9+4¢,u1 +h4oul vdup, + ¢+ 6
+20,0+211,0 +20p)
+[,u2 (d+a+yl)—(ﬁlS077+,b’2S0y2)]
x i (d+a+u - 5,5,) (0+4+2u)
+4(0+p+ 1)ty + 241105 + 6O
+3(p+0) 1} +(¢2 +92)y2 +60%
+20p (1, + 1)+ 248,
IfR, <1, then
o (d+a+ ) > BySyuy + BiSynn
further
d+a+uy > f,S,

After some calculations, if R, < 1 we have a; > 0, a, >
0,a;>0,a,>0, a0, — a; >0, aa,a,>a; +aa, (see
Appendix A). Thus, using the Routh-Hurwitz criterion,
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all eigenvalues of J (EO) have negative real part, E is
local asymptotically stable for the system (1.2). If
R, >1, then a,<0 and we show that J(E,) has at
least one eigenvalues with non-negative real part. Con-
sequently, E is not stable.

Theorem 4.2. When R, < 1 the disease-free equilib-
rium is globally asymptotically stable.

We will prove the global asymptotically stability of
the disease-free equilibrium using Lemma 4.1.

Lemma 4.1. [7] If a model system can be written in
the form

dX

—=P 7Z5

" (X,2)
%:c(x,z),c;(z,o):o,

where X e R™ denotes(its components) the number of
uninfected individuals and Z € R" denotes (its compo-
nents) the number of infected individuals including latent,
etc. U, =(X*,0) denotes the disease-free equilibrium
of the system.

And assume that

dx

(H1) E:P(X’O)’ X" is globally asymptotically

stable; . .

(H2) G(X,Z)=AZ-G(X,Z),G(X,Z)=0,for
(X,Z)eQ, where the Jacobian matrix A = %(X*,O)
is an Metzler matrix(the off-diagonal elements of A
are non-negative) and Q is the region where the model
makes biological sense. Then the fixed point
U, = (X*,O) is a globally asymptotically stable equilib-
rium of cholera model system (1.2) provided that R, < 1.

We begin by showing condition (H1) as

P(X,O)z(ﬂl_ﬂls_@l} +9VJ.

#S -0V — v
For the equilibrium U, = (X*,O), the system reduces
to
ds(r)

g = dS ()= mS(6)+ 0V (1),

dv
o $S(1)—6V (t)— V(1)
The characteristic polynomial of the system is given
by
(A+)(A+0+¢+1)=0.

There are two negative characteristic foots are A4 =—y,
A=—-0-¢—u, . Hence, X" is always globally asymp-
totically stable.

Next, applying Lemma 4.1 to the cholera model sys-
tem (1.2) gives
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G(X,Z)=AZ-G(X,2)

R B

which is clearly an Metzler matrix. Meanwhile, we find
G(X,Z)=0. Hence, the disease-free equilibrium is glob-
ally asymptotically stable.

5. STABILITY OF THE ENDEMIC
EQUILIBRIUM

Now we consider the case with R, > 1. The stability of
the endemic equilibrium is established as follows:
Theorem 5.1 If R, >1, E'(S".V",I",B") is locally
asymptotically stable.
Proof. Let

S =8B +51", J,=BS", J,=8S".
The Jacobian matrix at E*(S*,V*,I*,B*) is

J(E)
~Si—m—¢ 0 -/, =
B ¢ —0— 0 0
- 0 0  J,—(d+a+y) J,
0 0 n )

The characteristic polynomial of the matrix J (E *) is
given by

det(/ll—J(E*)) = At +b A +b,A° +bA+b,
where

by =1,

by =J,+2u +,+0+¢+(d+a+u —J,),

by =(d+a+pu —J,)(0+2u +9)
+[,u2 (d+a+um)—(J,m +J377)}
3y + 248 4, + O, + s+ i,
+6u +al, +2uJ, + 1, J, +dJ,,

by=(d+a+u —Jz)(ﬂ1'9+#12 +,u1¢)
+[ 1y (d+ @+ 1) = (Jyuy + I31) | (20 + 9+ 6)
+ 1]+ 18 1 + O g, + s, + Oad, + o, J,
+Jy + A, + 2 J, +(d+a+0) - J,
+doJ, +0u,J,,

by =[ at, (d+a+ )= (Jyuy +J31) |($+ 11+ 6) - 14

+ 0, J, +(d+a+ g, +0) i, J, +d0- 1, J,,
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bb, —b,
=(d+a+u -J,)
x(4y16+4y12 +Aup+ 0" + ¢ + 2,0+ 4u 10, +ad,
+ 201, +0J, +$J +20p+ 4, + 1, J, +dJ) )
+[,u2 (d+a+y1)—(J2y2 +Js, ):|(ﬂ2 +J))
+(dta+u—J,) (0+¢+2u)+(d+a)pJ,
+ O, J, +4(0+ ¢+ J,) pmpnp+(a+ 2+, +d)J;?

+3(¢+9)/‘12 +¢2 (ﬂl +xu2)+92 (/‘1 +ﬂ2)+3¢ﬂ1*/]
+20pu, +adJ, +2¢u,J, +dgJ, +20 - g, + 241

Based on EQ.3.3 and Eq.3.4, we have
w(d+a+u) =158 +nB S . 1t is then easy to ob-
serve that

ﬂz(d"'a"'%):ﬂz‘]z""]-]s,
further,
d+a+u >J,.

After some calculations, we have b, > 0,5, >0,
b, >0,b, > 0,b,b, —b, > 0,b,b,b, > b: +b’b,,

(see Appendix B). Using the well-known Routh-Hurwitz
criterion, the proof is thus complete.

6. SENSITIVITY ANALYSIS OF Ry

To facilitate the interpretation of the sensitivity of R,, we
now present some numerical simulations by using the set
of parameters values in Table 1.

Now, we regard the vaccinated rate ¢ and the wanning
rate € as the control parameter, while the other parameters
are fixed. From Figures 2 and 3, the effects of various
parameters, i.e., ¢ and € on the basic reproduction
number R, have been shown. It is noted that as the
parameter ¢ increases, R, decreases; as 6 decreases, R,
decreases. In fact, we can obtain the critical values of ¢
and 6 that reduce R, to 1,

_ 1oy — 1 i — O By — Onp,

¢= w(d+a+u)
+(d+0¢+6’+,ul),u,,u2 +d0u, +abu,
w(d+a+u) '
and
0 ~tf— B+

—tB = BN+, (d+a+/u|)

+ (d+a+¢+ﬂ1)ﬂ1ﬂ2 +dgu, +apu,
1B = B+ i, (d+a+ﬂ1)
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Table 1. Estimation of parameters.

Parameters Meaning Values Reference
I Natural human birth and death rate 9.13 x 10 /day [8]
b Contact rates for the human-environment interaction 0.214/day [8]
b Contact rates for the human-human interaction 0.02/day [8]
d Disease-induced death rate 0.013/day [4]
a Recovery Rate at which people recover from environment 0.2/day [8]
n Contribution of infected individuals to the population of vibrio cholera 10 [9]
1o Net death rate of vibrio cholera 0.33/day [9]

In Figure 2, we select 6 = 0.07, 0.03, 0.007, 0.0001,
corresponding ¢, = 2.07, 0.89, 0.21, 0.01, respectively.
We can see that when the wanning rate 6 has a greater
value, ¢, has not reasonable value so that when ¢> ¢,, R,
< 1. Similarly, in Figure 3, we select ¢ = 0.01, 0.1, 0.3,
0.6, 0.99, corresponding 6, = 0.0002, 0.003, 0.01, 0.02,
0.03, respectively. We can see that when ¢ is smaller, 6,
has not reasonable value so that when 0 < 6,, R, < 1.
Thus, the basic reproduction number can not reduces
below unity only by increasing # or decreasing ¢. The
critical values ¢, and 6, play a key role in regulation the
infection magnitude. In order to reduce R, to 1, a greater
vaccinated rate than ¢, and a smaller wanning rate than
6, have to be achieved simultaneously. We will deduce
R, below 1 by using both ¢ and @ at the same time, which
can control cholera (see Figure 4).

7. CONCLUSION

In this paper, we have conducted stability analysis of a
SVIR-B cholera model. The mathematical analysis results
show that the basic reproduction number R, satisfies a
threshold property with threshold value 1. R, in our
model include the parameters ¢ and 6 which reflect the
effect of vaccination. Numerical simulation show also
that the vaccination is always beneficial to the eradication
of cholera.

However, there are inherent disadvantages towards the
vaccination modeling. For cholera with incubation period,
it is hard to rapidly identify those with ambiguous
symptoms [4]. Moreover, the vaccination does not al-
ways work well due to the limitations of medical devel-
opment level and financial budget (some vaccine is very
expensive and some portion of people cannot be covered)
[10].

Hence, incorporating some other control strategies, for
example, public health improvement, isolation etc, we
may consider the more realistic ordinary differential
equation model. The theoretical study of cholera models
has been in progress, and is an exciting area of future
research.

Copyright © 2013 SciRes.

R,

0 0.2 0.4 0.6 0.8 1

Figure 2. The contour diagram of the basic reproduction
number R, with ¢, 8 has some fixed value.
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Figure 3. The contour diagram of the basic reproduction
number R, with ¢, 8 has some fixed value.
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Figure 4. The contour diagram of the basic reproduction number
R, with ¢, 6 variables. all the other parameter value are the
same as those in Figure 2.
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APPENDIX A
a0, —d: —d’a,
=(da+p = B,S,) (071 + 8 1y +30u" +215 +20pu, + 3¢5’ )
+(dra+ = B,S,) (¢ +40u [ 1, (d+a+ ) =(BoS,u + B,Syn) |
+ 4l [y (d+ @+ ) =(BySorty + BiSon) |+ 30 ity + 99w wy + 414 +100gu;
+6 [ 1, (d+a+ 1) = (BoSorts + B,Sy) |+ 8w + 60 11, +5¢” 1}
+8 [ 1 (d+a+ )= (BoSotty + BiSyn) |+ 901 11, + 300 1, + 8644
+agu [ py - (d+ o+ 1)~ (BySotty + BSyn) |+ 5607 1} +20-[ g1, (d+a+ 11,) = (BoSorty + BSy) |
+ 367 Gut, + 645, 1y, + 0 g1, + 307 0, |+ (A @+ 4ty = B,S, )44 117 + 7O, +3¢0° 1} +104 117 g1, + 26 11 - 1,
+ 8005 + 961 115 + 6,487 117 +1645, 1y +4- 157 [ g1, (d+ @+ p1) = (BySott + B,Sy71) |+ 66 11y - p1, +2.44;
+8¢u 11, [ 11y (d+a+ 1) = (BoSotty + BiSyn) |+40° i, [ 11, (d+a+ 1) = (BoSotty + B, - Sy71) |
+ o[ 1, (d+at )~ (BSotty + BSi) ]| +46% 1, [ 1, (d+ a4 1) ~(BoSotty + B,Sy) ] +20- Ot o,
+ 80ty [ 4ty (A + o+ 1) = (BoSosty + B - Sy) [+3- 0% s 15 + 9wk 415 +16048] py + 5! + 50 + 24 pa
+3¢ 165 +5ddppt, + 60 [ g1, (d+a+ 1) = (BySotty + BSyn) |+ 207 1y [ 1y -(d+ @+ 1) = (BySosty + BiSyn) |
+¢ [ (d e+ 1) ~(BoSotty + BiSn) [+ oty [ 1 (d+ @t 1) =(BSotts + B:Sy 1) ]
+20° 1, [ 1ty (d+ a1 =(By - Sotty + BiSorn) |+ 68ps [ g1 (d+ @+ 1) = (BySysty + B,Syin) |
+ 4041, [, (d+ @+ 1) = (LSt + BiSyn) | 44607 13 +4-0° 115+ 1} + 308 1} + 011 + 84 1,
+ 2|y (d+a+ )= (BySor, + BSyn) |+3608° [ 1y (d+a+ 1) = (BySors, + BSyn) | +106° 11 1y
+36° B[ty (d+ @+ 1) = (BySyrty + B - Sy ) |+ 80w, [ 1y (d+a+ 11, ) = (BySotty + BSyn) |60 113
+6° [y2 (d+a+ )= (BaSotts +,[31S077)]+t9[y2 (d+a+um)=(BSotts +ﬁ1S077)}
+826 11, 1 (d+ a+ 11) = (BSotty + B,Sm) |+ [ 11 (A a+ 1)~ (BoSytts + B,S1) | (bt + 200,10, + O}
+[ (A4 @+ )= (BySorty + BiSon) |80y +4¢- 115 +§ 155 +46° 1ty + 44 1ty + 6645 1ty +4447 - 115
+ 1y + 309 11y + 204155 + 4 1,11, + 40U, 155 + 0 11, + O 11, +36° oty + 0155 + 6 g3 + 6" - 1 g, |
+300° p 1t + 407 18 1 + 1] 1 + B - 115+ 8OBE 11y +390° 11y + SPusl y + 248 g5 + 5Oy + A48 15 + 0% gy g1y
+ 1004 15 +3608" - 1] 1, + 3667 1155 +200p1,415 + 85, 15 (0 + )+ 545 115 (0 + 47 )

+A07 11 1y + 30 115 (0 +4) + ¢ g 03
From Section 4, we know that R, <1,
w (d+a+w)> Sy, + BSyn
and
d+a+u > f,S,.

After some algebraic manipulations, we have a,a,a, —a; —a;a, >0, Thus, aa,a, >a; +a’a,, when R, <1.
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APPENDIX B

bb,b, —b? —b]b,

=(d+a+p—J,) (01 + 8 1y + 300 + 248 + 2001+ 34us] )
+(d+a+u-J,) {,ul,uzon1 o, +§ w4, + 40 [ 1 (d+a+ ) = (BoSorty + BSy) |
+4a0uJ, + 4 | 1, (d+a+ 1) = (BySor, + BSyn) |+ 2aduJ, + agu,J, + a6’ J, + 6 1, J, + 38" i,
+ @7 1, + 9Pl + 4t +100gu” + 67 |:,u2 (d—i—a + 4 ) —(ﬂzSO,u2 +,BIS077)] + 81t + 60, 1,
+5¢7 1 + ¢ [y (d+ o+ 1) = (BoSotty + BiSyin) |+ 96145 1y + 40,11, J, + 304 1, + 861
+agu [ py - (d+a+ )= (BSotty + BSyn) |+ 5607 17 + 3 - p1,J, +6- dua J, +3d il T, +2d g J,
+20p| 11, (d+a+ 1)~ (B,Sorty + B,Sym) |+ 860 T, +36° gy,
+0pu,J, + O, J, +4dOuJ, + Opat, + 6,48 11, + 207w J, +d g g1, J, + 0 g1, + 30 J, +ddu, J, + 6,44 T, +d 67T,
+367 |+ (At o+ g = I, ) {4871 +Td0puy + & 11, J7 + 00 JF + 3,11, T} + 360 17 +104 11l 1, + 20004}
+20 pp, +d* 1,7 + A, I +80pu] + 0a* )+ 8l [,uz (d+a+u)=(BSos +ﬂ,S077)} +2day J} +90u} 13
+5d0u 11,0, + 240, [y (d+a+ 1) = (BoSotty + BiSyn) |+ 644 115 +16418; 11, + a6 - J}
+ 445 [y (d+ @+ 1) = (BoSotty + BSyn) |+ 6007 1ty + 07 1, J7 + 2417 + 607 I} + 6,44 T}
+8-du 1, [,uz (d+a+m)=(BSym, +ﬁ,5’077)J+4~02,ul [,u2 (d+a+um)=(BSos +ﬂ,S077)}
+ o[ (d+at ) ~(BoSorty + BSin) | +2adi2d, +¢* I, [y (d+ a+ 1) ~(BSotts + BiSy1) |
+500u, - i, J, + 5418 T, + 2adu ] +2ddu I} + 28 J7 + 84 16 J, + O, J |
+ 467 1 [, (d+ @+ 1) = (BoSotty + BSyn) |+ @ 113, + 08 1, +140u - J, + 8451 11, T} + 526 . J,
+20u,J, | 1, (d+ @+ 1) = (BySo 1t + BSy) |+ Oap T} + 200415 1,
+0°J, [ g (d+a+ 1) =(BySorty + BSyn) |+ 6- sl J, + 860, [ g1 (d+a+ 1) =(BySorty + B, Sy |
+20¢ uJ, +d@’ w,J, +dO0pJ] + s JP +360° w1k +TabuJ] +dO0p* T, +9ul 11 +60u, - 1, J] +1661 1,
+6dl T} + St +9d0u S, +dO° T} + Sadu T, + 204, [ g, (d+a+ ) =By Sorty + BiSyn) |
+ 5w, [ (d+ @+ 1) = (BySotty + BSyn) |+ 50u +4¢° il J, +d0°T, + 208 i pt, + 1O J, +3¢ 1,115
+5dgpn 11, +130pu 10,0, + 0’ 1y, + 0 g1 J, +2d0pu, T, + adu, I} +add, | - (d+a+ )= (BySos, + BSy) |
+60u | 11 (d+ @+ ) = (BySotty + BSyn) |+ Odua T} + Sap i, 7 + 287 1, [y (d+a+ 1) = (BoSotty + BiSy71) |
+¢ |:,u2 (d+a+ )= (SSos +ﬂ15077)J +du, [,u2 (d+a+ )= (S, +ﬂ15077)J +2201 11, J, + 54 g 1, J,
+20° 1, [ 1y (d+ @+ 1) = (BoSotty + BSyn) |+ 50 - 117 g1, +80° 117 11,1, +80° 11 J, +5d6° p1,J,
+6-gui’ | g1, (d+a+ 1) = (BySyrty + BSyn) |+ aOF T, +2a0pu,J, + A0, T} + 9004 J, + abu,J}?
+2d- 130, + 844 T, + 6al I} 41990 1y, + ey, J, [y (d+ @+ ) = (BoSorty + BSyn) |
+6dgys S, + 864,150, +2d0° ¢, + 40811, [ 1, (d+ @+ 1) = (BoSotty + BSyn) |
+60uJ, [ 1, (d+ @+ 1) = (ByS, -ty + BiSyn) | +46° 155 + 5du, 1, T}
+dp |y (d+a+m)=(BSomty + BiSyn) |+ 60uJ, |y (d+a+ 1) =(BSorty + BSyn) |
+40% 1 +5dp 0,7 + 4 1 10, J, [,uz (d+a+m)=(BSm, +ﬁlSOI7)J
+3dp S [y (d+ o+ )= (BoSotty + BiSon) |+ 2 13T, + 1017 T} + & iy I} + a0, +§ i + 2607, J,
+3¢ul J7 + 308 117 + 0 1} + 200, | g, (d+ @+ 1) = (BySosty + BSyn) |+ 08" 1T, + 84y +16,45 1y - J, + 7607 11,
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+dg¢J, [/12 (d+a+ )= (LS, +,81S077)]+ 740w J} +2a¢0°J, +du,J, [,uz (d+a+u)— (LS, +ﬂ1S077)]
+3auJ, [y (d+a+ )= (BySorty + BiSon) |+ @b 1, J, + 5418 11y, +5- e J, + 6, 165,

2y (A4 + )= (By - Sopty + BSyn) |+ 248 i, + 104l J, + & g7 +20° 1130, + 46 1, J,

+364° [/12 (d+a+m)— (LS, +ﬁ1S077)}+1092/112,u2 +302¢[,uz (d+a+u)— (LS, +,6’1S077)]

+80du, | 1, (d+a+ 1) = (BoSotty + BiSyn) |+ 1164 J, + Oz I} +dss - J7 + 60, 113

+6 [yz (d+ a -i-,ul)—(ﬂzSo,u2 +ﬂ1S077)]+ 204 J, +2days, J}Y + 267 du, J,

+6’-[,u2 (d+a+um)—(SSoms +/)’1S077)]+8,u12,u2 [yz (d+a+u)—(BSom, +,81S077)]}

+[y2 (d+ a +ﬂ1)—(ﬂ2S0,uz +ﬁ1S077)]2 {¢,u2 +2u 4, +0J, +@J, + O, + 2/11J1}
[ (A et )= (B Sutty + B+ Sym) | (80pun s + 3010, +3du T + A s + 2007, +4 1
+40’ p, +apJ, +abuJ, +a - 15 J, + 418w, + 814 1, J, + G I} + 601 1, + s, J7 + 3aduJ,
+60u 11, J, +dpnJ] + 07 g, + A 15 + A I, + A4 T + A0 + @ 1, + o 7T, + 3087 1, + 2000
20, J] + ¢, + e, - o, + g J; + 204 +d @] + 47 1, +46u, - 15 +d6uJ, +du i, J, + 0 1,
Y apJ] + Qo J, + A J, + A J] + 2048 T, + 64p 1, + 307 du, + g’ J, +3a ) +dé T, +2d 607
+2d08 I} 420607 15T, + 13018 1, + Qe I} + 50061 J, +3-dder’ T, + 207, J, + 46’ 1] J, + 5061 J,
+10- 0 127, + 30yt 1, J, + 44 11,465 J, + @Oy J, + 20415 I +2d b} + abp 11J, + 6’ 113 J,
+4-aOdu 1, J, + 01 J, + 340w, J, + 12001 11, J, +140u 185 I} + 0 1, J, + a0 i J, +d 6 1, J,
+60 15 J, +2doysl J, + 2d o, I} + doy 15 J, + 3d e 16T, + 087w, J, +3adus J, +ddus J,
+2du - 15T, +3d0u T +5d g 1, J, +AOHE T, + 8 - 15 T + 500 T, + 767 41, J, + 0 i
+a4ul 1, A0 s T, + Saus JY + g, JY +3du il - I A3, - 15, + 30, J, + 4t J ;]
+O 1, + O T, +d Oy J, +3d g, + 247 1, J, + a8 g, J, +2dpl J, + 20w, - )+ 4,
+0pJ, +7¢- i J, ) +(1-d) 0 J} +(,U22 —a@z)aleyz +2d-0°J] p, + 2007}, + a0 J,
+go T +3d - g i, + ¢4 T, + 8l 1, I+ Ol T, +3dul - T+ afu,J] +d 0w, J; +5d 0l T,
+ 0PI} + s J} +2ddl J7 +2daOu J} +3dOu )+ 4dgul I+ d gy J] + 200 10
+ 60T} +8- 11185 (0+§) + 244 g1, ], + 5157 (0 + ) 4207 - 110 T} + A8 1 g1, + 2417 p1, + 3 I}
+dagu’ I} + 13w 1150, + ad’ 117 J, + 0PI} + 00’ i I} + 3l 15 (0 + @)+ Tdpl i, I+ 446 1,
+dOu e J, + @l I} + @ + 20y’ 15 J, + 607 i J, + 2dagu J}
From Section 5, we know that
o (d+a+ )=, +nJ;,
and
d+a+uy >J,.

After some algebraic manipulations, we have bb,b, —b; —b’b, >0, Thus, bbb, >b; +b’b, , when R, >1.
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