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ABSTRACT

Let M be areal hypersurface of a complex space form with almost contact metric structure (¢, &, g) . In this paper,
we prove that if the structure Jacobi operator R, = R(-&)E s ¢V & -parallel and R, commute with the shape op-
erator, then M is a Hopf hypersurface. Further, if R, is ¢V .S -parallel and R. commute with the Ricci tensor,
then M is also a Hopf hypersurface provided that TrR, is constant.
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1. Introduction

A complex n-dimensional Kahler manifold of constant
holomorphic sectional curvature 4c =0 is called a com-
plex space form, which is denoted by M, (c) So natu-
rally there exists a Kéhler structure J and Kahler me-
tric ¢ on M,(c). Now let us consider a real hyper-
surface M in M, (c). Then we also denote by g the
induced Riemannian metric of M and by N a local
unit normal vector field of M in M, (c). Further, A4
denotes by the shape operator of M in M, (c). Then,
an almost contact metric structure (¢,&,77,¢) of M s
naturally induced from the Kahler structure of M as
follows:

9X =(JX),E=—JN,n(X)=g(X,&), X eTM,

where TM denotes the tangent bundle of M and
( )T the tangential component of a vector. The Reeb
vector £ is said to be principal if A& =aé, where
a=n(A4E) .
hypersurface if the Reeb vector & of M is principal.
Hopf hypersurfaces is realized as tubes over certain
submanifolds in P,C, by using its focal map (see Cecil
and Ryan [1]). By making use of those results and the
mentioned work of Takagi [2,3], Kimura [4] proved the
local classification theorem for Hopf hypersurfaces of
P.C whose all principal curvatures are constant. For the
case H,C, Berndt [5] proved the classification theorem
for Hopf hypersurfaces whose all principal curvatures are
constant. Among the several types of real hypersurfaces
appeared in Takagi’s list or Berndt’s list.
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A real hypersurface is said to a Hopf

The Reeb vector field & plays an important role in
the theory of real hypersurfaces in a complex space form
M, (c). Related to the Reeb vector field & the Jacobi
operator R, defined by R.=R(-£)¢& for the curva-
ture tensor R on a real hypersurface M in M, (c)
is said to be a structure Jacobi operator on M . The
structure Jacobi operator has a fundamental role in
contact geometry. In [6], Cho and first author started the
study on real hypersurfaces in complex space form by
using the operator R, . In particular the structure Jacobi
operator has been studied under the various commutative
condition [7-9]. For example, Pérez et al. [9] called that
real hypersurfaces M has commuting structure Jacobi
operator if R.R, =R,R. for any vector field X on
M , and proved that there exist no real hypersurfaces in
M, (c) with commuting structure Jacobi operator. On
the other hand Ortega et al. [10] have proved that there
are no real hypersurfaces in M, (c) with parallel struc-
ture Jacobi operator R, that is, V,R.=0 for any
vector field X on M . More generally, such a result
has been extended by [11]. In this situation, if naturally
leads us to be consider another condition weaker than
parallelness. In the preceding work, we investigate the
weaker condition & -parallelness, thatis, V.R. =0 (cf.
[8,12,13]).

In this paper we consider the notion of ¢V .& -parallel
structure Jacobi operator R, that is, V, .R, =0 for
the vector ¢V.£ orthogonal to & . Further we in-
vetigate the structure Jacobi operator is ¢V & -parallel
under the condition that the structure Jacobi operator
commute with the shape operator or the Ricci tensor.
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This paper consists of two parts. In the first part of this
paper, we prove that if the structure Jacobi operator
R, =R(,&)E is ¢V & -parallel and R, commute with
the shape operator, then A is a Hopf hypersurface (see
Theorem 1 in Section 4). In the second part of this paper,
we prove that if R, is ¢V .S -parallel and R, com-
mute with the Ricci tensor, then A is also a Hopf hy-
persurface provided that TrR, is constant (see Theo-
rem 2 in Section 5).

All manifolds in this paper are assumed to be con-
nected and of class C® and the real hypersurfaces are
supposed to be oriented.

2. Fundamental Facts of Real Hypersurface

In this section the elemental factors of a real hyper-
surface are recalled. Let M be a real hypersurface in a
complex space form M, (c¢) with constant holomorphic
sectional curvature 4c,c#0 and N be a unit normal
vector field on M . By V we denote the Levi-Civita
connection with respect to the Fubini-Study metric g
of M, (c). Then the Gauss and Weingarten formulas are
respectively given by

V,Y=V,Y+g(AX,Y)N,V N =-4X

for any vector fields X and Y on M, where g de-
notes the Riemannian metric of M induced from g
and A is the shape operator of M in M, (c). For
any vector field X tangentto A, we put

JX=¢X+77(X)N,JN=—§,

for the complex structure J of M,(c). We call ¢
the Reeb vector field. Then we may see that the aggre-
gate (¢,&,m,g) is an almost contact metric structure on
M , that is, we have
PX=-X+n(X)¢E,
g(¢X,pY)=g(X,Y)-n(X)n(Y),
n(£)=1¢5=0,n(X)=g(X,$)
for any vector fields X and Y on M . From Kahler

condition V.J =0, and making use of Gauss and Wein-
garten formulas, we obtain

(VX¢)Y:77(Y)AX—g(AX,Y)(§ (2.1)
and
V& =9¢AX (2.2)

for any vector fields X,Y tangentto M .
The equations of Gauss and Codazzi are respectively
given by the following:
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R(X,Y)Z
=c(g(Y.2) X -g(X,Z)Y +g(4Y,Z)pX

$X.Z)pY —2g($X,Y)4Z)
AY,Z)AX —g(AX,Z)AY

(2.3)

g(
+g(

and
(VyA)Y-(V,4)X
=c(n(X)gY -n(Y)¢X ~2g(X.Y)¢),

where R denotes the curvature tensor of M .

In what follows, to write our formulas in convention
forms, we denote by
a=n(48),B=n(4°¢).y=n(4°¢) and h=Tr4, and
for a function f we denote by Vf the gradient vector
field of f.

If we put U=V_.¢, then U is orthogonal to the
Reeb vector field &. We get

QU = —AE +af, (2.5)

which shows that g(U,U)=B-a’. Thus we easily
verify that & is a principal curvature vector, that is
A =aé ifandonlyif g-a®=0.

From Gauss Equation (2.3), the Ricci tensor S of
M is given by

SX =c{(2n+1) X -3n(X)&}+hAX -4 X (2.6)

(2.4)

for any vector field X on M.
If A&—g(A4E,&)E =0, then we can put

AE =aé+ uw, (2.7
where W is a unit vector field orthogonal to &. Then
by (2.2) we see that U = ugW and hence
g(U,U)=u*. So we have

u=p-a’. (2.8)

In this paper, we basically use the technical compu-
tations with the orthogonal triplet {£,U,w} and their
associated scalars «,f and u.

Using (2.2) and (2.7), it is seen that

ug (VW &)=g(AU, X), (2.9)
g(Vy&EU)=ug (AW, X). (2.10)

Now, differentiating (2.5) covariantly along M and
making use of (2.1), (2.2) and (2.4), we find

(VyA)E =gV, U+g(AU+Va,X)&

(2.11)
—AgAX +agAX,
which enables us to obtain
(V.4)é=24U+Va, (2.12)

By the definition of U, (2.2) and (2.12), it is verified
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that
V.U =3pAU +adé - pé+¢Va. (2.13)

From the Gauss Equation (2.3) the structure Jacobi
operator R, is given by

R, (X)=R(X.£)¢ 010
=c{X-n(X)&} +adX —n(AX)AE '

for any vector field X on M.
Let Q be the open subset of M defined by

Q:{peM;,u(p);tO}.

At each point of Q, the Reeb vector field & is not
principal. That is, & is not an eigenvector of the shape
operator 4 of M if Q.

In what follows we assume that € is not an empty
set in order to prove our main theorem by reductio ad
absurdum, unless otherwise stated, all discussion con-
cernsthe set Q.

3. Real Hypersurfaces Satisfying R.S = SR,

Let M be a real hypersurface in M, (c),c#0 satis-
fying R.S =SR., which means that the Ricci tensor §
of type (1,1) and the structure Jacobi operator R. com-
mute to each other. Then by (2.6) and (2.14) we have

g(R.(Y),5%)-g(R.(X),SY)
=g(A4°8,Y)g (45, X)-g(4°¢ X )g(4L,Y)
~g( A& Y)g(hAé~cé, X)
+g( 47, X)g(hAE-c£,Y)
~ch(g(A48,Y)n(X)-g (4 X)n(Y)),
which shows that

ad’é :(ah—c)A2§+(}/—,b’h+ch)A§+c(,b’—ha)§.
(3.1)

Combining above two equations and using (2.7), we
obtain

lu(g(Azf,Y)w(X)—g(Azf,X)w(Y))
=B(n(Y)g(4¢,X)-n(X)g(4,Y)),

where a 1-form w is defined by w(X)=g(W,X)
for any vector field X . Putting Y = 4¢ in this, we find

g (A6, X) = pyw(X)- Bag (A&, X)+ Bn(X),
which shows that
WAE=(r = Pa) A+ (f -ar)é.  (32)
Comparing (3.1) with (3.2), we find
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(h=p)(B-pa—c)=0 (3.3)

on Q,where we have put x°p=y—-fa and
1 (B-pa)=p*—ay.So(3.2) becomeson Q

AL = pAé+(f-pa)e, (3.4)
which together with (2.7) yields

AW = pé+(p—a)W (3.5)
and hence

AW = pAW +(B - pa)W. (3.6)

Now, differentiating (3.5) covariantly along Q, we
find

(V)W + AV W

=(Xp)E+uV +X(p—a)W+(p—a)V, W.

By taking the inner product with ' in the last equa-
tion, we obtain

g((V )W, w)=-2g(AU,X)+Xp-Xa (3.8)

3.7)

since W is a unit vector field orthogonal to &. We
also have by applying & to (3.7) and making use of
(2.9)

ug((VyAYW,&)=(p-2a)g(AU,X)+u(Xp), (39)
which together with the Codazzi Equation (2.4) gives
,u(VWA)f=(p—2a)AU—2cU+,uV,u, (3.10)

u(V AW =(p-2a) AU —cU +pVu.  (3.11)
Putting X =¢ in(3.8) and using (3.11), we obtain
Wu=_Ep—Sa=¢Ea, (3.12)

where we have put A=w(A4W). Differentiating (3.4)
covariantly and using (2.2) we find

g((VyA)AE,Y)+g(A(V A)EY)
+g(A°PAX,Y)~ pg(APAX,Y)
=(Xp)g(4,7)+pg((Vx4)E.Y)
+X(B-pa)n(Y)+(B-pa)g(¢4X,Y),
which together with (2.4) and (2.12) implies that

(3.13)

(V.4)4s :pAU—cU+%V,6’.

If we replace X by & in (3.13) and make use of
(2.4), (2.12) and the last equation, then we get

34°U -2pAU +(ap-f—c)U

3.14
:(ép)Aé-i—é(,b’—ap)é—AVa+pV0:—%Vﬁ. (3.14)

Now, we define a 1-form u by u(X)=g(U,X)
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for any vector field X, itis, using (2.4) and (3.13), seen
that

c(u(¥)n(X)=u(X)n(Y))+2c(p-a)g (47, X)
~g(A’¢4X,Y)+g (4’947, X)
+2pg(pAX, AY)
~(B-pa)(g(94Y. X)-g(44X.Y))

=g(47,(Vx4)¢) -2 (4X.(V,4)¢)
+(Yp)g(4S,X)-(Xp)e(45Y)
+Y(f=pa)n(X)=X(f~pa)y(Y).

If replace X by uW to both sides of (3.15) and

take account of (2.12), (3.5), (3.6), (3.9) and (3.10), then
we obtain

(3a—2p) A°U +2(p* + f—2pa+c) AU
+(p-a)(B-pa—2c)U
:uAV,u+(,0a—,B)Va—%(p—a)Vﬂ
+ 1V p—u(Wp)AE - uW (- par)&.
Differentiating (2.14) covariantly along Q , we find
2g((Vir)Y.2)
= g(Vy (RY)=R(V,¥),Z)
=—c(n(2)g(Vi&.Y)+n(Y)g(Vi&.2))
+(Xa)g(4Y,Z)+ag((V,4)Y,Z)
~n(42){g((Vy4)EY)+g
—n(AY){g((V44)£.2)+g (494X, Z)}.

In the following we assume that A satisfies
V.eR.=0.Then we have V, R, =0 on Q because
of (2 5) and (2.7). Putting X = W in the last equation
and using (2.2), we have

—(n(2)g(p4W.¥)+n(Y)g(p4W,Z))
+(Wa)g(4Y,Z)+ag((V, 4)Y.Z)
—n(AZ)(g((Vy4)E.Y)+g(Ag4W,Y))
—7(AY)(2((Vy4)£.2)+g(4pAW,Z)) =0

because of V,R.=0. If we replace ¥ by & and
make use of (2.12) and (3.5), then we obtain

AAGAW +cp AW =0.

(3.15)

(3.16)

(ApAx,Y)}

(3.17)

(3.18)

Remarkl. a=0 on Q.

If not, then we have « =0, and then we restrict our
arguments on such a place. From (3.18) we have
@AW =0, which together with (3.5) yields p=0 and
hence (3.5) reformed as AW = u& . But, it is, using (2.8)
and (3.12), that W 8 =0. So (3.16) turns out to be
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2(,B+c)AU:%AV,B, (3.19)

where we have used (2.8)and p=a =0.
On the other hand (3.17) is reduced to

n(A4Y)g((VyA)E Z)+n(AZ)g((V,yA)E,Y) =

because of (3.18) with ¢ =0. If we replace Y by W
and take account of (2.7), (2.8) and (3.10), then we
obtain (V,,4)&=0. Thus (3.10) becomes xVu =2cU
and consequently (1/2)VB=2cU and hence £3=0.
Accordingly (3.19) reformed as BAU =0 and thus
AU =0. Using these facts, (3.14) is reduced to
(/2)Vp =(p+c)U . This contradicts the fact that
VB =4cU . Therefore =0 on Q isproved.
If we make use of (3.18) and Remark 1, then (3.17)
reformed as
a(V,4)X
=—(Wa)AX +g(A4E, X)(V, A) ¢
+g((VyA)& X)As
C
—;u(w(X)¢AW+g(¢AW,X)W).

Using (3.5) and (3.10), we can write the last equation
as

a(V,4)X
:—(Wa)AX—é/l(w(X)Uﬂt(X)W)
+%{(p—2a)AU—2(:U+,uV,u}g(Ae§,X) (3.20)
=g((p-2a) AU =2cU + iV, X ) AE.
If we put X =W in (3.20) and make use of (2.8),
(3.8) and (3.12), then we obtain

1V,b’—och

2 i (3.21)

= c(Z-k—jU—pAU+(Wa)AW—(§/1)A§.
a

Taking inner product W to this, and using (3.5) and
(3.12), we find

1
EWﬁ—a(Wp) =(p-a)Wa-u(Wu),
which together with (2.8) implies that
Wp= a(Wp)+p(Wa).

If we take the inner product & to (3.21) and make
use of (2.7) and (3.5), then we have
&B =2u(Wa)+2a(&a), which connected to (2.8) gives

(3.22)
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&u=wa. (3.23)

From (2.8) we have 2u(Wu)=Wp-2a(Wa) ,
which together with (3.12) and (3.22) yields

a(Wa)=2u(E)-A(Wa). (3.24)

4. Real Hypersurfaces Satisfying
ngéRf =0 and R;A=AR;
Let M be a real hypersurface in M, (c),c=#0 satis-
fying V¢V§§R§ =0. We have from (2.14)
g(R.Y, 4X)-g(R.X, 4Y)
=g(A4°£,7)g(4E,X)—g(A4£,X)g(4E,Y)
—c(g(4£,Y)n(X)-g(4¢,X)n(Y)).

In the following we assume that R.A = AR.. Then we
have from above equation

AP = pAE+ €,
which shows that

(4.1)

p=pa+ec. (4.2)

Substituting (4.1) into the first equation of section 3,

we find R.S-SR, =0. Thus, all relationships (3.3)-

(3.22) with B = pa+c are established on Q. Com-

bining (3.5) to (3.18), we obtain (AU +cU)=0. So

we have

aAU +cU =0. (4.3)

In fact, if not, then we have 4=0, thatis, p=«.

Therefore, (3.5) and (4.2) are reduces respectively to
AW = pué and p® =c. So (3.16) becomes

aA*U +4cAU =—pu(Wa ) A¢

on this subset. On the other hand, if we take the inner
product W to (3.20) and make use of (3.8) and u* =c,
then we obtain a AU =cU + u(Wa)& . Comparing this
with last equation, we verify that U =0, a contradiction,
Therefore (4.3) is established on whole space.

Because of (4.2) and (4.3), we can write (3.21) as

%(an—pVa) = —c(l-i—z—ij—i-(&l)Af—(Wa)AW,
a

(4.4)
which shows that
a?(Up)-pa(Ua)=-2¢(2p+a)u’. (4.5)

Using (4.3), we can also write (3.20) as

a(V,4)X

= —(Wa)AX—ﬁ(u(X)W+w(X)U)

(24
+g[Vy—2U,XJA§+g(A§,X)(w—£U].
ap au
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Replacing X by U inthisand using (4.3), we find
(Vi AU =(Up) A +=((Wa)U — W - up AE ).
a

(4.6)

If we take the inner product U to (3.7) and take
account of (2.4), (2.10) and (4.3), then we obtain

(ad+c)g(V,W,U)

=ag((Vyd) X, U)+caun(X)-au’g(AW,X),
which together with (2.8), (4.2) and (4.6) yields

ug(Vyw,U)

- g(x,(Uu)A§+§((Wa)U — "W — pp AE) (A7)
+caué —oau’ A Wj.

Putting X =U in this, we have

g(V,m,U) =§(Wa).

(4.8)

Now, applying by ¢ in (2.11) and using (2.10), we
find

#(VyA)E

=V, U—puw(AX)E—-pApAX —aAX +an(AX)E.

If we put X =U in this and make use of (2.5), (3.5)
and (4.3), then we obtain

v,U :¢(VUA)§+c(§—1jU. .9)

Taking the inner product U to (2.11), we also obtain
g(VXW’ U)

:%g((VUA)X,f:)—(§+ajg(AW,X)—2cw(X),

where we have used (2.4), (2.5) and (4.3), which together
with (4.7) implies that

u(VyA)E -2 {(a+§jAW+2cW}

- (Uy)A§+§((Wa)U — AW - pp AE)
+caué — o’ AW.

If we apply by ¢ to this and make use of (3.5) and
(4.9), then we obtain
VU =-=(Wa)W +5U (4.10)
(24

for some function § on Q.
On the other hand, differentiating (4.3) covariantly,
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and using itself again, we find

—é(Xa)U+a(VXA)U+aAVXU+cVXU =0,
which together with (2.4) and (2.5) gives
“((rayu(x)~(Xa)u(¥))
veau(n(X)w(¥) -7 (V) w(X))
+a(g(AV U, Y)-g(AV,U, X))+ cdu(X,Y)=0,

(4.11)
where du is the exterior derivative of a 1-form u is
given by

u(X.3) = X (u(V)) ¥ () ([,

Putting X =¢& in (4.11) and taking account of (2.7)
and (2.10), we get

a,ug(W, VYU)

—é(é‘a)u(Y)—i—ca,uw(Y)+ pu(a®+c)g(AW,Y)
+g(aAV.U+cV,U.Y),
or putting Y =U and making use of (4.3),
a’g(VyU W) =—cu(éa).
From this and (4.8) it follows that
a(Wa)=u(éa)

because U is orthogonal to W . Comparing this with
(4.10), we have

(4.12)

VU = —éy(ga)wmu,
which together with (4.3) implies that
@AV, U+cV,U = —é,u(fa)(AW+§Wj.
By virtue of (2.7), (3.5) and (4.2), we can write this as
a AV, U +cV, U = —é,uz () AL

If we put X =U in (4.11) and take account of the
last equation, then we obtain

,uz(Ya)—(Ua)u(Y)—%g(,uz(§a)A§,Y) -0,

Therefore we have
a(Ua
(,uz )U +(&a) 4E.

Using (4.2) and (4.3), we can write (3.14) as

aVa =

(4.13)

%(an—pVa) = c( —%—Z—'IZJU+(§p)A§—AV0¢,

Copyright © 2013 SciRes.

which together with (4.4) implies that
AVa+3c(i2—1jU = (Ea) AE +(Wa) AW.
o
If we take the inner product U to this, and make use
of (4.3), we deduce that
a(Ua):B(c—az),uz.
Thus, (4.13) reformed as
aVa=3(c-a’)U+04¢, (4.14)

where we have put 6 =¢a .
Now, we are going to prove that #=0 on Q. For
this, the last equation is rewritten as

%Yaz =3(c—a’Ju(¥)+0n(4Y).
Differentiating this with respect to a vector field X

again, and taking the skew-symmetric parts with respect
to X and Y, then we eventually have

(X0)n(AY)-(Y0)n(AX)+3(c-a®)du(X,Y)

= 0{6(n(AX )u(Y)=n(AY)u(X)) (4.15)
~2g(APAX,Y)+2cg(4X,Y)}.

Putting Y =¢ in this, we find
a(X0)-(£0)n(AX)+3(c—a’)du(X,&) w16)

= 20/(u(AX)-3au(X)).

By the way, we see, using (2.10) and (2.13), that
—du(X,&)=g(uAW +3pAU +a AE - PE+ PV a, X),
which together with (2.7), (2.8), (3.5) and (4.3) gives

—du(X,g‘):g(,u[p+%JW+¢Va,XJ.
o
Thus it follows, using (2.5) and (4.14), that
du(X,f):—g(,u(p+3a)W+£U,X} 4.17)
(24

Substituting this into (4.16), we find
av0—(£6) A
4.18
:3,u(c—a2)(p+3a)W+9[£—9ajU, (4.18)
[04

where we have used (4.3). Comparing this to (4.15), we
get

(e-e?)

{a(p+3a) (w(X)n (V)= w(¥)7 (X)) +du(X,7)}

o e aur) a9
+§9(g(A¢AX,Y)+Cg(¢X'Y))'
APM
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If we take the inner product & to (4.4) and make use
of (2.8), (4.2) and (4.12), then we obtain

a’ (&p) =(pa +2c)éa.

Using this, we can write (4.4) as

(4.20)

Za*(aVp-pVa)

=—ca(2p+a)U +c(éa)(24¢ - af),

where we have used (2.7), (2.8), (3.5), (4.2) and (4.12).
Combining this with (4.14), we obtain

%asv,o—[%paz + 2ca]Va

:c(5a2 —2pa—60)—ca(§a)§,

which tells us that
Sa (Xp)(Ya)-(Yp)(Xa))
= c(5a2 —Zpa—GC)((Ya)u(X)—(Xa)u(Y)) (4.22)

—ca(éa)(n(X)(Ya)-n(Y)(Xa)).

Using the quite same method as that used to (4.19)
from (4.14), we can drive from (4.21) the following:

(1005—6,0—%0)(( a)u(Y)~(Ya)u(X))
+3(5e)(n(X)(Ya)-n(Y)( X))
+2a((Xp)u(Y)-(Y p)u(X))

=a(n(X)(¥0)-n(¥)(x9))

—a(éa)g((p4-A4)X,Y)
+(50{2 —Zpa—GC)du(X,Y),

(4.21)

(4.23)

where we have used (2.2) and (4.22). Putting X =¢ in
this and using (4.14), (4.17) and (4.20), we obtain

[3a+2p+icj(§a)U+a(V6’—(§6)§)
04
2 2 pa—6e) -2 (o) L =

+,u{(p+3a)(5a 2pa 60) a(fa) }W 0,

which together with (2.7) and (4.18) implies that
(Ga 2p——cj(§a)
=y{§t9+(p+3a)(2a2—2pa—3c)—§(§a)2}W

a

Thus, it follows that
(60° —2pa —6c)éa =0

because U and W are orthogonal to each other, and
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hence 6a’-2pa—6c=0 if &a =0 . Differentiation
gives (6a—p)Va =aVp on this subset, which toge-
ther with (4.20) yields ¢=0, a contradiction. Thus,
Sa=0 on Q is proved. Consequently we prove that
Wa =0 by virtue of (4.12) and Remark 1. By (4.20) we
also have &p=0. Therefore (4.14) and (4.21) are re-
duced respectively to

aVa:3(c—a2)U, (4.24)

EaSVp—[%paz +20a)Va =c(5052 —Zpa—GC)U

(4.25)

From (4.24) we have (a’-c)du(X,Y)=0 and
hence (a* —c)du(X,&)=0, which together with (4.17)
gives

(az —c)(p+3a):0.

If a®~c#0 on Q, and then we restrict our argu-
ments on such a place. Then we have p+3c=0 and
thus Up=-3(Ua), which together with (4.5) yields
2p+a =0, a contradiction because of Remark 1.
Accordingly we have o®>=c on Q and hence « is
constant. Thus, (4.25) becomes

%Vp:—(2p+a)U.

On the other hand, using o =0 and the last equa-
tion, we can write (4.23) as
5a° —2pa —6c)du(X,&)=0 and consequently
2p+a)(p+3a)=0 by virtue of (4.17). Therefore we
have 2p+a =0, which together with (4.2) and a? =c
implies that 28 =«a”, a contradiction. Thus, we deduce
that Q= . Accordingly we have
Lemma 1. Q=O if it satisfies V. R: =0 and
R.A=AR,. '
From this we conclude that
Theorem 1. Let M be a real hypersurface in
M, ( ) c#0. If it satisfies VW :R. =0 and at the
same time R.A= AR, then M is a Hopf hypersurface
in M, ( )

5. Real Hypersurfaces with  TrR, = const

In this section, we will continue our arguments under the
same hypotheses as those stated in section 3, namely
R.S=SR, and V. Re =0 hold on M . Then we
have

h=p. (5.1)

Indeed, if not, then we have S = pa+c because of
(3.3). Thus, (3.4) becomes 4°& = pAE +c& . So we have
R.A= AR, by virtue of the first equation of section 4.
By Lemma 1, we verify that Q =, a contradiction.
Thus, /&= p is established on the whole space.
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Furthermore, we assume that if TrRé =const. Then
we obtain from (2.14)

B —ha =const, (5.2)

This is equivalent to g(S¢,&)=const. by virtue of
(2.6). Because of (3.5), we can write (3.18) as

A(aAU +cU)=0. (5.3)
Frist of all, we prove
Lemma2. aAU+cU=0 on Q if TrR, =const.
Proof. If not, then we have 41=0, thatis 7—a=0

with the aid of (5.1) and (5.3). And we restrict arguments
on such a place. Then (3.5) becomes

AW = pg. (5.4)

Because of (2.8), (3.12) and (5.1), we can write (3.16)
as

ad’U +2(p* +¢) AU = uAVu—pu(Wa) 4. (5.5)

Using (2.8) and (5.4), the Equation (3.21) reformed as

UV = 20U—aAU+,u(Wa)§.

Since h=a, we see, using (5.2), that Vu=0. Hen-
ce, taking the inner product & to the above equation,
we have Wa =0. Thus, we verify from the last equa-
tion

a AU =2cU. (5.6)

We also have from (5.5) aA2U+2(,u2 +¢)AU =0,
Combining the last two equations, we obtain
(1 +2¢) AU =0. Thus, we see, using (5.6), that

1 +2c¢=0. (5.7)

On the other hand, if we take the inner product U to
(2.11) and make use of (2.4), (5.4), (5.6) and (5.7), then
we obtain

g(VXW’U)

:%g((VUA)f,X)—ZC‘W(X)'F%(O!_EJH(X)'

(5.8)

Applying (2.11) by ¢ and taking account of (2.10),
we also deduce that

$(VyA)E =V, U+puw(AX)E—-pApAX
—aAX +ag (A&, X)¢E.

If we put X =U in this and use (5.4) and (5.6), then
we get

VU =¢(Vy4)E+2cU. (5.9)

Now, differentiating (5.4) covariantly and using (2.2)
and (5.7), we find

(VAW + AV W = pupAX.
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If we take the inner product U to this and make use
of (2.4), (5.4), (5.6) and (5.7), then we obtain

%g(VXW,U) =—cun(X)-g((Vy4)W,X). (5.10)
By the way, we have from (3.20)
par(V,, A) X = —4c(g (A&, XU +u(X)AE),

where we have used Wa=0,A=0, (5.6) and (5.7),
which together with (2.4) gives

(Vo A)W = 2eué— 3K 45
[04

Substituting this into (5.10) and using (5.7), we find
3ca
g(VXW,U) :777(X)+2,ug(A§,X),
which together with (5.8) implies that
(Vyd)é= —20,uW+c(—3a +£]§
a
Thus, it follows that #(V,4)&=—-2cU . From this
and (5.9) we verify that
V,U=0. (5.11)

Differentiating (5.6) covariantly, and using itself again,
we get
E(Xa)U +a(VyA)U+adV U =2V, U,
o

or, using (2.4) and (2.5)
%(Xa)u(Y)+ag((VUA)X,Y)—ca,m](X)w(Y)
—2cauw(X)n(Y)+ag(4V,U,Y)

—ZCg(VXU,Y) =0.

Taking skew-symmetric part with respect to X and
Y, we find

2c

= ((Xa)u(Y)~(Ya)u(x))
reau(n(X)w(¥)=n(¥)w(X))
+a(g(AV,U,Y)-g(AV,U,X))-2cdu(X,Y)=0.

If we put Y =U in this and make use of (5.6) and

(5.11), then we obtain
wVa=(Ua)U, (5.12)

which enables us to obtain &a =0. Accordingly (3.14)
turns out to be

34°U — 20 AU — (1% +¢)U + AVar =0,

where we have used (2.8) and p =« , which together
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with (5.6) and (5.7) gives 3c(4c-a’)U+a’AVa =0.
Thus, it is seen that a(Ua)=3c(4c—-a’). So we can
write (5.12) as Va? :3(a2 —4c)U. Differentiating this
covariantly and taking the skew-symmtric part, we
eventually have (o’ —4c du(X,Y):O, which implies
that (o —4c)du(X,£)=0. This together with (5.4),
(5.6) and (5.12) yields a(a2—4c)=0, Thus we have
a®—4c=0 because of Remark 1. It is contradictory by
virtue of (5.7). Consequently Lemma 2 is proved.

Using (5.1) and Lemma 2, we can write respectively
(3.20) and (3.21) as

a(V,4)X
=_(Wa)AX—§ﬁ,(w(X)U+u(X)W)
+g[vlu—%U,XJA§+g(A§,X)[V/J—%U}

(5.13)
yvﬂ_am:(Wa)AW-(gz)A§+c(3+2ljU. (5.14)
[24

Replacing X by U
Lemma 2, we find

in (5.13) and remembering

a(V, AU = (U ) A& +§((Wa)U — AW - phAE).

On the other hand, if we take the inner product (3.7)
with U, and make use of (2.4), (2.10) and Lemma 2,
then we get

(ad+c)g(V,W,U)

=ag((VyA)U,X)+caun(X)-au’g (AW, X),
which connected to the last equation implies that
(aﬂ+c)g(VXW,U)

- g(X,(Uy)A§+£((Wa)U—/1,qu—,uhA§)j (5.15)
[0/
+ca,u77(X)—a,u2g(AW,X).
Thus, it follows that

(ah+c)g(VoW U)==1?(Wa).  (5.16)
a

Using the quite same method as that used to derive
(4.10) from (3.7), (4.6) and (2.11), we can derive from

(3.7), (5.15) and (2.11) the following:
(@h+c)V U === 12 (Wa)W +8U. (5.17)
(24

where the function & is given by
5=,u(U,u)+(aﬂ+c)

{20+/1(£+ aj}—{i(ﬂ + a)+a;t}ﬂ2. (5.18)

o o
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We notice here that the following:

Remark 2. al+c#0 on Q if TrR, =const.

In fact, if not, then a4 +c¢=0. So we have from (5.16)
Wa =0 and hence 6=0 because of (5.17). Thus,
(5.18) implies that a(Up)=2cAu on this subset.
However, by putting X =¢ in (5.15) we obtain
a(Uy)=(ay2+ci)u. Combining the last two equa-
tions, we verify that au’®=cA, which together with
ai+c=0 gives u®+A1*=0, which will produce a
contradiction. Therefore al+c¢=0 on Q is proved.

Because of (5.17) and Lemma 2, it is seen that

aAV,U+cV,U =~

2(Wa)| aw in
a/l+cﬂ( a)( +a

(5.19)

by virtue of Remark 2.
Now, differentiating ¢ AU +cU =0 covariantly and
using itself, we find

~E(Xa)U+a(V AU +adV,U+cV, U =0,
a
which together with (2.4) and (2.5) implies that

“((ra)u(x)~(xa)u(y))

+eap(n(X)w(¥)=n(¥)w(X))
+a(g(4V,U,Y)-g(AV,U, X))+ cdu(X,Y)=0.
(5.20)

If we put X =¢ in this, and make use of (2.7) and
(2.10), then we get

ayg(W,VYU)

—é(fa)u(Y)—i—ca,uw(Y) (5.21)

+,u(a2 +c)g(AW,Y)+g(aAV§U+cV§U,Y).

By putting Y =U in this and using Lemma 2, we
have o’g(W,V,U)=—cu(éa) and hence
a’g(VyW,U)=cu(éa) because U and W are
mutually orthogonal. From this and (5.16) we verify that

au(Wa)=(ai+c)(éa). (5.22)

If we replace X by U in (5.20) and make use of
(5.19), (5.22) and Lemma 2, we obtain

alUa
aVa = ( > )U+§—a(aAW+cW). (5.23)
u u
We are now going to prove the following:

Lemma3. If TrRé is constant, then we have

(acd+c)aVa=a(Wa)(aAW +cW)+2fU  (5.24)
on Q,where the function f is given by
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2f =2a’A+4cal+2ca® +3c” —a’ . (5.25)

Proof. Using (2.7), (2.8) and Lemma 2, we can write
(2.13) as

V.U = (az + 3c),uW —aqté+agVa,
which together with (3.5), (5.22) and (5.23) implies that

VfUz(a+z—U—?j,uW—,u2§+@U.
] a u Iz

From this and Lemma 2, we obtain
aAV. U +cV.U
:[a+%—U—?Jy(aAW+cW)—,u2 (aA§+c<§).
a pu
Using (5.12), Lemma 2 and the last equation, we have
ag(V,w,U)
c Ua
=—/(&ax)u(X)+—gl(adW +cW, X
E@)u(x)+ e )
—2(a2+20)g(AW,X)
—C(Za+£)w(X)+,ug(aA§+c§,X).
[24

By virtue of this and (5.15), it is verified that

al+c
2

(Ua)(adW +cW)—a(Uu) AE

= —c AW —c(A+a) pAE +ca pué — o 1i° AW

+(ad+c)
{2(0:2 +2c)AW+c(2a+%]W—y(aA§+c§)}

Since & and W are mutually orthogonal, we see
from the last equation the following:

a/l—:cUa :—(cl+ay2)+M+(al+c)(a+3—cj,
/t u a
PIA
%U@z =ay(U,u)—(2cl+ca+Aaz)yz
+(aﬂ+c){2(a2 +20)&+c(2a +3—cj—ayz}.
a

(5.26)

Eliminating Ua from above two equations, we even-
tually have

{a(U,u) —(/1&2 + 20/1+ca)} ,u(a/l +e— it ) =0. (5.27)

Now, suppose that o (Uu)~(4a” +2cA+ca)u+0
on Q. Then we have al+c—u® =0, which together

with (2.8) and (5.1) yields g — pa—c =0 on this subset.
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So (3.4) becomes A& =pAE+cé and consequently
R.A= AR, on this set. By Lemma 1 we see that
Q =, a contradiction. Therefore we have

a(Up)=(Aa’® +2ci+ca)u (5.28)

with the aid of (5.27). Comparing this with (5.26), it
follows that

a(a/1+c)Ua

5.29
:(2a3/1+4caﬁ+2ca2 +3c? —az,uz),uz. (.29)

Therefore, (5.24) and (5.25) are established on Q
because of (5.22), (5.23) and (5.29). This completes the
proof.

Now, differentiating (2.7) covariantly and using (2.2),

we find
(V A)E+ApAX
=(Xa)E+agAX +(Xu)W +uv . (530

Putting X =¢& in this and making use of (2.12) and
(3.23), we find

34U —aU —(éa)é-(Wa)W +Va =iV W,

which together with (5.22), (5.24), (5.25) and Lemma 2
gives

UV W = (a2/1+0/1+ca—ay2)U.

al+c

By the way, if we replace X by & in (3.7) and take
account of (3.11), (3.23) and Lemma 1, then we obtain

p(AV W -2V W)
:[ﬂz +§ljU—,uV,u+,u((§/l)W+,u(Wa)§,

which connected to the last equation and Lemma 1
implies that

UV = y(Wa)§+,u(g%)W+(a/1+ﬁ+ch. (5.31)
a

Using this and (3.24), we can write (5.14) as

aVi=a(E)E+a(WAW +(ad—-2c)U. (5.32)
From (5.2) we have
VB=h(Va)+a(Vh), (5.33)

which shows that &3 = h(&a)+a(&h). Since we have
2u(Wa)=E8-2a(la)

because of (2.8) and (3.23), we verify, using the last

equation, that 2u(Wa)=a(&h)+(h-2a)éa. By vir-

tue of this and (5.22), it is seen that

2(ar+c)éa=a’(Eh)+a(A—a)éa . Thus, it follows
that
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a’ (&) =(ar+2c)éa. (5.34)

If we take the inner product U to (5.32), then we
have a(UZ)=(ad-2c)u*, which together with (5.33)
gives

UB=(ad-2c)y* +(a+h)Ua.
On the other hand, we have from (2.8)
UB=2u(Upu)+2a(Ua).
Combining to the last two equations, we verify that
Zy(U,u) = (0:/1—20);12 +/1(Ua),
which together with (5.28) and (5.29) implies that
all? =3ca’Al—-c’A-4fa=a’ iy’ (5.35)

Differentiating this with respect to & and using (3.23)
and (5.22), we find

(a?2® —8cah - 2aip* —4c* ) éa
+(2a3/1—30a2 —c? —0:2,u2)§/1 =0,
which together with (5.34) and (5.35) yields
(4* +4ad+4c)a(éa)=0.

From this and (5.34), we easily see that & =0. So it
is, using (5.22) and (5.34), seen that Wa =0 and
éA=0. Hence (3.24) becomes WA=0. Using these
facts, (5.24), (5.31) and (5.32) turn out respectively to

(ad+c)aVa = (2a3/1+4ca/1+ 2ca® +3c? —az,uz)U,

(5.36)
oV =(a’A+2ch+ca)U, (5.37)

and
ava=(al-2c)U. (5.38)

Now, we prove

Lemma 4. al=2c and 21+3a=0 on Q if
TrR. =const.

Proof. From (5.38) we have

(Xa)(Y2)+aXx (Y1)
=(A(Xa)+a(X2))u(Y)+(ar—2¢) X (u(Y)).

If we take the skew-symmitric parts of this and make
use of (5.36) and (5.38), then we obtain
(ad—2c)du(X,Y)=0 and hence

(ad—2c¢)du(X,&)=0.
In the same way we see from (5.36) that

(a®A+2cA+ca)du(X,E)=0. (5.39)

Now, we assume al—-2c#0 on Q and that
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restrict our arguments on such a place. Then we have
du(£,X)=0, that is g(V &U)+g(V.U,X)=0,
which together with (2.10) and (2.13) gives

3pAU + a AE — BE+ PV a+ AW =0.

Thus, it is, using (2.7), (2.8), (3.5) and Lemma 2, seen
that

oVa = (axl +a° +3c)U, (5.40)

where we have used the fact that £a =0, which con-
nected to (5.36) implies that x? =aA— A% +c. Differ-
entiation gives 24Vu=(a—-21)VA+AVa , or using
(5.37), (5.38) and (5.40)

2(a22+20/1+ca)
= (a—2/1)(a/1—20)+/1(a/1+a2 +3c).
Therefore, we obtain

aA? +4ca—3cA =0. (5.41)

If we differentiate this, then we have
(A° +4c)Va+(2a4—3¢)VA=0, which together with
(5.38) and (5.40) gives

al® +32%a® +3cA® —3cal + 4ca? +18¢° = 0.

Combining this to (5.41), we obtain
A% +12cA* +32c%A% +48¢* =0. This means that A is
constant and hence a4 =2c¢ because of (5.38), a con-
tradiction. Accordingly at=2c¢ isvalidon Q.

In the same way we verify from (5.39) that
a’A+2cA+ca=0 , which together with al=2c
implies that 24+3a=0 on Q. This completes the
proof of Lemma 4.

Putting X =W in (5.30) and using (3.10), Lemma 2
and Lemma 4, we get

v, W =0. (5.42)

If we put X =W in (2.11) and make use of (3.5),
(3.10), (5.36), (5.37) and Lemma 4, then we obtain
@V, U =0, which together with (2.10) and (3.5) yields

V, U = —Aé. (5.43)

Finally we prove

Theorem 2. Let M be a real hypersurface with
TrR, =const.in M, (c),c # 0. If it satisfies
Vw.cR: =0 and at the same time R.S = SR, then M
is a Hopf hypersurface, where S denotes the Ricci
tensor of M .

Proof. From Lemma 4, we see that
ah=a’+2¢,2h+a=0. (5.44)

Because of Lemma 4, we also verify that «,x and
A are constant on Q by virtue of (5.36)-(5.38). Using
these and (5.44) we can write (5.13) as
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(V,A)X = (V AW
w () e 2w o[ () 2w 0. O a2 () ) Ju
2u a Z,un a ' 2u a 2;477 a '
which together with the Codazzi Equation (2.4) implies Differentiating this covariantly and using (2.2), we
that find
(VY AV +(V  A)(V, )
2 2 3
:(ZCVYW+i¢AY]u(X)+{§Y(W(X))+i(g(¢AY,X)+g(é,VXY))}U
2c 5¢ 2c 3c
Y(u(X))| —W+— V,U) —w(X)+—n(X) |
) Ews 20 ) i)

If we take the skew-symmetric part with respectto X and Y, and using the Ricci identity, we obtain
R(Y, X)AW - A(R(Y, X)W )+ (V  A)(V, W )=(V,A) (V)

= [%VYW+i¢AY]u(X)—[%VXW“‘i@‘lXJ”(Y)
+;dw(Y,X)+Z(g(¢AY,X)—g(¢AXvY)+g(§’VXY)_g(§’vYX))U
+(25—C§+£W]du(Y,X)+(VYU)(§—C77(X)+£W(X)j_(VXU)(%W(Y)JFEU(Y)]'

M a 2u
By putting Y =W and using (2.9), (3.5), (5.42), (5.43) and (5.45), we find

HR(W, X)E+AR(W, X)W — A(R(W, X)) :u(VXW)(i§+%W)+in(VXW)U

5.46
_%ﬂu(X)Uzs—;zu(X)AU+(§—;§+%Wjdu(Y,X)—%VXU—y/l(%w()(ﬁf—;n()()jg. o
On the other hand, using (2.7), (3.5) and Lemma 4, we can write (5.15) as
3cg (V7. U) = —p(cA+au’ )n(X).
From (2.3), we have
R(W,X)E=cn(X)W +an(X) AW + uw(X ) AW — pAX,
R(W, X)W = c(w(X)W—X)—%u(X)U+g(X,AW)AW—/IAX,
which together with (2.8), (3.6) and (5.44) implies that
AR(W, X)W )= c(w(X)AW—AX)—%u(X)AU+g(X,AW)AZW—AAZX. (5.47)

Substituting above four equations into (5.46), we find

2
AARX (4 22— ) AX +eaX - 25V U+ B (x)U
o 7

+cy(77(X)W—W(X)§)+/177(AX)AW—,uw(AX)A§+%(cl+a,uz)n(X)(if—i—%W]

:—[5—25—%W}du(W,X)—y/l(%W(X)+:—;77(X)j§-
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Since we have g(U,U)=u* from (2.5), if we take
the inner product U to this, then we obtain

—aAAU? +0!(ﬂ2 + A2 —c)AU+17cZU =0,

which together with Lemma 2 and Lemma 4 implies that

o (1 +27)+26¢ =0,

which will produce a contradiction. This completes the
proof.
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