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ABSTRACT 

An explicit formula for the transition probability density function of the Hull and White stochastic volatility model in 
presence of nonzero correlation between the stochastic differentials of the Wiener processes on the right hand side of 
the model equations is presented. This formula gives the transition probability density function as a two dimensional 
integral of an explicitly known integrand. Previously an explicit formula for this probability density function was 
known only in the case of zero correlation. In the case of nonzero correlation from the formula for the transition prob- 
ability density function we deduce formulae (expressed by integrals) for the price of European call and put options and 
closed form formulae (that do not involve integrals) for the moments of the asset price logarithm. These formulae are 
based on recent results on the Whittaker functions [1] and generalize similar formulae for the SABR and multiscale 
SABR models [2]. Using the option pricing formulae derived and the least squares method a calibration problem for the 
Hull and White model is formulated and solved numerically. The calibration problem uses as data a set of option prices. 
Experiments with real data are presented. The real data studied are those belonging to a time series of the USA S&P 
500 index and of the prices of its European call and put options. The quality of the model and of the calibration proce- 
dure is established comparing the forecast option prices obtained using the calibrated model with the option prices actu- 
ally observed in the financial market. The website: http://www.econ.univpm.it/recchioni/finance/w17 contains some 
auxiliary material including animations and interactive applications that helps the understanding of this paper. More 
general references to the work of the authors and of their coauthors in mathematical finance are available in the website: 
http://www.econ.univpm.it/recchioni/finance. 
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1. Introduction 

We study the Hull and White stochastic volatility model 
[3] in presence of a (possibly) nonzero correlation be- 
tween the stochastic differentials of the Wiener processes 
appearing on the right hand side of the model equations. 

Let  and  be respectively the set of real and of 
positive real numbers and let t be a real variable that de- 
notes time. The real stochastic processes 

 

, ,t tS V t 

, ,t tS V

, 
describe respectively the asset price and the associated 
stochastic variance as a function of time. The Hull and 
White stochastic volatility model assumes that  

, satisfy the following system of stochastic differ- 
ential equations (see [3]):  
t 

d d d ,t t t t tS rS t V S W t    ,

,

          (1) 

d d d ,t t t tV V t V Z t                (2) 

where , ,r  
t

 are real parameters. The processes 
, ,t tW Z 

0
, are standard Wiener processes such that 

0 0W Z  , and d , , are their stochastic 
differentials. Moreover we assume that:  

d ,t tW Z t 

 d d d , ,t tE W Z t t               (3) 

where  E   denotes the expected value of · and the 
quantity  1,1   is a constant called correlation co- 
efficient. The autocorrelation coefficients of the previous 
stochastic differentials are equal to one. 

Equations (1) and (2) are equipped with the initial con- 
ditions:  

0 0 ,S S                    (4) 

0 0 ,V V                    (5) 

where 0 , 0  are random variables that we assume to 
be concentrated in a point with probability one. For  

S V
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simplicity we identify the random variables 0 , 0  
with the points where they are concentrated. We assume 

0 , 0 . The assumption 0 , 0  with prob- 
ability one and (1) and (2) imply that ,  with 
probability one for . 

S

0

V

S 0V  S 0V 

tS tV
t 

For later convenience we rewrite Equations (1) and (2) 
using the volatility process tv , , instead of the 
variance process t , 

t 
V t  . Recall that we have: 

, . Equations (1) and (2) become: 2
t tV v t 

d d d ,t t t t tS rS t v S W t   ,           (6) 

2

d d d ,
2 2t t t tv v t v Z t
    

    
 

 ,        (7) 

where 2  . Note that when  and 0r  2   the 
Hull and White model (6), (7) reduces to the lognormal 
SABR model [4]. The lognormal SABR model is a gen- 
eralization of the Black model in the context of stochastic 
volatility and is widely used in the practice of the finan- 
cial markets. 

Let us introduce the centered log-return  
 0t tln e rtx S S  , , and the quantity t  2 1    . 

Equations (6) and (7) can be rewritten as follows: 
2

d d d ,
2
t

t t t

v
x t v W t     ,           (8) 

2

d d d ,
2t t t tv v t v Z t
       ,          (9) 

and the initial conditions (4) and (5) become:  

0 0 0,x x                  (10) 

0 0 0 ,v v V                 (11) 

where 0x , 0  are random variables that are concen- 
trated in a point with probability one. Note that 0

v
x  is 

concentrated in zero with probability one. Moreover the 
assumption that  with probability one and (7) or 
(9) imply that  with probability one for 

0v  
0t v t  . 

The Hull and White stochastic volatility models (1)-(5) 
has been introduced in mathematical finance in 1987 (see 
[3]) and is one of the first stochastic volatility models 
where a diffusion term that is time-varying and stochastic 
rather than being simply a constant is used to model the 
variance. More precisely in the Hull and White model a 
one factor model (i.e. Equation (2)) is used to model the 
variance (or the volatility) of the asset price (i.e. Equa- 
tion (2) or (7)). When 0   the transition probability 
density function of the Hull and White model and the 
corresponding European call and put option prices have 
been expressed with closed form formulae. In fact in [3] 
for the Hull and White model when 0 

T

 it is shown 
that the price under a risk neutral measure at time t of a 
European call option with maturity time  , such 

that t T , is given by the standard Black Scholes option 
pricing formula replacing the variance coefficient of the 
Black Scholes formula with an integrated average sto- 
chastic variance tV , 0 t T  , where  

 V T 1 d
T

t
t

t V    , 0 t T  , and taking the expected  

value of the resulting formula (see formula (8) in [3]). 
Note that in [3] no analytical expression for the probabil-
ity distribution of the average stochastic variance tV , 
0 t T  , is given. Only recently when 0   a for-
mula for the probability distribution of the average sto-
chastic variance tV , 0 t T 

0
, has been deduced [5]. 

Moreover in [5] when    closed form formulae for 
European call and put option prices in the Hull and 
White model are given. Until now in the Hull and White 
model when 0   the option prices have been com- 
puted using the Monte Carlo method (see [3,5-7]) or 
evaluating numerically series expansions in the correla- 
tion coefficient   (see, for example, [8]). 

In the last decade several modified versions of the Hull 
and White model have been proposed (see [8-11]). Some 
of these models contain a multifactor model of the asset 
price variance (or volatility). Usually in these models the 
characteristic function of the stochastic process implicitly 
defined by the model equations can be written explicitly 
(see, for example, [10,11] and the references therein). 
Models with nonzero correlation coefficients have been 
considered. However in these models the dependence of 
the asset price process from the “volatility process (or 
processes)” is substantially different than the dependence 
of these processes in the Hull and White model [3]. Gen- 
eralizations of the Hull and White model (see, for exam- 
ple, [9]) in the context of jump diffusion models have 
also been considered. These generalizations usually re- 
tain the analytical treatability of the case 0   of the 
Hull and White model. 

In this paper when  1,1    a formula for the tran- 
sition probability density function associated to the proc- 
esses , ,t tx v t  , implicitly defined by (8)-(11) is de- 
duced. This formula gives the transition probability den- 
sity function of the stochastic processes , ,t tx v t  , as 
a two dimensional integral of an explicitly known inte- 
grand and its deduction is based on some recent results 
on the Whittaker functions [1]. The formula obtained 
generalizes similar formulae deduced recently for the 
SABR and multiscale SABR models [2]. Thank to it 
when  1,1    closed form formulae for the prices 
under a risk neutral measure of European call and put 
options in the Hull and White model and closed form 
formulae for the moments of t , S t  , and of 

 lnt tS t  ,  , are derived. The formulae of the 
European call and put option prices in the Hull and 
White model when  1,1    are expressed as three 
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dimensional integrals of explicitly known integrands. 
The closed form formulae for the moments of t , 

, do not involve integrals and have been derived 
using a technique introduced in [12,13] in the study of 
the SABR model. 

t 

The moments of t , S t  , are also studied with the 
same technique, however for these last moments closed 
form formulae (that do not involve integrals) are avail- 
able only for the moments of order smaller than two. The 
moments of t , , of order greater or equal than 
two are expressed by formulae containing integrals of ex- 
plicitly known integrands. Proceeding as done in [12,13] 
it is possible to use these moment formulae to study cali- 
bration problems for the Hull and White model when 
asset price data are considered. 

S t 

In Section 3 proceeding as done in [14] we show that 
for the Hull and White model admits infinitely many risk 
neutral measures depending on a parameter. The risk 
neutral measures have the same expression of the physi- 
cal measure when we interpret r as the risk-free interest 
rate and 2 2   as a new drift that contains the risk pre- 
mium parameter. This fact makes possible to deduce the 
option pricing formulae in a risk neutral context. 

The results announced are based on the relation of the 
transition probability density function of the Hull and 
White model with the “heat kernel” of the index Whit- 
taker transform [15]. The heat kernel of the index Whit- 
taker transform , , is defined as 
follows:  

 1 2,h y y 1 2, ,y y 

 

 

   

2

1 2

2 2
01

,

1

π

h y

y

c b







W

,i 1 ,i 2

1 2

d sin h 2π e

1 1
i i

2 2

, , , , ,

b b

y

c c W y W y

y y



 

 

 








          
   
 



 

 (12) 

where  is the set of complex numbers, and i, sinh, 

,


  ,  denote respectively the imaginary unit, the 

hyperbolic sine, the Whittaker function of indices 


,   
(see [16] page 505) and the gamma function (see [16] 
page 253). Let  and  be the real part of b, 
in [17] it has been shown that a sufficient condition to 
guarantee the convergence for  of the inte- 
gral contained in (12) is 

b  Re b

, ,
  

1 2y y 
Re 1 2 2b m , 0,m 1, . 

The kernel of the index Whittaker transform (12) gen- 
eralizes the heat kernel of the Kontorovich-Lebedev 
transform [18,19] that has been used in [2] to derive the 
explicit formulae of the transition probability density 
functions of the normal and lognormal SABR and mul- 
tiscale SABR models. 

Let  be the Hilbert space of the func- 
tions defined on  that are Lebesgue square integr- 

able in 

2 2, dL x 

x

  with respect to the measure 2dx x . In our 
analysis of the Hull and White model we deduce the fol- 
lowing formula (see Appendix A):  

   

   

 

2
0

,i ,i2
0

2 2

1 1
d sinh 2π

2π

1 d

2

, , , d .

b b

f y b

x
b W y f x

x

y b f L x x

 

i

i ,W x 

 







  

   

    
 

  





  

 
 
 

    (13) 

Note that the integrals contained in formula (13) must 
be interpreted in the sense of distributions. Formula (13) 
is a straightforward consequence of the result presented 
in [1] and generalizes the inversion formula for the Mac- 
donald transform presented in [20] and used in [2]. In [1] 
no restrictions on b are considered. Note that the condi- 
tion  Re 1 2b   is a sufficient condition to guarantee  

the regularity of the functions 
1

i
2

b  
 
 

   ,  

1
i

2
b     

 
,   , (see [17] for further details) 

that appear in (13). 
Finally using the option pricing formulae deduced a 

calibration problem for the Hull and White model (1), (2) 
is formulated as a nonlinear constrained least squares 
problem and is solved numerically. The calibration prob- 
lem considered uses as data a set of option prices. Given 
the asset prices the calibrated model is used to forecast 
option prices. Numerical experiments with real data are 
presented. The real data studied are those belonging to a 
time series of the USA S&P 500 index and of the prices 
of its European call and put options. In particular forecast 
option prices obtained using the calibrated model are 
compared with the option prices actually observed in the 
financial market. This comparison establishes the quality 
of the model and of the calibration procedure. 

The website: http://www.econ.univpm.it/recchioni/fi- 
nance/w17 contains some auxiliary material including 
animations and interactive applications that helps the un- 
derstanding of this paper. A more general reference to 
the work of the authors and of their coauthors in mathe- 
matical finance is the website: http://www.econ.univpm. 
it/recchioni/finance. 

The remainder of the paper is organized as follows. In 
Section 2 when  1,1    we derive a formula for the 
transition probability density function of , ,t tx v t 

S



t

. In 
Section 3 we deduce a closed form expression for the 
first two moments of t , , and an integral repre- 
sentation formula for the higher moments of t , 

S t 
 . 

In Section 4 we derive a recursive formula for the mo-
ments of t , t  . This recursive formula is used to 
obtain closed form expressions of the first three moments 
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of t , . In Section 5 we derive formulae for the 
option prices in the Hull and White model. The formulae 
deduced in Sections 2-5 hold when . In Sec- 
tion 6 using the previous option pricing formulae we 
formulate a calibration problem for the Hull and White 
model. Moreover we present a forecasting procedure that, 
given the asset price at the time of the forecast, forecasts 
option prices using the calibrated model. The calibration 
problem and the forecasting procedure are tested in nu- 
merical experiments with real data. The real data studied 
are those belonging to a time series of the USA S&P 500 
index and of its European option prices. Finally Section 7 
is made of two Appendices that contain some auxiliary 
formulae used in the paper. 

t 

MN

 1,1  

backward Kolmogorov equation associated to (8), (9) is 
invariant by time translation and that this implies that p is 
a function of s t t     instead of being a function 
of t and t  separately when , . We denote 
with 

, 0t t  t t
   MN, , ,v s p x , , , ,v t x vMNp x t    ,x v   ,      , 

s t t    , the function 
MN

 considered as a func- 
tion of the variables 

p
 , ,x v s  . The function  , ,MNp x v s  , 

 ,x v      s,  , satisfies the backward Kolmo- 
gorov equation associated to (8), (9): 



 

2 22 2
2 2 2

2 2

2 2

2 2

,
2 2

, , ,

2
MN MN MN

MN MN

p p pv
v v MNp

s x vx v

p pv
v

x v

x v s

 

 

 

      
     

   
  

    

  

 


  



 (14) 

2. The Transition Probability Density  
Function and the initial condition:  

       
 

, ,0 , , ,

, ,

MNp x v x x v v x v

x v

 


      

 



 
Let us consider the Hull and White models (8)-(11). We 
denote with ,  , , , , ,p x v t x v t   


     (15) v  ,v t ,x x,   , 

, , the transition probability density function 
of the stochastic processes 
t t t0

,t tx v , , implicitly 
defined by (8)-(11). The function MN

t 
 , , ,p x v t x 

where   denotes the Dirac’s delta. Recall that   is 
defined as follows:  , ,v t  

t

 is 
the probability density function of having x x , 

 given the fact t tt 2 1.



                  (16) x ,   tv v  ,  whenv  v hat x
 ,v ,   ,x v x   ,   ,   0t t  nd t t,  a  hen 

0t   we must ch 0 0v v   . Note that the  
.  W

oose x x   0, We show that: 
 

         i1
, , , , , d e , , , , , , , , , 0, ,

2π
k x x

MNp x v t x v t x g t t k v v x v x v t t t t


  



                         (17) 

where g is given by:  

     
 

 

              

2 2
2

2 2

ln
22 i

8 8
2 1 2 2

1 2 1 22
,i ,i 

1 e 1
, , , e e e

π 2

1 1
d sinh 2π e i i 2 2 ,

2 2

, , , .

v vs s k
v v

s

a k a k

k v v
k v

a k a k W v k W v k

s k v v


   



 

 



     


    



 

 

             
   

  



 

  
0

g s



    (18) 

 
Formulae (16), (18) and (19) hold when  1,1   . The functions ν(k) and a(k), , in (18) are given by:  k
Note that when  1,1    and 0   formula (18) 

contains the heat kernel of the index Whittaker transform 
(12) and that when 0   formula (18) can be rewritten 
as follows:  

   

   

2
2

2 2

1 2

i
1 ,

i ,
2

k k
k k

k
a k k

k

 
 
 
 

   

 






,

.
     (19) 

 

             
2 2

2 2 22 ln 1 2 1 28 8 2 2
i i2

0

2
, , , e e e d e sinh π ,

π

, , , ,

s s
v v sv

g s k v

s k 

 iK z

v K k v K k v
v v

v v

     

     
    

 

 
    

 





 

  
   (20) 

 
where , is the modified Bessel 
function of the second kind with purely imaginary index 

(see [16] page 375). Moreover when , ,z     0   substituting 
20) in (17) we have: (   
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2 2
2 2

2

1 22
2 2 2

22

π 1
2 ln

8 2 8 2 2
22

1 1
2 cosh

22
02

0

1 1 1
, , , , , e e e e e

ππ 2

π
d sinh sin e , , , e ,

, , , , , ,0

s s
x x v

s
MN

u x x v v vv u
s

v v
p x v t x v t

vs

u
u u q x x u v v

s

x v x v t t t t

   








      

         


 

  
      

 

     
 

       




 

   ,

v


            (21) 

where:  

 
     

0 3 2
2 2 22 2 2

22

1 1 2
, , , ,

11 2 cosh2 cosh

, , , .

q u v v
v v vv uv v vv u

u v v


 

 

  
               

  

       (22) 

 
Formulae (17), (18) and (21), (22) are the main results 

of this section. 
Let us derive formula (18). Substituting (17) in (14), 

(15) it is easy to see that if the function g satisfies the 
initial value problem:  

2 2 2
2 2

2

2
2

i
2 2 2

i
2

, , , ,

2

,

g v k
kg v g v

s v

g g
k v v

v v

s k v v



 

 

    
 

   
 
  



  

g


      (23) 

   0, , , , , , ,g k v v v v v v k            (24) 

Equations (14) and (15) hold. Note that the initial value 
problem (23), (24) depends on the parameter k  and 
recall that k is the conjugate variable in the Fourier 
transform of the variable .  x x 

Let us seek the solution of problem (23), (24) in the 
following form: 

 
 

 
22

2 21i 282

0

, , ,

e e e d e , , ,

, , , ,

k v v sd s s

g s k v v

v L ,k

s k v v

 
   

  

 



 

  



  

v v  (25) 

where L is a function that must be determined and (the 
constant) 1  will be chosen later. Substituting (25) in 
(23) it is easy to see that (23) holds if L as a function of 

 satisfies the following equation:  

d

v

 

 

2
2

2

2 2
1

1

i 0,
2

, , , ,

L L
v v

vv

k v k v d L

k v v



   


   

   
 

         
 

  






  

  (26) 

where   and , are given by (16), (19) re- 
spectively. To solve (26) let us make the following 

change of dependent variable:  

  ,k k 

      
1 2 i 2

, , , e , , , ,

, , , .

k vL k v v v Q k v v

k v v

  





 

 

  



  


  (27) 

Moreover in (26) let us consider the new dependent 
variable Q as a function of the new independent variable 

 1 22z k v   . Note that the variable z is considered 
as a complex variable. Let    , , ,Q z Q k v v 

z
 be the 

function Q as a function of . Choosing  
2

1 4d 2     from (26), (27) it follows that Q  
satisfies the equation:  

  

 

2

2

1 2

2i 1

1
i i 0,

2 2

Q Q
z z

zz

k
Q z

k



 
 

 



 
  


 

.      
 

 
   (28) 

Equation (28) is known as Kummer’s equation (see 
[16] page 504). The solution of (28) that decays expo- 
nentially when  Re z   is (see [21] page 797):  

   
     

     
1 2 i 1 2 1 2

,i

, , ,

e 2

, 0,

k v
a k

Q z Q k v v

v W k v C k

z z






 



 



 

 
, , ,v  (29) 

where  , ,C k v  is a constant with respect to z  
that must be determined in order to satisfy the initial 
condition (24) and   ,a k k  , is defined in (19). 

Substituting (29) and (27) in (25) we obtain:  

 
          

      

2 2 2

2 2

i 1 22 8i ln 28 1 2
2

2 1 2
,i

0

, , ,

1
e e e e 2

π

d e 2 , , ,

, , , .

sk v v vs

s
a k

g s k v v

k

W k v C k v

s k v v

    

 




  

    




 







  



  

(30) 
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To impose the initial condition (24) we use formula 
(24)) (see Appendix A) from which we obtain the fol- 
lowing expression for :   , ,C k v

 

        

      

i 1 2 ln1 2
2 2

1 2
,i

, ,

1 1 1
2 e sinh 2π i

2π

1
i 2 ,

2

, , .

v

a k

C k v

k a k
v

a k W v k

k v

 





  

 





 

     
 

    
 

  



(31) 
Substituting (31) in (30) we obtain formula (18). 

When 0   formula (20) can be deduced from for- 
mula (18). In fact when 0   we have   0a k  , 

, and the following relations hold (see F. Oberhet- 
tinger [22] page 287 and [16] page 256, formula 6.1.30):  
k

 
1 2

0,i i , ,
π 2

z z
W z K z      

 
,      (32) 

 
1 1 π

i i ,
2 2 cosh π

  


.
           
   

   (33) 

Finally formulae (21), (22) that hold when 0   are 
obtained rewriting the expression (20) of g when 0   
using (32), (33), the formula for the Laplace transform of 
the function  4e yy  , , y     (see [23], 
page 146 formula (26)), that follows:  

   
   

1 2 1 24 3 2 1 2 1

0

π
d e e e ,

2

Re , Re 0,

yzy zy y z z

z

 




  



 

 

 

 (34) 

and the representation formulae:  

     

   

1
22

i i i
0

1 d
e e

2

, ,Re ,Re , ,

y

yy
K K K y

y

 


 
   

    

     
 





 

 ,
  (35) 

       

 

cosh
i

0

d sin sinh e ,

, Re , .

uK u u u 
   

  








 


     (36) 

Formulae (35) and (36) can be deduced from formula 
(46) page 35 of [23], formula (9) page 176 of [24], and 
formula (1.1) of [20] (see [2] for further details). 

Note that the technique used here to obtain formulae 
(17), (18) and (21), (22) is similar to the one used in [2] 
to deduce the formula for the transition probability den- 
sity function of the lognormal SABR model. 

3. Moments of the Asset Price 

Let , and n0,1,n   M  be the  moment with 
respect to zero of the variable , implicitly 

defined by (1)-(5), that is:  

-n th
,tS t 

 

     
0

, , ,

e d e d , , , , ,

, 0, , 0,1, ,

n

n nr t t nx
MN

M t t S v

S x vp x v t x

t t t t n

 






  

,v t   

    

 



   (37) 

where MNp  is given by (17) and we have  
 ln rt

0etx S 
 S  t and . ,0tS S t    

Let us rewrite formula (17) as follows:  

 
     

   

i

, , , , ,

1
e d e , , , ,

2π

, , , , , 0, , 0,1, ,

MN

n x x k x x
n

p x v t x v t

k g t t k v v

x v x v t t t t n


    





  

  

       




  (38) 

where the functions , 0,1,ng n   , will be determined 
later in this section. Using (38) Equation (37) becomes:  

 

       

       

     

i

0

0

, , ,

e d e d e d e , , ,

e d d , , ,

e , , , 0, , 0,1

n

n nr t t k x xnx nx
n

n nr t t
n

n nr t t
n

M t t S v

S x v k g t t k

S k k vg t t k v v

S I t t v t t t t n



  
  

 

 




  , ,

v v

  

   

  

         

  

 





(39) 

where   
0

, d ,0, ,n nI s v vg s v v


   , s t t    , v  ,  

0,1,n   . That is for 0,1,n    the knowledge of the 
n-th moment nM  of the state variable , is re- 
duced to the knowledge of n

, 0tS t 
I . To determine nI  we 

derive an initial value problem for a partial differential 
equation satisfied by ng , . Note that when 0,1n  ,

0n   the function 0g  is the function g given by (18) 
and that the partial differential equation satisfied by 0g  
that we are looking for is Equation (23). 

Substituting (38) in (14), (15) it is easy to see that the 
functions ng , 0,1,n   , satisfy the following partial 
differential equations:  

   

 

2
2 2 2

22 2
2 2

2

1
i 1 2

2 2

i ,
2 2

, , , , 0,1, ,

n
n n

n n

g v
k n g k n n v g

s

ng g g
v k n v v

v vv

s k v v n

  

 

     


     
   

   





 (40) 

with initial conditions:  

   0, , , ,

, , , 0,1, .

ng k v v v v

k v v n




  

   
        (41) 

Proceedings as done in Section 2 when n = 0 to solve 
problem (23), (24) it is easy to see that the solution of 
(40), (41) that guarantees that MNp  is a probability den- 
sity function is:   
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2 2
2

2 2

ln
22 i

8 8
2 1 2 2

1 2 1 22
,i ,i

0

1 e 1
, , , e e e

π 2

1 1
d sinh 2π e i i 2 2

2 2

, , , , 0,1, ,

n n

v vs s k
v v

n
n

s

n n na k a k

g s k v v
k v

a k a k W v k W v k

s k v v n


   



 

 



     


    

 

 

 

             
   

   





 



,n    (42) 

 
where the functions  n k  and  na k , , are de- 
fined as follows:  

k  
22

2 2 2
2

2
2

1

2 2

,
2

, , 0,1, ,

n n
n

n n

I I
n n v I v

s v

I I
n v v

v v

s v n



 



     
 

   
 

 





     

  

2 22
2

2 2

2
2

1
1

i
1 2 1 ,

, 0,1, ,

n

nk n
k

k
n

k n


  2  





   

  

  

    (43) 


     (45) 

with initial condition:  

 0, 1, , 0,1,nI v v n             (46) 

   
 1 2

i
, , 0,1,

2n
n

k n
a k k n

k





  


     (44) It is easy to see that when  the solution of 

problem (45), (46) is 
0,1n 

 nI s v , 1, ,s v  . From (39) 
it follows that:  For  when  the function gn (i.e. the 

function 
0,1,n   0k 
 , 0,n ,g s v v ) satisfies problem (40), (41) with 

k = 0. Integrating with respect to v when v   Equa- 
tions (40), (41) when k = 0, we obtain a set of initial 
value problems satisfied by the functions nI , 0,1,n   . 
That is we obtain the following partial differential equa- 
tions:  

     
0 1, , , 1, , , , e ,

, 0, , , .

r t tM t t S v M t t S v S

t t t t S v



 

       

      
   (47) 

When  problem (45), (46) can be solved using 
(42) and we have:  

1n 

 

   
   

              

2 2
2

2 2

2 ln
8 8 2

2 1 2 2
0

1 2 1 22
0 ,i 0 ,i

0

1 1 1
, e e d e

π 2 0

1 1
d sinh 2π e 0 i 0 i 2 0 2

2 2

, , 2,3, .

n n

s s
v v

n
n

s

n n na a

I s v v
v

a a W v W v

s v n

   

 

 



     

    

 



 

             
   

 






 



0 ,n     (48) 

 

Substituting formula (48) in equation (39) we obtain 
the integral representation formula for the moments nM , 

, announced in the Introduction. 2,3,n  
For  in order to guarantee that the function n2n  g  

does not diverge when v goes to plus infinity and that 
 0na  is well defined we must require that the real part 

of  0n  is positive (i.e.    Re 0 0n  ). This implies 
that the following condition holds:  

2 2 2 0.n n n                 (49) 

Condition (49) can be rewritten as a condition for   
given , that is:  n

1 1
1 ,  

n n

n n
  

     1.        (50) 

For  condition (50) guarantees the convergence 
on the n-th moment n

2n 
M  of t , . The same con- 

dition for the convergence of the n-th moment of , 
S t 

tS

t  , in the case of negative correlation (i.e. the condi-  

tion 
1n

n
 

) has been derived in a different  1   

way in the study of the lognormal SABR model (i.e. the 
model obtained choosing , 0r  2 

2

 in (6), (7)) in 
[25] Theorem 2.3. Note that condition (49) for the con- 
vergence of the n-th moment  can be rewritten as 
a condition for n given 

n 
 , in this case we have:  

2

1
0

1
n .


 


              (51) 

From the formula ,    
1 , , , er t tM t t S v S     , 0t t  , 

t t   , ,S v   , and from Equations (6) and (7) it 
follows that a risk neutral measure of the Hull and White 
model has the same expression of the physical measure 
when r is substituted with the risk free interest rate r  
and 2 2  is replaced with 2 2   where  

22


       where   is the risk premium parameter 
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(see [14] Theorem 4.1 and [26], pp. 17-18). That is there 
are infinitely many risk neutral measures in the Hull and 
White model depending from the value of the risk pre- 
mium parameter. 

This last observation allows us to interpret the formu- 
lae derived in Section 5 to price European call and put 
options under the physical measure as formulae to price 
these options under a risk neutral measure. Note that 
calibrating the Hull and White model (1), (2) using asset 
prices as data we can estimate the parameters of the phy- 
sical measure  and consequently the pa- 
rameters 

0, , , ,r    V
2  ,  2 1     and that calibrating 

the Hull and White model (1), (2) using option prices as 
data we can estimate the risk neutral parameters r , 

0, , ,V    . Recall that 0V  cannot be observed in the 
financial markets and that can be considered as a pa- 
rameter that must be determined in the calibration pro- 
cedure. The values of the parameters 



,   and   
obtained in this way determine the value of the risk pre- 
mium parameter  . 

4. Moments of the Logarithm of the Asset 
Price 

The processes  0ln e r t
t tx S S  , t , v t  , satisfy 

Equations (8)-(11) and as a consequence the processes 
, , , satisfy the equations:   lnt S  t tv t 

2

d d d ,
2
t

t t t

v
r t v W t  

    
 

,        (52) 

2

d d d ,
2t t t tv v t v Z t
      ,         (53) 

the initial conditions:  

0 0 0ln ,S                 (54) 

0 0 0 ,v v V                (55) 

and the assumption (3) on the correlation of the stochas- 
tic differentials d ,d ,t tW Z t 

 L
. 

For  let , be the  moment with 
respect to zero of 

0,1,n  n -n th

t , , we have:  t 

  
0

, , , d d , , , , , ,

, , , 0, 0, 0,1, ,

n
nL t v t vp v t v t

v t t t t n

   



 






     

        

 




  (56) 

where  is the transition probability density function 
associated to the stochastic processes 

p
, ,t tv t  , im- 

plicitly defined by (52)-(55). The function p  can be 
written as follows:  

     

   

i1
, , , , , d e , , , ,

2π

, , , , , 0, ,

k x xp x v t x v t x g t t k v v

x v x v t t t t


 

 




     

      

 (57) 

and the function g  can be determined proceeding as 
done in Section 2. Note that  depends on p s t t   
and not on  and t t  separately, , so that we 
can rewrite the moments of , defined in (56) as 
follows:  

0t t 
,t t

   

   
0

, , , , ,

i ,

, , , 0,1,

n n

n
n j j

j
j

L s v L t v t

n
D s v

j

s t t v n

 











 

    

     
 

       

 ,

,

   (58) 

where  

   
0 0

d
, d , , ,

d

, , 0,1,

j

j j

k

D s v v g s k v v
k

s v j








 

 





,
    (59) 

Proceeding as done in [12,13] in the study of the nor- 
mal and lognormal SABR models and in Section 3 to 
deduce the initial value problems (40), (41) and (45), (46) 
satisfied by the functions , it is possible 
to write an initial value problem satisfied by the function 

, , 0,1,n ng I n  

g  and to deduce from it initial value problems satisfied 
by the functions , 0,1,jD j    That is it can be shown 
that  0 ,D s v , ,s v  , satisfies the following prob- 
lem:  

22 2
20 0 0

2
, , ,

2 2

D D D
v v s v

s vv

        
 

      (60) 

with the initial condition:  

 0 0, 1, ,D v v                (61) 

and that the functions , 
satisfy the problems:  

 , , , , 1,2,jD s v s v j   

  
22 2

22
22

12 2
1 1

1
2 2 2

i
i i

2

, , 1,2, ,

j j j

,

j

j
j j

D D D j
v v j v

s vv
D

j v j v D jrD
v

s v j

  



D 


 



  
     

 


   


 





(62) 

with the initial conditions:  

 0, 0, , 1,2, .jD v v j             (63) 

Note that in (62) when  we set  1j 
 1 , 0, ,D s v s v 

    . 
It is easy to see that the solution of problem (60), (61) 

is  0 , 1, ,D s v s v    . In order to solve the initial 
value problems (62), (63) let us consider the following 
change of (independent) variable ,  ln v  v  , 
and let jD  be the function jD  expressed in the new 
variable  , that is let  D s  , ,D s ej j

  , s  , 
  , 1, 2,j   . The solutions jD 1, 2,j ,  of the 
problems (62), (63) expressed in the variables 


s  , 

   are given by:    
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2

0

3 2 2 3 2 2
2 1 1

, e d d ,

1 e , i e , ie , i e , ,
2 2

, , 1, 2, ,

s

j

j j j

D s s

j j
j D j D D jr D

s j



   

     

        








  



   

        
  

 

   

 

  




1j    (64) 

 
where  

       22 22 21 2 8

2

1
, e e

2π

, .

,
s sss

s

s

    




  



 

 



   (65) 

The integral in the   variable in (64) is an elemen- 
tary integral that can be computed using the following 

formula:  

   2 24 1 4 2 8
d , e e e

, .

q q sq qs

s

  
,   




  





  

 


  

   (66) 

Formulae (64)-(66) together with some elementary 
computations give:  

 

   
 2

2
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1
1

1 1 e
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s
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                     (67) 
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2
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1 e 1 e 1 e
, 1 e 2 e

1 2 2

1 e1 1 e
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s



                            

          

              

 
 






 

    





2 2 , , .
2 1

r s s v
 



  
          

 

    (68) 

 
Let us choose , we have  in (58), 

(67) and (68). It follows that 
0t  0 ,v v    0

s t  and that the first 
three moments of , are given by:  ,t t  

   0 0 0 0 0

0 0

, , , 1,

, ,

L t v D t v

t v









 

  

  

  ,







      (69) 

     1 0 0 0 0 0 1 0

0 0

, , , i , ,

, , ,

L t v D t v D t v

t v

 







 

  

  

 
       (70) 

       2
2 0 0 0 0 0 1 0 2 0

0 0

, , , 2 i , , ,

, , .

L t v D t v D t v D t v

t v

  





 

  

  

    

 
(71) 

Proceeding as done to deduce (67)-(71) the expres- 
sions of the functions  ,nD s v , , s  v  , and 
of the moments , , ,  0 0, ,v  tnL t  0  0v  , 
for  can be obtained. These expressions become 
more and more involved when n increases. Note that 
formulae (70) and (71) are closed form formulae con- 
taining only elementary functions of quantities that can 
be observed in the financial markets. These formulae can 
be used to formulate calibration problems for the Hull 
and White model. Thank to the closed form character of 
these formulae it is possible to develop very efficient nu- 
merical algorithms to solve these calibration problems. In 
[12, 13] this idea has been exploited to calibrate the nor- 

mal and the lognormal SABR models. 

2n 

5. Option Pricing Formulae 

Let us derive in the Hull and White model the formulae 
of the prices at time 0t   of European call and put op- 
tions having maturity  and strike price . 
These formulae express the option prices as three dimen- 
sional integrals of explicitly known integrands. 

0T  0E 

To this aim we rewrite the transition probability den- 
sity function (17) as follows:  

 
     

   

i

, , , , ,

1
e d e , ,

2π

, , , , , 0, ,

MN

c x x k x x
c

p x v t x v t

k g t t k v v

x v x v t t t t


    





  

  

      


 

, ,    (72) 

where c is a constant and gc is a function to be deter- 
mined. Let us derive the expression of the function gc. 
Substituting (72) in (14), (15) it is easy to see that if gc 
satisfies the following partial differential equation:  

   

 

2
2 2 2

22 2
2 2

2

1
i 1 2

2 2

i ,
2 2

, , , ,
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c c
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g v
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(73) 
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with the initial condition:  

   (74) 

ld. Recall that 

   0, , , , , , ,cg k v v v v k v v         

the Equations (14) and (15) ho
s t t    . Proceeding as done in Secti

owing formula:  
 

on 2 we 
deduce the foll
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   (75) 

 
where the functions 

2 2

1

k v

   , ,c ck a k k  , are given by:  
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Note that in order to guarantee that for

      (77) 

 k  the 
function cg  does not diverge when v g
ity and that the function is ned 
w

oes to plus infin- 
 ca k , k ,  well defi

of e must require that for k  the real part  c k  
is positive. An easy computation shows that the condition 

  Re 0,c k k   , im that ust satisfy the 
following inequalities:  



plies c m

   2

1
0 , when 1,0

1
c 


   


  0,1 ,    (78) 

or  

0.0 1, whenc          

t us choose c as follows:  
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Le
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1
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1
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 (80) 

Note that the choice of c made in (80) when 

,
1 1  

 0,1   
 is a satis- satisfies conditions (78) and (79), that is (80)

factory choice of c for  1,1   . We rewrite 
si

the tran- 
tion probability density function MNp  as follo



ws:  
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 that appears in (81) is given by:  
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  (82) 

 
and the functions 1 , are 

given by:  

1 2 22c
c k v
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i 1 1
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 (84) 

1

The price  0 0, , ,C S v T E 
ion having matu

xpected value 

 at time  of a Euro- 
pean call opt rity strike price 

is the e of ted payoff 

 0t 
0  and 
discoun

T 
 the 0E   
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with respect a risk neutral measure. As shown in Section 
3 the risk neutral measures of the Hull and White model 
are obtained replacing in the physical measure the pa- 

ra  the risk free  meter r with interest rate  and the pa- 
rameter 

r

  with 22      e  wher   is the risk 
um parameter. That is we have:  premi

 

   0 0 0
0

, , , e d d er T r T xC S v T E x v S E


 
 



     0 0 0, , ,0, ,0 , , , , ,MNp x v T v S v T E                 (85) 


 
where is the asset price at time t = 0 and 0S      

p is a 
n. That 

 ,0  
utral

max 
risk ne

rameters r* and   instead of r and  pectively. 
Note that the initial stochastic volatility 

 res

0v  is 
ratio
  

is the maximum between · and zero and 
 transition probability density functio

is in (85) the function p is given by (81) with the pa- 

not observ- 
able and st be termined in the calib n process. 

Usin rmulae (81) and (85) we have:
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   (86) 

0k

In (86) the integral in the variable x can be computed explicitly, in is way formula (86) can be uced to the 
following formula:  

 th  red
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where 

      (87) 

is given by (82), and in (82)  and  r   cg


 follows im ediately from the fact that th option prices 
are the ed value of the discounted payoffs with 

mu  first two moments of

replace  and r   respectively. Note th
ha

at on the right 
nd side of (86), (87), we have  0,1  , however the 

prices on the left hand side of (86) pe
. In t e numerical expe

c se 

, (87) do n
riments presente

ot de nd on 
d in 0, 

Secti
1

on 6 we 
h

hoo 1 2  . 
The price at time  of t op

 havi rity  and strike price 
aine g th l parity relation. 

That is using the relation:  

 0t 
ng matu

d usin
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0E   can be obt
0T 

e put cal

   


0 0

0

e d e d , , ,0, ,0r T x r Tx S E vp x v T v

C S

 
 

 



  

   0 0 0 0

0 0

, , , , , , ,

, , , ,

v T E P S v T E

S v T E 

 



 

r
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   (88) 

whe e in the transition probability density p the parame- 
r ,   replace r,   respectively. Formula (88) 

m
 expect

lae for the

e 

, t
respect to a risk neutral measure. From (88) and the for- 

 tS  , con- 
tained ) we have:   in (47

   0 0 0 0

0 0

, , , , ,

, , .

tS C v T E P S v T E

S v E 

 



  

  
0S, ,
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T

Experiments 

e r T

 

,
  (89) 

6. Calibration Problem and Numerical 

eas- 
itute the m

mo

E

risk neutral mLet us consider option prices under a 
ure. That is let us subst odels (52)-(55) with the 

del:  

2

d d d ,  ,
2

Qt
t

v
r t v W t t t
  

    
 

      (90) 
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2

d d d ,
2

Q
t t t tv v t v Z t

        ,       (91) 

together with the initial conditions:  

              (92) 0 0 0ln ,S     

0 0 ,v v                    (93) 

where , ,Q
t tW Z t  , are standard Wiener processes 

such that 0 0 0Q QW Z  , and d ,d ,Q Q
t tW Z t

Q

 , are 
their stochastic differentials. The correlation structure of 
the model is assumed to be:  

d dQ Q
t tE W Z  d ,t t    ,          (94) 

where 
The m )-(93), (92) is parameterized 

real parameters, that is: 

 1,1   . 
odels (90 by five 

0, , , ,r v     . 
Let be the five-dimensional real Euclidean s

let us introduce the vector 

5R  pace, 
5  given by  

 0, , , ,r v      5   and the set  defined 5  
as follows:  

  7
0, , , , ,r v         

00, 0, 0, 1 1 .r v       
     (95) 

The inequalities that define M   
, ,

are dic
“meaning” of the parameters 
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The nonlinear constrained least squares problem (96) 
is only one possible formulation of the calibration prob- 
lem studied between many other possible formulations. 

In the numerical experiment that follows we solve 
problem (96) with a local minimization method. We 
choose the initial guess of the minimization procedure 
used to solve problem (96) exploring the feasible region 





 
 

 


 
 




 



 



 . This is done taking a set of random points belong- 
ing to   and evaluating the objective function tL  
on this set of points. The initial guess of the minimization 
method is chosen among these random points using a 
heuristic rule. The minimization method used is a variable 
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that covers the period April 2nd, 2012, May 15th, 2012 
(thirty trading days) and we solve the corresponding 
thirty calibration problems (96) with jt t  , 1, 2, ,30j   , 
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rameter values as functions of time do not

metric steepest descent method (see [27]). This method is 
an iterative procedure that, given an initial vector 

0   , generates a sequence  m , , of 
vectors such that 

0,1,m  

 m   , 0,1,m   , and 
   1m m

t tL L     , 1, 2,m   . For 1,2,m    the 
vector m  is obtained from ctor the ve 1m  making
step of appropriate length in rection of minus t

 a 
di he 

gradient with respect
 the 

 to   of tL  
e co

 the f

e calibration p
 change sig- 

ni y. That is the valu  of the parameters of th
models (90)-( ing the calibration 

to forecast the option  one day ahead. That i

com uit- 
able metric that depend  th nstr d in 

. The procedure stops en ollo on is 
:  

puted in a s
aints define
wing criteri

s on
 wh

satisfied
ficantl es e 

93) obtained solv prob- 
lem are somehow “stable” during the observation period. 
The values of the parameters shown in Figure 4 are used 

prices s we 
use the parameter values obtained calibrating the model 
with the data of jt t   to c  prices at 

1

  max,or ,nk
t k   98) 

e  are gi n po e co
t th e pe scen ed to 
the calibration prob  can  foun

tolL e

ve
tric stee

lem

         (

nstants. Details 
t method us
d in [28]. 

wher
abou
solve 

tole , 
e va

maxn
riable m

sitiv
st de

 be ompute the option

jt t   , obtained using 
1jttS S


  , 1, 2, , 29j   . The In the numerical experiment presented here we con- 
sider the closing value of the day of the USA S&P 500 
index and the closing prices of the day of the European 
ca

forecasts of the opti  
call opt pean 

n with th rity relation n the 
e st be 

 with som of the 
stances s the 

nd forecast put 
 

 of the when 
ared  the 
ial mark at if 
ove from s nition 

on 
ion wit
e pu

course th
e obvi

of the

The aver
European call 

with the corres
et are resp

the con

prices are obtaine
h formul

t call pa
formul
ous changes

 data time series. 
values 
age rela

and pu
ponding pr

ectively 8%
traint cont

d evaluating the
a (87) and the Euro

 (89) give
ae (87) and (89) mu

, to take care 
Figure 5 show

of the European call and 
tive errors on the forecast

t option prices 
ices observed in
 and 5% Note th

ained in the defi

European 
put optio
call price. Of 
adapted,
circum
observed a
option prices. 
values
comp
financ
we rem
of M   

ll and put options on the USA S&P 500 index with 
expiry date March 16th, 2013 and strike prices  

 , , 1075 25 1C i P i iK K K i      , 1, 2, , 4i   ,  

,5 ,5 5 1170C PK K K   . These prices are observed in 
the time period that goes from April 2nd, 2012, to July 
25th, 2012 Note that the observations are daily observ - 
tions. Recall that in the study of financial data time series 
a year is made of about 252 trading days and a month is 
made of about 21 trading days. Figure 1 shows the value 
of the USA S&P 500 index as a function of time during 
the period of interest. Figures 2 and 3 show respectively 
th ces of the European call and t o n the 
index with maturity time arch 6th, 2  strike 
pri

. 

 i

a

the requ at est th r  must be non negative the 
solution of the calibration procedure shows a negative 
risk free interest rate of about minus 2% (see Figure 6) 
with an average of the relative errors between forecast 
and observed call and put prices respectively of ap-
proximately 2% and 3% (see Figure 7 and http://www. 
econ.univpm.it/recchion/finance/w17). That is if we al- 
low negative risk free interest rates we improve the fore- 
cast of the prices of the European call and put options. 
This unexpected finding may be a consequence of the 
anomalous market conditions registered in the spring 
2012. 
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Figure 1. The USA S&P 500 index versus time. 
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Figure 2. Prices of the call options on the USA S&P 500 inde ith strike prices x w 1075 25 1 , 1,2, ,4iK i i      and K5 = 

1170, and expiry date T = March 16th, 2013 versus time. 
 

 

  1075 25 1 , 1,2, ,4iK i i    Figure 3. Prices of the put options on the USA S&P 500 index with strike prices  and K5 = 

1170, and expiry date T = March 16th, 2013 versus time. 
 

 

Figure 4. Parameter values estimated in the period April 2nd, 2012, May 15th, 2012 versus time to maturity expressed in days. 
The unit of measure of   is years−1/2 and the unit of 0

v r  is years−1. The parameters  ,  and μ  are dimensionless. 
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Figure 5. Observed and one day ahead forecast call and put option prices (in USD) for five different strike prices: ((a) KC,1 = 
KP,1 = K1 = 1075, (b) KC,2 = KP,2 = K2 = 1100, (c) KC,3 = KP,3 = K3 = 1125, (d) KC,4 = KP,4 = K4 = 1150, (e) KC,5 = KP,5 = K5 = 1170) 
versus time to maturity expressed in days. 
 

 

Figure 6. Estimated risk free interest rate (in the period April 2nd, 2012, May 15th, 2012) versus time to maturity expressed 
in days obtained calibrating the model without the non-negativity constraint on the risk free interest rate. 
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Figure 7. Observed and one day ahead forecast call and put option prices (in USD) for five different strike prices: ((a) KP,1 = 
K1 = 1075, (b) KC,2 = KP,2 = K2 = 1100, (c) KC,3 = KP,3 = K3 = 1125, (d) KC,4 = KP,4 = K4 = 1150, (e) KC,5 = KP,5 = K5 = 1170) versus 
time to maturity expressed in days. 
 

 

Figure 8. USA S&P 500 VIX index versus time. 
 
does not show significant changes during the period 
April 2nd, 2012, May 15th, 2012. This is a plausible re- 
sult when compared to the behaviour of the USA S&P 
500 VIX index (SOURCE MKT 500 Currency USD) 
shown in Figure 8. In fact the USA S&P 500 VIX index 
monitors the volatility of the USA S&P 500 index and 
we can see in Figure 8 that in the period April 2nd, 2012, 
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Appendices 

Appendix A 

In this Appendix we derive formula (31). T
first prove the following formula:  

o this aim we 
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that generalizes the already known formula (see [1] 
Section 1, formula (1.2)):  
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Equations (101), (102) follow immediately from of the 

lying Equations 
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Whittaker equation (see [16] p. 505 formula 13.1.31) that 
defines the Whittaker functions. Multip
(101), (102) respectively by  ,ibW x   and by  
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Taking into account that 
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z , b ,    (see [16] p. 504 formula 13.1.8 
and p. 505 formulae 13.1.32, 13.1.34, 13.1.34, and [1] 
for further details), and integrating by part (103) we ob- 
tain:  
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where  lim
0y

f y  means the right-handed limit in 
 

zero of the function f . Let z y , Equation (104) 
can be rewritten as follows:  
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where  
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Formula (109) reduces to formula (99), in fact we 

have:  
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and is the Landau symbol. Evaluating the limit on 
the ri hand side of (105) as done in [1] Section 3 and 
using formulae (106)-(108), we obtain:  
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Let us prove now formula (31). We use formula (99) 
and the following integral transform:  
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Appendix B 
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ith the initial condition:  
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