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ABSTRACT 

 , , ,M  be a real hypersurface of a complex space form with almost contact metric structure gLet    . In this paper, 
we prove that if the structure Jacobi operator  ,R R     is   -parallel and R  commute with the shape op-
erator, then M  is a Hopf hypersurface. Further, if R  is   -parallel and R  commute with the Ricci tensor, 
then M  is also a Hopf hypersurface provided that TrR  is constant. 
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1. Introduction 

A complex -dimensional Kähler manifold of constant 
holomorphic sectional curvature  is called a com- 
plex space form, which is denoted by n

n
4 0c 

 M c . So natu- 
rally there exists a Kähler structure J  and Kähler me- 
tric g  on n  M c . Now let us consider a real hyper- 
surface M  in  nM c . Then we also denote by g  the 
induced Riemannian metric of M  and by  a local 
unit normal vector field of 

N
M  in n  M c . Further, A  

denotes by the shape operator of M  in  nM c
 

. Then, 
an almost contact metric structure , , , g    of M  is 
naturally induced from the Kähler structure of M  as 
follows: 

    , , , , ,T
X JX JN X X X TM       

TM

g  

where  denotes the tangent bundle of 

The Reeb vector field   plays an important role in 
the theory of real hypersurfaces in a complex space form 

 nM c . Related to the Reeb vector field   the Jacobi 
operator R  defined by   ,R R   

R
 for the curva- 

ture tensor  on a real hypersurface  nM  in M c  
is said to be a structure Jacobi operator on M . The 
structure Jacobi operator has a fundamental role in 
contact geometry. In [6], Cho and first author started the 
study on real hypersurfaces in complex space form by 
using the operator R . In particular the structure Jacobi 
operator has been studied under the various commutative 
condition [7-9]. For example, Pérez et al. [9] called that 
real hypersurfaces M  has commuting structure Jacobi 
operator if X XR R R R  X  on   for any vector field 
M , and proved that there exist no real hypersurfaces in 

 nM c

 

 with commuting structure Jacobi operator. On 
the other hand Ortega et al. [10] have proved that there 
are no real hypersurfaces in n

M  and 
 the tangential component of a vector. The Reeb 

vector 
 T M c

R
 with parallel struc- 

ture Jacobi operator  , that is, X   for any 
vector field 

0R   is said to be  principal if A  , where 
  X  on M . More generally, such a result 

has been extended by [11]. In this situation, if naturally 
leads us to be consider another condition weaker than 
parallelness. In the preceding work, we investigate the 
weaker condition 

A   . A real hypersurface is said to a Hopf 
hypersurface if the Reeb vector   of M  is principal. 
Hopf hypersurfaces is realized as tubes over certain 
submanifolds in n , by using its focal map (see Cecil 
and Ryan [1]). By making use of those results and the 
mentioned work of Takagi [2,3], Kimura [4] proved the 
local classification theorem for Hopf hypersurfaces of 

n  whose all principal curvatures are constant. For the 
case n , Berndt [5] proved the classification theorem 
for Hopf hypersurfaces whose all principal curvatures are 
constant. Among the several types of real hypersurfaces 
appeared in Takagi’s list or Berndt’s list. 

P

P
H 





 -parallelness, that is,  (cf. 
[8,12,13]). 

0R  

In this paper we consider the notion of  
R

-parallel 
structure Jacobi operator  , that is, 

    for 
the vector 

0R 
   orthogonal to  . Further we in- 

vetigate the structure Jacobi operator is   -parallel 
under the condition that the structure Jacobi operator 
commute with the shape operator or the Ricci tensor. 
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g X Z Y g X Y Z

g AY Z AX g AX Z AY

This paper consists of two parts. In the first part of this 
paper, we prove that if the structure Jacobi operator 

  ,R R  

   

  

 

 

    is   R-parallel and   commute with 
the shape operator, then M  is a Hopf hypersurface (see 
Theorem 1 in Section 4). In the second part of this paper, 
we prove that if R  is   R-parallel and   com- 
mute with the Ricci tensor, then M  is also a Hopf hy- 
persurface provided that TrR  is constant (see Theo- 
rem 2 in Section 5). 

All manifolds in this paper are assumed to be con- 
nected and of class  and the real hypersurfaces are 
supposed to be oriented. 

C

2. Fundamental Facts of Real Hypersurface 

In this section the elemental factors of a real hyper- 
surface are recalled. Let M  be a real hypersurface in a 
complex space form n M c

c c 
 with constant holomorphic 

sectional curvature  and  be a unit normal 
vector field on 

4 , 0 N
M . By  we denote the Levi-Civita 

connection with respect to the Fubini-Study metric 


g  
of  nM c . Then the Gauss and Weingarten formulas are 
respectively given by  

 AX , ,Y N 
X XY Y X N AX  g   

for any vector fields X  and Y  on M , where g  de- 
notes the Riemannian metric of M  induced from g  
and A  is the shape operator of M  in  nM c . For 
any vector field X  tangent to M , we put  

 X , ,NJX X JN      

for the complex structure J  of n  M c . We call   
the Reeb vector field. Then we may see that the aggre- 
gate  , , , g    is an almost contact metric structure on 
M , that is, we have  

 




, 

, ,

 

X

 
 0




   
 

,

, 

2

1,

X X

,

g X Y 

 

g

 

X Y



X Y

X



X g



 

  



 
 

for any vector fields X  and Y  on M . From Kähler 
condition , and making use of Gauss and Wein- 
garten formulas, we obtain  

0J 

 X   g ,X AX YY Y A            (2.1) 

and  

X AX  

,

                (2.2) 

for any vector fields X Y  tangent to M . 
The equations of Gauss and Codazzi are respectively 

given by the following:  

    (2.3) 

and  

   
      2 , ,

X YA Y A X

c X Y Y X g X Y     

  

  

R

    (2.4) 

M . where  denotes the curvature tensor of 
In what follows, to write our formulas in convention 

forms, we denote by  
    2 3, ,A A A          rA and h T  , and 

for a function f  we denote by f  the gradient vector 
field of f .  

If we put U   , then U  is orthogonal to the 
Reeb vector field  . We get  

,U A                 (2.5)   

  2,g U Uwhich shows that    . Thus we easily 
verify that   is a principal curvature vector, that is 

2 0 A   if and only if 
S

. 
From Gauss Equation (2.3), the Ricci tensor  of 

M  is given by  

     22 1 3SX c n X X hAX A X         (2.6) 

X  on M . for any vector field 
 , 0A g A    

,

, then we can put  If 
A W                 (2.7)   

Wwhere  is a unit vector field orthogonal to  . Then 
by (2.2) we see that U W  and hence  
  2,g U U  . So we have  

2 2 .   

 , ,U W
,

                   (2.8) 

In this paper, we basically use the technical compu- 
tations with the orthogonal triplet  and their 
associated scalars   and  . 

Using (2.2) and (2.7), it is seen that  

   , , ,Xg W g AU X            (2.9) 

   , , .Xg U g AW X          (2.10) 

Now, differentiating (2.5) covariantly along M  and 
making use of (2.1), (2.2) and (2.4), we find  

   ,

                ,
X XA U g AU X

A AX AX

   
 

     

 
    (2.11) 

which enables us to obtain  

  2 .A AU    

U

            (2.12) 

By the definition of , (2.2) and (2.12), it is verified 
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   0h c  that  

3 .AU AU        

R

         (2.13) 

From the Gauss Equation (2.3) the structure Jacobi 
operator   is given by  

   
  

,R X R X

c X X AX

  

 AX A  



    
     (2.14) 

for any vector field X  on M . 
Let  be the open subset of  M  defined by  

  ; 0 .p 



p M    

At each point of , the Reeb vector field   is not 
principal. That is,   is not an eigenvector of the shape 
operator A  of M  if .   





In what follows we assume that  is not an empty 
set in order to prove our main theorem by reductio ad 
absurdum, unless otherwise stated, all discussion con- 
cerns the set . 

3. Real Hypersurfaces Satisfying R S SR   

Let M  be a real hypersurface in n   , 0M c c   satis- 
fying R S SR  , which means that the Ricci tensor  
of type (1,1) and the structure Jacobi operator 

 S
R  com- 

mute to each other. Then by (2.6) and (2.14) we have  

     
   

   

   
    

3 3

2

2

, ,

, ,

   , ,

, ,

, ,

g R Y SX g R X SY

   

   

, ,

,

g A Y g A X g A

g A Y g hA c X

g A X g hA c Y

ch g A Y X g A

 

 

  

  

 



 

 

 

 

X g A Y

X Y

 

 

  .c h

 

which shows that  

   3 2A h c A h ch A              

    
  

, ,

, , ,

 

 (3.1) 

Combining above two equations and using (2.7), we 
obtain  

   
    

2 2g A Y w X g

Y g A X

 

   



 

A X w Y

X g A Y





  

 

where a 1-form w  is defined by  , X  
for any vector fie

w X g W
ld X . Puttin Ag Y   in this, we find  

      2, ,2 2 ,g A X w X g A      X X 

 2 .

 

which shows that  

 2 2A A               (3.2) 

Comparing (3.1) with (3.2), we find  

             (3.3) 

2on  , where we have put      and  
 2 2      . So (3.2) becomes on    

 2 ,A A                  (3.4) 

which together with (2.7) yields  

 AW W    

 2 .

            (3.5) 

and hence  

A W AW W            (3.6) 

Now, differentiating (3.5) covariantly along  , we 
find  

 
      .

X X

X X

A W A W

X X W W       

  

       

W

 (3.7) 

By taking the inner product with  in the last equa- 
tion, we obtain  

    , 2 ,Xg A W W g AU X X X     

W

  (3.8) 

since  is a unit vector field orthogonal to  . We 
also have by applying   to (3.7) and making use of 
(2.9)  

        , 2 , ,Xg A W g AU X X          (3.9) 

which together with the Codazzi Equation (2.4) gives  

   2 2 ,W A AU cU               (3.10) 

   2 .A W AU cU         

X

    (3.11) 

Putting   in (3.8) and using (3.11), we obtain  

: ,W     

 w AW 

             (3.12) 

where we have put . Differentiating (3.4) 
covariantly and using (2.2) we find  

      
   

      
       

2

, ,

, ,

, ,

 , ,

X X

X

g A A Y g A A Y

g A AX Y g A AX Y

X g A Y g A Y

X Y g AX Y

 

  

   

     

  

 

  

   

 

  (3.13) 

which together with (2.4) and (2.12) implies that  

1
.

2
A A AU cU         

X  by If we replace   in (3.13) and make use of 
(2.4), (2.12) and the last equation, then we get  

 

   

23 2

1
.

2

A U AU c U

A A

  

         

   

        

u  

 (3.14) 

 ,u X g U X  Now, we define a 1-form  by 
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for any vector field X , it is, using (2.4) and (3.13), seen 
that  

 

 

Y

g A

g AY

 

 

 

      
  

 
    

     
    

     

2 2, ,

2 ,

, ,

, ,

, ,

X Y

c u X u X Y c

AX Y g A AY X

g AX AY

g AY X g AX

A g AX A

Y g A X X g A Y

Y X X

 

 

 

   

 

   

    

 

 





   

 

 

   





 

2 ,

.

g Y X

Y

Y

  





(3.15) 

If replace X  by W  to both sides of (3.15) and 
take account of (2.12), (3.5), (3.6), (3.9) and (3.10), then 
we obtain  

 
  

 

 

 

 

2

. 

2 2

2

3 2 2

2

1

2

  

A U c AU

c U

A

W A W

    

   

       

        

    

   

       

    



  
 

  
  

, ,

, ,

, ,

, , .

X X

Z

g Z

A Y Z

A AX Y

   (3.16) 

Differentiating (2.14) covariantly along , we find  

  
    
     

    
    
    

,

,

X

X X

X

X

X

g R Y Z

g R Y R Y

c Z g Y Y

X g AY Z g

AZ g A Y g

AY g A Z



 

  

 

 

 



   

 

 

 

  g A AX Z















 
 

In the following we assume that M  satisfies  

   . Then we have 0  0R W R   on  because 
of (2.5) and (2.7). Putting X W  in the last equation 
and using (2.2), we have  

      
   

    
    

W

W

W

g AW Y Y g

W g AY Z g A

g A Y g A

g A Z g A

  

 

 

 

 

 

  

  

 
 

  
 

, ,

, ,

, ,

, , 0

AW Z

Y Z

AW Y

AW Z











0R 

 
c Z

AZ

AY

  (3.17) 

because of W  . If we replace Y  by   and 
make use of (2.12) and (3.5), then we obtain  

0.c AWA AW   

0

             (3.18) 

Remark 1.  
0

 on  .  
If not, then we have  

AW

, and then we restrict our 
arguments on such a place. From (3.18) we have 

0  , which together with (3.5) yields 0   and 
hence (3.5) reformed as AW  . But, it is, using (2.8) 
and (3.12), that 0W   . So (3.16) turns out to be  

1
2 ,

2
c AU A   

0

            (3.19) 

where we have used (2.8) and    . 
On the other hand (3.17) is reduced to  

        , , 0W WAY g A Z AZ g A Y      

0

 

because of (3.18) with   . If we replace  by W  
and take account of (2.7), (2.8) and (3.10), then we 
obtain 

Y

  0A W  2cU. Thus (3.10) becomes      
and consequently  1 2 2cU  0 and hence   . 
Accordingly (3.19) reformed as 0AU 

0AU
 and thus 

 . Using these facts, (3.14) is reduced to  
   1 2 c U   

4cU
. This contradicts the fact that  

 0. Therefore   on   is proved. 
If we make use of (3.18) and Remark 1, then (3.17) 

reformed as  

 
    

  
    

,

,

, .

W

W

W

A X

W AX g A X A

g A X A

c
w X AW g AW X W



  

 

  




   

 

 

 

Using (3.5) and (3.10), we can write the last equation 
as  

 

      

    

  

1
2 2 ,

1
2 2 , .

W A X

c
W AX w X U u X W

AU cU g A X

g AU cU X A



 


    


    




   

    

    

  (3.20) 

X WIf we put   in (3.20) and make use of (2.8), 
(3.8) and (3.12), then we obtain  

   

1

2

2 .c U AU W AW A

  

    


  

      
 

W

   (3.21) 

Taking inner product  to this, and using (3.5) and 
(3.12), we find  

     1
,

2
W W W W            

which together with (2.8) implies that  

   .W W W               (3.22) 

If we take the inner product   to (3.21) and make 
use of (2.7) and (3.5), then we have  

   2 2W      , which connected to (2.8) gives  

Copyright © 2013 SciRes.                                                                                 APM 



U-H. KI, H. KURIHARA 268 

.W                   (3.23) X  by U  in this and using (4.3), we find  

From (2.8) we have    2 2 WW W     

   2 .W

, 
which together with (3.12) and (3.22) yields  

 W      

R
 

          (3.24) 

4. Real Hypersurfaces Satisfying  
 and 0  R A AR   

Let M  be a real hypersurface in n   , 0M c c   satis- 
fying . We have from (2.14)  0R

   

   
   

, ,

.

 
   

    

2 2, ,

   , ,

g R Y AX  , ,g R X AY

g A Y g A X g A

c g A Y X g A

 

  



 

 

X g A Y

X Y

 



R A AR

 

 

In the following we assume that  

,

. Then we 
have from above equation  

2A A c    

.c

             (4.1) 

which shows that  
  

0R S SR 
c

                (4.2) 

Substituting (4.1) into the first equation of section 3, 
we find  . Thus, all relationships (3.3)- 
(3.22) with     are established on  . Com- 
bining (3.5) to (3.18), we obtain . So 
we have  

  0AU cU 

0.AU cU

 

                  (4.3) 
In fact, if not, then we have 0  , that is,   . 

Therefore, (3.5) and (4.2) are reduces respectively to 
AW   and . So (3.16) becomes  2 c

4



 2A U cAU W A   

W 2 c

   

on this subset. On the other hand, if we take the inner 
product  to (3.20) and make use of (3.8) and  , 
then we obtain W AU cU   

0U 
  . Comparing this 

with last equation, we verify that , a contradiction, 
Therefore (4.3) is established on whole space. 

Because of (4.2) and (4.3), we can write (3.21) as  

   1 2

2
c U

    


        
 

 1 ,A W AW 

 2 22 2 .c

   (4.4) 

which shows that  

   U U           (4.5) 

Using (4.3), we can also write (3.20) as  

 

      

 , ,

W A X

c
W AX u X W w X U

c

Replacing 

   

.
c

g U X A g A X






 




   

 
    

 
U

 


 
  
 

 

  2 .W

c
A U U A W U W A      


      

  (4.6) 

If we take the inner product U  to (3.7) and take 
account of (2.4), (2.10) and (4.3), then we obtain  

   
      2

,

, , ,

X

W

c g W U

g A X U c X g AW X



  

 

   
 

which together with (2.8), (4.2) and (4.6) yields  

 

    

2

2

2

,

,

.

Xg W U

c
g X U A W U W A

c AW



     


 



   


  


 (4.7) 

X UPutting   in this, we have  

   , .U

c
g W U W             (4.8) 


 

Now, applying by   in (2.11) and using (2.10), we 
find  

 
    .

X

X

A

U w AX A AX AX AX

 

      



     
 

X UIf we put   in this and make use of (2.5), (3.5) 
and (4.3), then we obtain  

  1 .U UU A c U
 

      
 

U

         (4.9) 

Taking the inner product  to (2.11), we also obtain  

 

      

,

1
, , 2 ,

X

U

g W U

c
g A X g AW X cw X 

 



      
 

 

 

where we have used (2.4), (2.5) and (4.3), which together 
with (4.7) implies that  

    

2

2

2

2

   .

U

c
A AW cW

c
U A W U W A

c AW

   


     


 

       
  

   

 

 

If we apply by   to this and make use of (3.5) and 
(4.9), then we obtain  

 U

c
U W W U           (4.10)  


   

for some function   on  . 
On the other hand, differentiating (4.3) covariantly, 
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and using itself again, we find  

   X X

c
X U A U A  


    0,XU c U     

which together with (2.4) and (2.5) gives  

        
        

    , ,X Y

c
Y u X X u Y

c X w Y Y w X

g A U Y g A U X c

 

  





 

     , 0,du X Y 

du u

   

(4.11) 
where  is the exterior derivative of a 1-form  is 
given by  

          , , .u X Y

X

du X Y X u Y Y u X   

Putting   in (4.11) and taking account of (2.7) 
and (2.10), we get  

 

     

 

2

,

, ,

Yg W U

c
u Y c w Y

g A U c U Y 



   





    

   

   ,c g AW Y

Y U

 , .W c

 

or putting  and making use of (4.3),  

 2
Ug U    

 

 

From this and (4.8) it follows that  

 W   

U

            (4.12) 

because  is orthogonal to W . Comparing this with 
(4.10), we have  

  ,U W U
2U

c   


    

which together with (4.3) implies that  

  .
c c

U UA U c U      AW W
 

  
 

 

By virtue of (2.7), (3.5) and (4.2), we can write this as  

 2
2

.U U

c
A U c U A   


      

If we put X U  in (4.11) and take account of the 
last equation, then we obtain  

        2 , 0.A Y  2 1
Y U u Y g   


   

Therefore we have  

    .U A
2

U 
 


           (4.13) 

Using (4.2) and (4.3), we can write (3.14) as  

 

which together with (4.4) implies that  

 3
2 ,A A

2

1 2

2
c U

     
 

        
 

     

   2
3 1 .

c
A c U A W AW   


      
 

U

 

If we take the inner product  to this, and make use 
of (4.3), we deduce that  

   2 23 .U c      

Thus, (4.13) reformed as  

 23 ,c U A            (4.14)     

where we have put   . 
Now, we are going to prove that 0   on  . For 

this, the last equation is rewritten as  

     2 21
3 .

2
Y c u Y AY      

Differentiating this with respect to a vector field X  
again, and taking the skew-symmetric parts with respect 
to X  and Y , then we eventually have  

           

        
   

23 ,

6

  2 , 2 , .

X AY Y AX c du X Y

AX u Y AY u X

g A AX Y cg X Y

    

  

 

  

 

 

Y

 (4.15) 

Putting   in this, we find  

         
    

23 ,

2 3 .

X AX c du X

u AX u X

     

 

  

 
   (4.16) 

By the way, we see, using (2.10) and (2.13), that 

   , 3 , ,du X g AW AU A X             

 

 

which together with (2.7), (2.8), (3.5) and (4.3) gives  

3
, , .

c
du X g W X    


        

  

   

 

Thus it follows, using (2.5) and (4.14), that  

, 3 , .du X g W U X
   


     
 

   (4.17) 

Substituting this into (4.16), we find  

 

  23 3 9 ,

A

c
c W U

   

     


 

      
 

    (4.18) 

where we have used (4.3). Comparing this to (4.15), we 
get  

 
             

        

    

2

2

3 ,

1
3

2
  , , .

3

c

w X Y w Y X du X Y

c
AX u Y AY u X

g A AX Y cg X Y



    

  


  



  

    
 

 

(4.19) 
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If we take the inner product   to (4.4) and make use 
of (2.8), (4.2) and (4.12), then we obtain  

 2  2 .c                 (4.20) 

Using this, we can write (4.4) as  

 

  

21

2
c U

    

 2 2 ,c A   

  

     
 

where we have used (2.7), (2.8), (3.5), (4.2) and (4.12). 
Combining this with (4.14), we obtain  

 

3 2

2

1 1

2 2

5 2c c

  

 

2

6 ,

c

c

 

    

  




  


  
      (4.21) 

which tells us that  

      

    
      

3

2

1

2

5 2 6

  

X Y Y X

c c Y

c X Y

    

  

    



  

 

     
 .

u X X u Y

Y X





   (4.22) 

Using the quite same method as that used to (4.19) 
from (4.14), we can drive from (4.21) the following:  

  

      
      

      
    

   2

24
10 6

3

2

,

  5 2 6 ,

c X u Y

X Y Y

X u Y Y u

X Y Y X

g A A X Y

c du X Y

  


  

  

    

   

 

   
 
 

 

 

 

  

     

 
 

,

Y u X

X

X



 



X

   (4.23) 

where we have used (2.2) and (4.22). Putting   in 
this and using (4.14), (4.17) and (4.20), we obtain  

  

  

 

 2
0,c W



  


2

5
3 2

3
3 5 2 6

c U     


    


      
 

    


 

which together with (2.7) and (4.18) implies that  

 

    23
.c W


 

 

 6 0c   

U

26 2 6 0c    0 if 

2

6
6 2

3 2 2 3

c U  


     

   
 

    

 

Thus, it follows that  
26 2   

because  and W  are orthogonal to each other, and 

hence    . Differentiation 
gives  6       

0
0

 on this subset, which toge- 
ther with (4.20) yields c , a contradiction. Thus, 

  on   is proved. Consequently we prove that 
0W   by virtue of (4.12) and Remark 1. By (4.20) we 

also have 0  . Therefore (4.14) and (4.21) are re- 
duced respectively to  

 23 ,c U                (4.24) 

 3 2 21 1
2 5 2 6 .

2 2
c c c U              

 

 2 , 0c du X Y  

  

(4.25) 

From (4.24) we have    and 
hence    2 , 0c du X   , which together with (4.17) 
gives  

  2 3 0.c    

2 0c

 

If   on   , and then we restrict our argu- 
ments on such a place. Then we have 3 0    and 
thus  3U U  
2 0

, which together with (4.5) yields 
  

2 c
, a contradiction because of Remark 1. 

Accordingly we have   on  and hence    is 
constant. Thus, (4.25) becomes  

 1
2 .

2
U     

0

 

On the other hand, using    and the last equa- 
tion, we can write (4.23) as  
   25 2 6 , 0c du X     and consequently  
  2 3 0     

2 0
 by virtue of (4.17). Therefore we 

have  2 c, which together with (4.2) and     
implies that 22  , a contradiction. Thus, we deduce 
that   . Accordingly we have 

Lemma 1.   0R
   

R A AR
 if it satisfies  and 

  .  
From this we conclude that 
Theorem 1. Let M  be a real hypersurface in 
  , 0M c cn  . If it satisfies 

    and at the 
same time 

0R 
R A AR  , then M  is a Hopf hypersurface 

in  M n c

R Tr const

R S SR

.  

5. Real Hypersurfaces with  

In this section, we will continue our arguments under the 
same hypotheses as those stated in section 3, namely 

 0R
    and   hold on  M . Then we 

have  

.h                   (5.1) 

cIndeed, if not, then we have     because of 
(3.3). Thus, (3.4) becomes 2A A c     . S

AR
o we have 

R A   by vi
tradict

rtue of the first equation of section 4. 
By Lemma 1, we verify that   , a con ion. 
Thus, h   is estab  on the whole space. lished
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Furthermore, we as Tr constR  . Then 
w

const.h

sume that if 
e obtain from (2.14)  

                (5.2) 

This is equ  ,  
(2 n write (3.18)

 (5.3) 

Frist of all, we prove  



ivalent to g S
 ca

const . by virtue of 
.6). Because of (3.5), we  as  

  0.AU cU              

Lemma 2. AU cU 0    on   if Tr constR  .  
we havProof. If no e t, then 0  , that is 0h  

wi nd w rguments
 

th the aid of (5.1) and (5.3). A e restrict a  
on such a place. Then (3.5) becomes  

.AW                  (5.4) 

Because of (2.8), (3.12) and (
as

 2 .

5.1), we can write (3.16) 
  

 2 2A U c AU A W A             (5.5) 

Using (2.8) and (5.4), the Equation (3.21) reformed as  

 2 .cU AU W          

Since h  , we see, usi hat 0ng (5.2), t   . Hen- 
 the ice, taking nner product   to the ab uation, 

we have 0W
ove eq

  . Thus, we verify from the last equa- 
tion  

2 .AU cU                 (5.6) 

We also ha
C n  

 

5.7) 

On the other hand, if we tak
(2 , t

ve from (5.5) A
, we obtai

 2 22 0U c AU   . 
ombining the last two equations
 2 2 0c AU   . Thus, we see, using (5.6), that 

2 2 0.c                    (

e the inner product U  to 
.11) and make use of (2.4), (5.4), (5.6) and (5.7) hen 

we obtain  

 

      1 2 2
, 2 .

X

U

c c

,g W U

g A X cw X X  
  

      
 

   

(5.8) 

Apply 2.11) by 



ing (   and taking account of (2
w


 , .

.10), 
e also deduce that  

  
                   

X XA U w A

AX g A



 



 

X A AX

X

  

 


 

ut 

   

If we p X U  in this and use (5.4) and (5.6), then 
w

  2 .U UU A cU             (5.9) 

Now, differentiating (5.4) covariantly
an

.

e get  

 

 and using (2.2) 
d (5.7), we find  

 X XA W A W AX   

If we take the inner product U  to this d make use 
of en w



 an
 (2.4), (5.4), (5.6) and (5.7), th e obtain  

      2
, ,X U

c
.g W U c X g A W X    


  (5.10) 

By the way, we have from (3.20)  

       ,u X A4 ,W A X c g A X U       

where we have used 0, 0W   , (5.6) and .7), 
) gives  

(5
which together with (2.4

  4
.

c
2U A W c A

 


 

Substituting this into (5.10) and using (5.7), we find  

  

     3
, 2 , ,X

c
g W U X g A X

       


which together with (5.8) implies that  

  4
.

c
2 3U A c W c        





 
 

Thus, it follows that   2U A cU    . From this 
an

0.

d (5.9) we verify that  

UU               

Differentiating (5.6) covaria
we get 

   (5.11) 

ntly, and using itself again, 
 

2c     2 ,X X XX U A U A U c U  


       

or, using (2.4) and (2.5)  

    2c      

     
 

,

2 ,

2 , 0.

U

X

X

X u Y g   A X Y c X w Y

c w X Y g A U Y

cg U Y




  



  

  

 

Taking skew-symmetric part with respect to X  and 
Y , we find  

 2c
X u      

        
      , , 2 , 0.X Y

Y Y u X

c X w Y Y w X

g A U Y g A U X cdu X Y



  





 

     

 

If we put Y U  in this and make use of (5.6) and 
(5.11 tain

,U U            (5.12) 

which enables us to obtain 0

), then we ob   

 2   

  .
turns out to be  

 Accordingly (3.14) 

 c U2 23 2 0,A U AU A         

where we have used (2.8) and   , which together 
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with (5.6) and (5.7) gives  3 4c c U 
 that    23 4U c c

2 2 0A    . 
Thus


, it is seen    

U . D
e skew-symmtric pa



. So we can 

rt, w
write (5.12) as  2 23 4c    ifferentiating this 
covariantly and taking th e 
eventually have   4 ,c du X Y , 

 , 0u X  . This 

2  hich implies 
that  2 4c d   together with (5.4), 
(5.6) and (5.12) yields  2 4 0c 

0 w

  , Thus we have 
2 4 0c    beca contradictory by 

virtue oved.  
Using (5.1) and Lemm rite respectively 

21) as  

use of Remark 1. It is 
). Consequently Lemma 2 is pr

a 2, we can w
.

 o

(3.20)

f (5.7

 and (3

 

      

 , ,

X U u X

,

W

ch

W A X

c
W AX w

ch
g U X




 

   
 

 

A   g A X



U 


 
  
 

    

(5.13) 



 



  

  2
3 .c U




  
 

(5.14) W A       

Replacing 

W  A  

X  by 
Lemma 2, we find  

 

U  in (5.13) and remembering 

    2 .W

c
A U A W U W hAU      


     

ake the inner product (3.7) 
 (2.4), (2.10) and Lemma 2, 

 , , ,

On the other hand, i
with U , and make 

en we get  



f we t
use of

th

   
 2

,X

W

c g W U

  g A U X

which connected to th

  

c

e last eq



X  g AW X

uation implies that  





 

 
 

    2,
c

g X U A W U W hA

  2

,Xc g W U

c X g



, .AW X   

     


 

 

 

Thus, it follows that  

 

       (5
 

.15) 

   2, .
c

WUc g W U  


      (5.16) 

ethod as that used to derive 
d (2.11), we can

llowing:  

 

Using the quite same m
.10) from (3.7), (4.6) an

(3.7), (5.15) and (2.11) the fo
(4  derive from 

   2 .U

c
c U W W U   


           (5.17) 

where the function   is given by  

   

 2 2
c c

c 2 .

U c  

             
 

  

  
    

   (5.18) 

We notice here that the following: 
Remark 2. 0c    on   if cTrR 
In fact, if not, then 0c

onst .  
   . So we have f

0W
rom (5.16) 

 and hence 0    because of (5.17). Thus, 
(5.18) implies that   2U c     on this subset. 
H tting Xowever, by pu   in 5.15) (  we obtain  
   2U c      ing the last two equa- 

e verify that c
. Combin

tions, w 2  , which together with 
0c    gives 2 2 0  , whic

 
h will produce a 

contradiction. Therefore 0c ed. 
Because of (5.17) an

   on   is prov
d Lemma 2, it is seen that  

 2
U U

c c
A U

c
   



by virtue of Remark 2. 
Now, differentiating 0AU cU

c U W AW W
 

    
 

    

(5.19) 

    covariantly
using itself, we find  

 and 

   X XX U 


 0,X

c
A U A U c U         

) and (2.5) implies thwhich together with (2.4 at  

        

      , , , 0.X Y

c
Y u X X u Y

g A U Y g A U X cdu X Y

 






        c X w Y Y w X   

     

   

(5.20) 

If we put X   in this, and make use of (2.7)
(2.10), then we get  

 and 

 

     c
u w Y 


 (5.21) 

     2

,

  , , .

Yg W U

Y c

c g AW Y g A U c U Y 



  



 

     

By putting Y U  in this and using Lemma 
have 

2, we 
   2 , Ug W U c      and hence  

   2 ,Ug W U c     because U  and W  are 
mutually orthogonal. From this and (5.16) we verify that  

     .cW                (5.22) 

XIf we replace  by U  an e us in (5.20) d mak e of 
(5.19), (5.22) and Lemma 2, we obtain  

  2

U
U AW

    


  

ng:  
Lemma 3. If TrR

.cW      (5.23) 


We are now going to prove the followi
 is constant, then we have  

     2c W AW cW         

on 

fU   (5.24) 

, where the function  is given by  f
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3 2 2 22 2 4 2 3f c c c 2 .            (5.25) 

.7),
(2.13) as  

,

Proof. Using (2  (2.8) and Lemma 2, we can write 

 2 23U c W        

which together with (3.5), (5.22) and (5.23) impl

     

ies that  

23c U W
U

  


2
.W U   

 
     
 

 

From this and Lemma 2, we obtain  

  2
2

3  .c U

A U c U

AW cW A


c

 

      
 

 
      
 

 

ion, we have  

  

Using (5.12), Lemma 2 and the last equat

 

     

   

   

2

,

,

3
2 , .

Xg W U

c U
u X g AW cW X

c
c w X g A c X


 

 

    




  

     
 

By virtue of this and (5.15), it is verified that  

2  2 2 ,c g AW X 
 

    

 
 

   

2

2 2 2 2

2 3
2 2 2 .

c
U AW cW U A

c W c A c AW

c
c AW c W A c

     

        

     



 

     

        
  

 
c 

Since   and W  are mutually orthogonal, we see 
fr e last equation the following:  om th

     

     

   

2
2

2

2 2

3
,

3
2 2 2 .

Uc c
U c c

c
c c c

      

2 2
2

2
c

U U c c

 

    


         
 

         
  

 (5.26) 

inating U


      




   

Elim   from above two equations, we even- 
ave  

 2 22 0.c     (5.27) 

Now, 2c c 
on

tually h

    U c c        

 suppose that    2U   
 hav

yields 0c

 0   
  . Then we e 2 0c    , which together 

with (2.8) and (5.1) on this subset. 

So (3.4) becomes 2A A c

     

      and conse
R A AR

quently 
 on this set. By Lemma 1 we s  ee that 

  , a contradiction. Therefore we have  

  


2 c2U c                (5.28) 

with the aid of (5.27). Comparin 6), it 
follows that  



g this with (5.2

 U 

 3 2 2 22 4 2 3

c

c c c


2 2 .    



      
   (5.29) 

Therefore, (5.24) and (5.25) are established on   
because of (5.22), (5.23) and (5.29). This completes the 
proof.  

Now, differentiating (2.7) covariantly and u
we find  

sing (2.2), 

 
   

X A A AX

X .XAX X W W

 

    

 

    
    (5.30) 

Putting X   in this and making use of (2.12) and 
(3.23), we find  

   3 ,AU U W W         

which together with (5.22), (5.24), (5.25) and Lemma 2 
gi

W  

ves  

 2 21
.W c c U

c     


    


 

By the way, if we replace X  by   in (3.7) and take 
account of (3.11), (3.23) and Lemma 1, then we obtain  

 

    ,U W W2

A W W

c

  

       


      
 

which connected to the last equation and Lemma 1 



  

   

implies that  

    2
.

c
W W c U

       


       
 

 (5.31) 

Using this and (3.24), we can write (5.14) as  

     2 .W W c U          (5.32) 

From (5.2) we have  

  

    ,h h                (5.33) 

which shows that    h h     . Since we have  

   2 2W       

because of (2.8) and (3.23), we verif
equation, that 

y, using the last 
    2 2W h h      
2), it is seen that  

  . By vir- 
tue of this and (5.2
     22 c h           . Thus, it follows 

that  
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   2 2 .c             (5.34) 

If we take the inner product U  to (5.32), then we 
  2have   2U c    , which to

 2 .h

  gether with (5.33) 
gives  

  2U c U     

 (

U

  

On the other hand, we have from 2.8)  

  2 .U2U      

Combining to the last two equations, we ve at  

  2 ,U

rify th

  2 2U c        

which together with (5.28) and (5.29) implies that  
2 2 23 2 2 23 4 .c c c              (5.35) 

Differentiating this with respect to   and using (3.23) 
and (5.22), we find  

 2 2 2 0,   

i

    0.    

From this and (5.34), we easi 0

 2 2 2 28 2 4c c      

3 22 3c c    
 

which together with (5.34) and (5.35) y elds  
2 4 4c  

ly see that   . So it 
is, using (5.22) and (5.34 hat 0W), seen t    and 

0  . Hence (3.24) becomes 0W  . Using these 
facts, (5.24), (5.31) t resp ely to  

 2 2 23 ,c c U   

 

c U

 2 .c U         

No

 and (5.32) turn ou ectiv

  3 22 4 2c c           

(5.36) 

 2 2 ,c             (5.37) 

and  

  

w, we prove 

 (5.38) 

Lemma 4. 2c   and 2 3 0    on   if 
con
 Fr

st .  
om (5.3  

2 .

TrR 
Proof. 8) we have 

     
  

X Y X Y

       X X

   

 



If we take  skew-symmtric parts 

u Y u Y   

the

c X
 

of this and make 
us  obtain  

 2 , 0u X Y   and hence  



e of (5.36) and (5.38), then we
 c d

   2 , 0.u X    c d

In the same way we see from (5.36) that  

   2 2 , 0c c du X       .        (5.39) 

2 0Now, we assume c    on   and that 

restrict our arguments on such a place. Then we have 
 , 0du X  , that is    , , 0g U g U X    , 

w

3 0AU A AW

X

hich together with (2.10) and (2.13) gives  

.         

 (2.8), (3.5)

  

Thus, it is, using (2.7),  and Lemma 2, seen 
that  

 3 ,c U           ) 2       (5.40

where we have used the fact that 0  , which con- 
nected to (5.36) implies that 2 2 c     . Differ- 
entiation gives  2 2            , or using 
(5.37), (5.38) and (5.40)  

 2

2

2 2c c   



 

 

 

3 0.c 

    2 2 3 .c c       
 

Therefore, we obtain 

2 4c              (5.41) 

If we differentiate this, then we have  
   2 4 2 3 0c c         , which together with 
(5.38) and (5.40) gives  

2 23 4 18 0.c c c 3 2 2 23 3c          

Combining this to (5.41), we obtain 


 
6 4 2 2 312 32 48 0c c c     . This means that   is 

constant and hence 2c   be
2c

cause of (5.38), a con- 
tradiction. Accordingly    is valid on  . 

In the same way we verify from (5.39) that  
2 2 0c c     , which together with 2c    

implies that 2 3 0    on  . This com

Putting 

pletes the 
proof of Lemma 4.  

X W  in and using (3.10), Lemma 2 
and Lemma 4, we get  

 (5.30) 

0.WW                

If we put 

  (5.42)

X W   in  a
) and Lemma 4, then we obtain 

 (2.11) nd make use of (3.5), 
(3.10), (5.36), (5.37

0WU   together with (2.10) and (3.5) yields  

W

, which

.U                (5.43) 

Finally we prove 
2. Let Theorem M  be a real hypersurface with 

constTrR  . in   , 0nM c c  . If it satisfies  
0R

     and at the same time R S SR  , then M  
is a Hopf hypersurface, where S
tensor of 

 denotes the Ricci 
.  

a 4, we see that  
M

Proof. From Lemm
2 2 ,2 0.h c h             (5.44) 

of Lemma 4, we also ve ,Because rify that    and 
  are constant on   by virtue o (5.36)-(5.38). Using 
these and 44) 

f 
(5. we can write (5.13) as  
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  W A X  X A W

  ,X U
 (5.45) 
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 2 2c c c c
u X W X w 

  
       

2 2     
   

which together with the Codazzi Equation (2.4) implies 
that  

 5 2 3 2
.

2 2

c c c c
u X W X w X U 

   
   

      
   

 

Differentiating this covariantly and using (2.2), we 
find  

   

         

        

2 2 3
, ,

2 2

2 5 2 3
   .

2 2

Y

X

Y

W

c c
Y u X Y w X g AY X g Y U

c c c c
Y u X W U w X X

  
 

 
   



   
   

Y X X

Y

A W A

c c
W A

 

   

     
   

   
       

   

 

If we take the skew-symmetric part with respect to X  and Y , and using the Ricci identity, we obtain  

           

   

          

             

, ,

2 2

2 3
, , , , ,

2

5 2 3 2 2 3
, .

2 2 2

X Y Y X

X Y

Y X

R Y X AW A R Y X W A W A W

c c c c
X

c c
dw Y X g AY X g AX Y g Y g X U

c c c c c c
W du Y U X w X U w Y Y

   
 

  
     

      

   


      

     
            



 
2 2Y XW AY u X W A u Y 

   
       
   

X
    

By putting Y W  and using (2.9), (3.5), (5.42), (5.43) and (5.45), we find  

          

         2 2

2
, , ,

2 2

2 3
.

2 22

X X

X

c c c
R W X R W X W A R W X W u W W W U

c c
U w X X

    
  

4 3 5 2 2
,

c c c c c
u X u X AU W du Y X U  

  
         

     

 
       

 


 
   

       (5.46) 

On the other hand, using (2.7), (3.5) and Lemma 4, we can write (5.15) as  

     23 , .Xcg W U c X        

From (2.3), we have  

       ,R W X c X W X AW w X AW      

        2

,

3
, , ,

AX

c
R W X W c w X W X u X U g X A AW AX






    
 

which together with (2.8), (3.6) and (5.44) implies that  

W

          2 2, , .
2

3c
A R W X W c w X AW AX u X AU g X AW A W A X


              (5.47) 

Substituting above four equations into (5.46), we find  

   

           

     5 2 2 3
, .

2 2

2
2 2 2

2

2

2 15

2

3 2

X

c c
A X c AX c X U u X U

c c
AX A c X W

c

c c c c
W du W X w X X

   
 

    
 

   
   

       

 
   

 
   

       
   

 

 

c X W w X AX AW w       
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Si   2,g U Unce we have   from (2.5), if we take 

th Ue inner product   to this, then we obtain  
217 0,c U   

which together with Lemma 2 and Lemma 4 implies that  

 2 226 0,c    

 a contradict
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