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ABSTRACT 

The Boltzmann kinetic equation for rarefied radiating gas is found. It is shown, that process of radiation is defined by 
excitation of atoms at their collision, and also spontaneous radiation of quantums at transition of electrons to the basic 
power level and the compelled radiation of quantums at collision of the excited atoms. It is shown, that distributions on 
velocities of the excited and not excited atoms submit to various laws. Distinctions in laws of distribution of the excited 
and not excited atoms define power parameters of radiating gas, and also a share of radiating molecules in gas.   
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1. Introduction 

The theory of the kinetic equations is rather widely ap- 
plied to the analysis of various physical processes [1]. 
The interaction of molecules of rarefied gas in gas laser 
[2], particles in plasma, phonons in crystals, etc. have 
been successfully analyzed with the help of this theory. 
Most strict deduction of Maxwell distribution of ideal 
gas molecules by the speeds (or their kinetic energy) is 
carried out with the help of Boltzmann kinetic equation 
[3] on consideration of system of interacting atoms in a 
stationary condition. Boltzmann kinetic equation, first of 
all, reflects non-stationary process of interaction of parti- 
cles among themselves, influence of this interaction on 
the establishment of corresponding distribution of mole- 
cules and influence on examined system of external fac- 
tors.  

The method of the kinetic equations with use of a prin- 
ciple of detailed equilibrium is applied also at research of 
transition of the atoms interacting with electromagnetic 
radiation, from one condition in another [3].  

The theory of thermal radiation represents one of the 
most advanced physical theories. Actually this theory has 
begun development of quantum mechanics. The matter is 
that even before creation of quantum mechanics the for- 
mula for spectral density of energy of equilibrium ther- 
mal radiation, so-called Rayleigh-Jeans law has been 
found. The deduction of this law was based on the wave 
nature of light. Concentration of electromagnetic stand- 
ing waves in a cavity has been found and multiplied on 
the average energy of a standing wave kT, where k- 
Boltzmann constant, Т-absolute temperature [3]. 

In spite of the fact that the deduction of this law is 

completely transparent, it was in the absolute contradic- 
tion with experiment, showing, that the density of energy 
of electromagnetic radiation monotonously grows with 
increase in frequency. It has induced M. Planck to re- 
searches which have led him to Planck’s to well-known 
formula for radiation of absolutely black body and fur- 
ther to development of quantum statistics. 

All events of this history were repeatedly discussed as 
in scientific, and scientific-popular literature. 

We shall consider some questions of thermal radiation, 
on which researchers usually take insufficient attention. 

2. Processes in the Gas, Resulting to  
Thermal Electromagnetic Radiation 

There is interest to consider in more detail processes in 
the gas, resulting to thermal electromagnetic radiation. 

In Figure 1 some constant volume of gas V which is 
heated up due to submission of heat Q is shown. It results 
in radiation by gas of quantums of electromagnetic en- 
ergy h .  

Let’s carry out the kinetic analysis of processes in the 
rarefied gas, resulting to electromagnetic radiation. 

We shall assume gas the closed thermodynamic sys- 
tem which is taking place in equilibrium state. i.e. how 
many thermal energy Q gives in system, as much elec- 
tromagnetic energy from it is radiated. Interaction exter- 
nal of molecules electrons in such gas occurs only at 
their collision. 

Let’s consider probability of transition of electron in a 
molecule of gas from the top energy level on bottom. 
This probability 21 , it is similar to a method to Einstein 
[3], we shall divide into two parts, on the spontaneous  

p
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Figure 1. The volume of gas radiating at heating. 
 

21
sp cp

21 21 21

 and compelled 21  probabilities. We shall con- 
sider, that the compelled transition of electrons occurs 
only due to collision of molecules, Figure 2. 

s cp p p 

h

.                (1) 

Let’s note, that as at spontaneous transition of elec- 
trons on the bottom energy level, and at compelled there 
is radiation of electromagnetic energy quantums  . 
Using a principle of detailed balance and Boltzmann 

distribution, we have: 

12

21

p
exp

W

p kT

   
 

p

W W W  

12 21
cp p

,              (2) 

where 12  is probability of transition of electron on the 
top energy level at impact of molecules, Т-absolute tem- 
perature of gas. The value 2 1  takes into ac- 
count change of the energy condition of molecules at 
their collision, i.e. redistribution of kinetic energy of mo- 
lecules and transitions of electrons in molecules from a 
level on a level. 

Substituting (1) in (2), and taking into account, that the 
probability of the compelled transition at collision of mo- 
lecules with the bottom energy level on top is equal to 
probability of the compelled transition at collision of mo- 
lecules with the top level on bottom , we find: 

21

exp 1

c p
p

W

kT


   

 

W

21

s

.             (3) 

Change of the energy condition  of molecule 
generally can take place or due to transfer of kinetic en- 
ergy from one molecule to another at their collision, or 
due to supply of energy from the outside, or due to elec- 
tromagnetic radiation of gas, or all these cases simulta- 
neously took place.  

On the other hand at impact of molecules, in them 
there is a distribution of external electrons on their en- 
ergy. This distribution, as well as Maxwell distribution, 
has thermal character. Since it results from collisions of 
molecules the internal electrons of molecules do not par- 
ticipate in occurrence of the given distribution. 

The probability for electron to appear at a level 1, Fig- 
ure 2, we shall accept equal p1, and at a level 2 equal p2. 
Taking into account the condition of normalization p1 +  

 

Figure 2. Excitation and the compelled radiation of mole-
cules at their collisions. 
 

p2 = 1 and Boltzmann distribution 2

1

exp
p

p kT

   
 

, we  

receive: 

2

1

1 exp
p

kT




   
 

.              (4) 

The value 2 1      takes into account only dif- 
ference of the electrons energy at energies levels 1 and 2. 

In the form of record the received formula is close to 
Fermi-Dirac [4] distribution, but not identical to it. As 
against Fermi-Dirac distribution, in the formula (4) value 
  is not excess of electron energy above Fermi’s level, 

and represents a difference of energies levels of external 
electrons to which they can transit at collision of mole- 
cules. Besides we shall noted, that at the deduction of 
distribution (4) Pauli principle was not used. 

The Maxwell distribution and distributions (3), (4) 
contradict each other since that there were distributions 
(3), (4) it is necessary, that impacts of molecules were 
not elastic, and to Maxwell distribution there correspond 
absolutely elastic impacts of molecules. 

Besides distinction of forms of distributions (3) and 
(4), concerning as a whole to the same system to rarefied 
gas pays attention. Hence, distribution of molecules on 
energy or to velocities in examined gas system cannot be 
described by the uniform formula. 

3. The Quantum Kinetic Equation of  
Radiating Rarefied Gas 

To find out how molecules of gas should be distributed 
on energy in view of quantum processes, we shall con- 
sider kinetic Boltzmann equation as [3]: 

 
1 1

2 3 1 1 1
,

d
d d

d rel
p

f
v f f ff p

t




  ,        (5) 

where f and f1 is the density of probabilities of molecules 
distribution in the velocities (or energy) for two mole- 
cules to have velocities before collision v and v1, and f2, 
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f3-density of probabilities for the same molecules to have 
velocities after collision v2 and v3. Besides sizes vrel-rela- 
tive speed of impacting molecules, -effective section of 
interaction of particles, p1-impulse of examined impact-
ing molecule, 1 -a solid angle in which particles scat-
tered, in this case molecule a, after collision, Figure 3. 



The main lack of Boltzmann Equation (5) is the im- 
possibility with the help of it to describe electromagnetic 
thermal radiation of gas. It is connected to the assump- 
tion of absolutely elastic impacts of gas molecules. We 
shall notice also, that this equation found before creation 
of quantum mechanics has no quantum character.  

With the purpose of the account of not elastic process 
of collisions of molecules, finally, resulting in radiation 
of quantums of electromagnetic energy, and also transla- 
tion of Boltzmann equation in quantum area, we modify 
the Equation (5).  

Energy of a molecule represents the sum of kinetic en- 
ergy of its movement and potential energy of excitation 
due to transition of electrons on higher energies levels  

2

2

mv
W   

 

 [5].  

Let’s allocate in all volume of gas the relative share of 
molecules  (concerning corresponding interval of en- 
ergy) which have energies W and W1. As a result of their 
collisions there are molecules with energies W2 and W3, 
which share too . The number of collisions of molecules 
with energies W and W1 is proportional to product of 
probabilities ff1. But after the first collision the share of 
molecules with these energies will decrease due to oc- 
currence of molecules with energies W2 and W3. There- 
fore the number of collisions will be proportional to re-
duction of a share of molecules with energies W and W1 
due to increase in a share of molecules with energies W2 
and W3, i.e. proportional to value 2 3f f   . Hence, 
Boltzmann kinetic Equation (5) for radiating gas gets a 
kind: 
 

 

Figure 3. Scattering of molecule a after collision. 
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
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  

   


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         (6) 

 1fThe value f    shows, that the share of mole- 
cules with energies W2 and W3 grows due to molecules 
which before collision had energies W and W1. In the 
Equation (6) as against (5) integral of collisions it is writ- 
ten down not only on the basis of balance of molecules 
before and after collision, but also dynamics of change of 
molecules shares is taken into account during the colli- 
sions, resulting to thermal electromagnetic radiation. 

Let’s find stationary distributions of the molecules if , 
submitting to the Equation (6). Stationary distributions of  

molecules arise in a case 
d

0
d

f

t
 . Hence, from (6) we 

find: 

   2 3 1 1 2 3f f f f ff f f      ,       (7) 

To the functional Equation (7) satisfy functions of dis- 
tribution of type: 

1
1

,
exp 1 exp 1

f f
W W

kT kT

 
 

          

,      (8) 

2 3
2 3

,

1 exp 1 exp

f f
W W

kT kT

 
 

          

  

.      (9) 

Simply to show, that the Equation (7) will identically 
be transformed to a kind: 

  
2 3 1

2 3 1

f f ff

f f f f   


   

1 2 3W W W W

,     (10) 

which decision, obviously, Functions (8) and (9) are. 
Thus the law of energy conservation is carried out at 

not elastic collision of molecules: 

   .             (11) 

Substituting 
2

2

mv
W  , we find:   

22 22
31 2

1 2 32 2 2 2

mvmv mvmv     . (12)           

In the Formula (12) values i  characterize change 
of molecules energy at transition of electrons from level 
on level. Thus this transition can be both compelled at 
impact, and spontaneous. 

The kind of functions of molecules distribution at col- 
lision changes from the form (8) on the form (9) due to 
excitation of molecules. But after radiation by molecules 
of electromagnetic energy the kind of their function of 
distribution comes back to the form (8), Figure 4.  
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 f

 

Figure 4. Oscillations of the distribution law of molecules at 
absorption of heat and radiation of quantums. 
 

In figure it is marked, that is heat Q, submitted to iso- 
volumetric heated up gas goes on change of internal en- 
ergy of gas  that results in change of the law of dis- 
tribution of gas molecules at their excitation and to radia- 
tion of electromagnetic energy. Thus, not excited mole- 
cules have function of distribution (8), and excited-func- 
tion of distribution (9). At gas simultaneously there are 
the molecules distributed under forms (8) and (9).  

U

 

The kinetic Equation (6) has irreversible character on 
time that reflects the second law of thermodynamics. 
Really, collisions of molecules with energies W2 and W3 
will not lead to molecules with energies W and W1. 
Mathematically, it is connected by that the left part of the 
difference in integral of collisions (6) is not symmetric of 
the right part, as against Boltzmann Equation (5). It is 
connected by that a fraction of molecules energy after 
their collision is irreversible lost due to radiation. 

Thus, distribution of molecules in the velocities in case 
of their not elastic impacts cannot be described one func- 
tion of distribution. 

Distribution of molecules on energies in the given pro- 
blem where it is examined not isolated, but closed iso- 
volumetric molecules system submits to laws (8) and (9). 
Thus the given system of molecules there is can, both to 
be heated up from external source, and to emit electro- 
magnetic thermal radiation. But the examined thermo- 
dynamic system of molecules is not open since change of 
it mass is excluded.  

Concerning value  in the Equation (6) it is necessary 
to make the following explanations. In the kinetic Equa- 
tion (6) interaction only molecules with energies W and 
W1 is examined. Before the first collision of molecules, 
information about resulting system of molecules with 
energies W2 and W3, for example, their relative shares in 
gas system, no. But at the first collision of molecules 
with energies W and W1 already there should be the in- 
formation on relative shares of molecules with energies 
W2 and W3. Therefore the factor 2 3f f    is used. 
Actually this factor before collision of molecules with 
energies W also W1 takes into account the information on 
the condition of molecules system with energies W2 and 
W3. From this point of view probably and a quantum ex- 

planation of a factor 2 3f   .  
For the account of Pauli principle it is necessary to use 

the multiplier  1 2 3f f 

1f f 

1f f

. The matter is that at colli- 
sion of molecules, there is the interaction of their exter- 
nal electronic shells and Pauli’s principle starts to act. 
Due to this multiplier number of molecules transit in the 
filled conditions for which 2 3 , it is equal to zero. 
i.e. collisions can result molecules only in yet not occu- 
pied conditions [1,6]. In other words, at fulfilment of a 
condition 2 3 

1

 there can not be a molecule with 
energies W2 and W3. This position should be reflected in 
the Equation (6). 

Thus, quantum consideration shows, that size  . 
It also means, that in rarefied gas, by consideration of 
collisions of molecules with energies W and W1 other 
molecules with others energies to consider there is no ne- 
cessity and a relative share of molecules with these ener- 
gies at anyone including the first collision, it is necessary 
to accept to equal one. From the quantum point of view 
the information on the condition of molecules with ener- 
gies W2 and W3 is determined by Pauli’s principle. 
Therefore classical and quantum explanations of pres- 
ence of the factor  1 2 3f f 

d

 actually containing the 
information on the condition of system of interacting 
molecules after collision, it is equally correctly.  

4. Distributions of Gas Molecules in the  
Velocities in Radiating Gas 

Taking into account the duality of function of molecules 
distribution on energies, we shall estimate functions of 
distribution of molecules in the velocities. First we shall 
consider a case when the form of distribution corre- 
sponds (9), i.e. molecules are in the excited condition. 
The probability of a finding of a molecule energy W in 
phase volume   can be received under the formula: 

1 1

2

1

d d d d d dd
d

d 4π d
,

X Y ZX Y Z p p p
P f f

V p p
f


 



 



2d d d d d d d d 4π dX Y Z

       (13) 

Xwhere Y Z p p p V p p  
d d d d

 is element 
of phase volume, X Y Z V -the volume, falling one 
molecule in gas, X Y Z -product of components of 
molecule impulse, р-the module of molecule impulse, 

d d dp p p

1 -phase volume falling one molecule. Function of dis-  

tribution according to (9) is 
2

1

2
1 exp

f
mv

kT




  
  

 

dp
2d d d 4π dp p p p p

.  

In the Formula (13) integration executed of impulses on 
angles of spherical layer by thickness  that is equiva- 
lent to replacement  [4].  X Y Z

Transit in (13) from the impulse to velocity of mole- 
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cule v, we shall find: 
3 2

1

1

4π d
d

4π

1 exp

V m v v
P f

V m





3 2

2

d
.

2

v v

mv
kT








  
 
 

     (14) 

In the Formula (14) integration on volume of gas V is 
carried out.  

Taking into account 
d

d
n

P n

v v 
n

  where d  is number  

of molecules with a speed from v up to , and n the 
general number of molecules in volume V, from (14) we 
shall receive: 

2

2

d

2

v v

mv

kT

d

1 exp

n F





  
 
 

,        (15) 

where the constant 
3

1

4πnV m
F


  can be found from 

the condition of normalization: 
2

2

d

2

v v

mv

kT
0 1 exp

n F







   
 
 

.        (16) 

The integral (16) in elementary functions is not calcu- 
lated. 

The density of probability of molecules distribution in 
the velocities, using (15), looks like: 

2

2 2

v

mv

kT

d

d
1 exp

n F

n v n 



  
 
 

.       (17) 

The value 

546.1 nm

 is change of molecules energy at tran- 
sition of electrons from level on level depends on a kind 
of gas. For rarefied gas in atomic condition the spectrum 
of radiation is lined. And, on any length of wave at the 
certain temperature of gas the maximal energy is radiated. 
For example, in a spectrum of seen light at steam of 
mercury (in mercury-quartz lamps) the brightest green 
line with length of a wave   . Strictly speak- 
ing, the value   is necessary to calculate under the  
formula i

i

     where summation executed on all  

possible energies transitions in a spectrum of gas. For the 
further analysis we shall assume, that radiation of rare- 
fied gas monochromatic, occurs on one length of the 
wave corresponding to a maximum of energy of thermal 
equilibrium radiation of absolutely black body. Energy of 
electrons transition 

4.96h kT

 at which the maximum of en- 
ergy of thermal radiation is observed, calculate from a 

ratio (the Wien’s law)    , [3]. 

Let’s designate in (16) value 
2

2

mv
X

kT
 . In result the 

Formula (16) it is possible to transform: 

 

3

2

0

3

2 3

1 2 d

2 1 exp 4.96

1 2
6.131 10 .

2

kT X X
n F

m X

kT
F

m





      

    
 


      (18) 

In the Formula (18) and lower all integrals are found 
by the numerical method. 

Hence, value 
3

2
4π

2π

m
a n

kT
   
 

F ,            (19) 

where constant a = 144.5. Size a and number  used for 
comparison of distribution (17) with Maxwell distribu- 
tion [4]: 

3
22 2d 2

4π exp
d 2π

n m mv
v

n v kT kT

     
   

.     (20) 

Substituting (19) in (17), we find: 

3
22

2

d
4π

d 2π 2
1 exp

n m v
a

n v kT mv

kT


          

 

,v

.  (21) 

Distribution (21) actually depends on three variables: 
 , and Т.  

Let’s consider now a case of not excited molecules 
when function of distribution has the form (8). 

Similarly (15) we shall write down: 

2

2

d
d

2
exp 1

v v
n F

mv

kT




  
 

 

4.96 kT

.       (22) 

As before we accept   . Constant F we 
shall find from the condition of normalization: 

2

2
0

d

2
exp 1

v v
n F

mv

kT






  

 
 

 .         (23) 

Hence: 
3

2
4π

2π

m
b n

kT
   
 

F ,             (24) 

where b = 143.8. 
Thus, distribution of not excited molecules looks like: 
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3

2d
4π

d 2π
exp

n m
b

n v kT mv

   
 

2

2 2
1

v

kT

  
 

 

p

1 2 3d d  p p

.   (25) 

In Figure 5 curves of functions of distribution which 
are described by Formulas (21), (25)-curve 1 are shown, 
and Maxwell distribution (20)-curve 2. The temperature 
of gas (air with equivalent molecular mass 29) is ac- 
cepted equal T = 300 K. 

From figure it is visible, that the difference between 
distributions (21) and (25) practically is absent. Distinc- 
tion between them and Maxwell distribution does not 
exceed 1%. The curve of Maxwell distribution passes a 
little below the curves plotted under Formulas (21) and 
(25) only in areas of the most probable velocity of mole- 
cules. 

Hence, for calculation of speeds of molecules and 
other statistical parameters of molecular radiating sys- 
tems with the big accuracy it is possible to use Maxwell 
distribution. 

Comparison of distributions (21) and (25) and Max- 
well distributions shows, that Maxwell distribution (20) 
is some average distribution between (21) and (25). 

That distributions of velocities of the excited and not 
excited molecules (21) and (25) are numerically practi- 
cally identical, is defined by action of the law of quantity 
movement conservation of molecules i  before and af- 
ter collision which for differentials looks like: 

d dp p .             (26) 

Concerning the law of conservation (26) the following  
 

 

Figure 5. Distribution laws of molecules in the speeds in 
rarefied radiating gas. 

is necessary remark. It is applicable and for a situation 
when in the condition of balance of system the left part 
reflects quantity of movement of particles leaving some 
phase volume at collision, and the right part quantity of 
movement of the particles passing at collision in this 
phase volume. The same can be attributed and to the law 
of conservation of energy (12). 

From (26) it is received: 

       22 2 2

1 1 2 3 2 3d d 2d d d d 2d dp p p p    p p p p

d d d d

. (27) 

At interaction of molecules in the condition of balance, 
the quantity of molecules leaving and passing in the same 
phase volume is kept. Therefore it is possible to write, 
that 1 2 3p p p p

       22 2 2

1 2 3d d d dv v v v  

0

dU W n


 [3]. This equality is used at deduc-
tion of Boltzmann kinetic Equation (5). Hence, from (27) 
we have: 

.        (28) 

The ratio (28) shows that change of velocities of mole- 
cules 2 and 3 can occur only owing to change of veloci- 
ties of molecules without index and 1, but not due to ra- 
diation by the excited molecules 2 and 3 of electromag- 
netic quantums. It also determines similarity (Figure 5) 
of distributions (21) and (25), despite of their various 
forms. 

5. Energy Aspects of Rarefied Gas Radiation  

Let’s find a share of energy which passes on radiation of 
gas. 
The general energy of n gas molecules can be found 

under the formula: 

  ,               (29) 

where the top sign attributes to the excited molecules, 
and bottom to not excited.  

Using Formulas (15) and (22), we shall find: 

 2 2

2
0

2
d

2
exp 1

mv v
U F v

mv

kT







 

 


  
 

 

 .       (30) 

Carrying out separately integration for the excited and 
not excited molecules, we have: 

 
 

1 2

0

4.962
d 6.52

exp 4.96 1π

X Xa
U nkT X nkT

X






 

  ,  (31) 

 
 

1 2

0

4.962
d

exp 4.96 1π

6.517 .

X Xb
U nkT X

X

nkT








 



        (32) 

As before, it is made the substitution 
2

2

mv
X . Be-  

kT
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33.2 10 nkT

sides sizes of constants F from Formulas (19) and (24) 
are used. 

by heating a vessel with gas, in energy of thermal radia- 
tion is very small part of the general internal energy of 
gas. That gas practically submits to Maxwell distribution 
testifies to it. If to use conditional efficiency of transfor-
mation of thermal energy into energy of radiation for gas 
system it makes: 

From (31) and (32) follows, that energy of radiating 
gas much more exceeds internal energy of ideal gas U = 
1.5 nkT. It is connected by that the most fraction of en- 
ergy Q passing in gas system transit on excitation of 
molecules. In condition of balance examined isovolumet- 
ric gas system, Figure 4, on radiation of gas is spent en- 
ergy: 

U Q U U      .      (33) 

Let’s find, following [7], the energy of thermal radia- 
tion falling 1 quantum.  

Using Bose-Einstein’s distribution for photon gas [4], 
we shall find volumetric density of energy of radiation: 

     

2 4

3 3 4

d 8π π

152π

c

a


 0

2 4π

exp 12π

cp p p

ap


 


 ,     (34) 

where р is the impulse of quantum, also it is designated 
c

a
kT

 . 

Number of quantums in unit of volume equally: 

     
 2

0
0

2 4π

exp 12π

p p
n

ap




3 3 3

2 3d 8π

2π a




 

 3 1.202 

,    (35) 

where  is dzeta-function of Riemann.  
The average energy of thermal radiation falling 1 

quantum is equal: 

   
4 4

1
0 30 3 30 3

c

n a

 
 

   2.7kT kT


 .   (36) 

Let’s find quantity of simultaneously radiating mole- 

cules 31.18 10N n
1

U




  . Hence, simultaneously ra- 

diate only 0.118% of all gas molecules. 
If to consider rarefied gas in the given thermodynamic 

system as the converter of thermal energy in energy of 
electromagnetic radiation on the basis of the carried out 
analysis it is possible to make the following conclusion. 
Energy of transition from the thermal form, for example,  

100% 0.05%
U

U





  .           (37) 

6. Conclusions 

For calculation of the molecules velocities and other sta- 
tistical parameters of molecular radiating systems with 
the big accuracy it is possible to use Maxwell distribu- 
tion. 

In spite of the fact that transitions of molecules at their 
collisions from one form of distribution in another prac- 
tically do not influence distribution of molecules veloci- 
ties, these transitions are determining in distribution of 
quantums of thermal radiation on their energies.  

In ideal rarefied gas simultaneously radiate only 0.118% 
of all molecules. 
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