
Advances in Bioscience and Biotechnology, 2010, 1, 281-291                                         ABB 
doi:10.4236/abb.2010.14037 Published Online October 2010 (http://www.SciRP.org/journal/abb/). 
 
 
 

Published Online October 2010 in SciRes. http://www.scirp.org/journal/abb 

Molecular markers and their applications in fisheries and 
aquaculture 
 
Tanya Chauhan1, Kumar Rajiv2 
 
1National Institute of Criminology and Forensic Science , Rohini, New Delhi, Delhi, India; 
2Department of Chemistry, (SC), University of Delhi, Delhi, India. 
Email: tanyachauhan@yahoo.com; chemistry_rajiv@hotmail.com 
  
Received 10 June 2010; revised 20 June 2010; accepted 25 June 2010. 
 
ABSTRACT 

Genetic variation in a species enhances the capability 
of organism to adapt to changing environment and is 
necessary for survival of the species. Genetic varia-
tion arises between individuals leading to differentia-
tion at the level of population, species and higher or-
der taxonomic groups. The genetic diversity data has 
varied application in research on evolution, conser-
vation and management of natural resources and 
genetic improvement programmes, etc. Development 
of Molecular genetic markers has powerful ability to 
detect genetic studies of individuals, populations or 
species. These molecular markers combined with new 
statistical developments have revolutionized the ana-
lytical power, necessary to explore the genetic diver-
sity. Molecular markers and their statistical analysis 
revolutionized the analytical power, necessary to ex-
plore the genetic diversity. Various molecular mark-
ers, protein or DNA (mt-DNA or nuclear DNA such 
as microsatellites, SNP or RAPD) are now being used 
in fisheries and aquaculture. These markers provide 
various scientific observations which have impor-
tance in aquaculture practice recently such as: 1) 
Species Identification 2) Genetic variation and popu-
lation structure study in natural populations 3) 
Comparison between wild and hatchery populations 
4) Assessment of demographic bottleneck in natural 
population 5) Propagation assisted rehabilitation 
programmes. In this review article, we have concen-
trated on the basics of molecular genetics, overview 
of commonly used markers and their application 
along with their limitations (major classes of markers) 
in fisheries and aquaculture studies. 
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1. INTRODUCTION 

All organisms are subject to mutations because of nor-
mal cellular operations or interactions with the environ-
ment, leading to genetic variation (polymorphism). Ge-
netic variation in a species enhances the capability of 
organism to adapt to changing environment and is nec-
essary for survival of the species [1]. In conjunction with 
other evolutionary forces like selection and genetic drift, 
genetic variation arises between individuals leading to 
differentiation at the level of population, species and 
higher order taxonomic groups. Molecular genetic 
markers are powerful tools to detect genetic uniqueness 
of individuals, populations or species [2,3]. These mark-
ers have revolutionized the analytical power, necessary 
to explore the genetic diversity [4]. The conclusion from 
genetic diversity data has varied application in research 
on evolution, conservation and management of natural 
resources and genetic improvement programmes, etc 
[5-10] 

In addition to protein markers, application of DNA 
markers is finding wide acceptance in population genet-
ics. With DNA markers, it is theoretically possible to 
observe and exploit genetic variation in the entire ge-
nome. Both genomic and mitochondrial DNA is used for 
varied applications. The commonly used technique are 
allozyme analysis, types of restriction fragment length 
polymorphism (RFLP), randomly amplified polymor-
phic DNA (RAPD), amplified fragment length poly-
morphism (AFLP), microsatellite typing, single nucleo-
tide polymorphism (SNP), and expressed sequence tag 
(EST) markers, etc.  

Molecular markers can be classified into type I and 
type II markers. Type I markers are associated with 
genes of known function, while type II markers are as-
sociated with anonymous genomic regions [11]. Under 
this classification, allozyme markers are type I markers 
because the protein they encode has known function. 
RAPD markers are type II markers because RAPD bands 
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are amplified from anonymous genomic regions via the 
polymerase chain reaction (PCR). Microsatellite markers 
are also type II markers unless they are associated with 
genes of known function. The significance of type I 
markers is becoming extremely important for aquacul-
ture genetics. Type I markers serve as a bridge for com-
parison and transfer of genomic information from a 
map-rich species into a relatively map-poor species. In 
general, type II markers such as RAPDs, microsatellites, 
and AFLPs are considered non-coding and therefore 
selectively neutral. Such markers have found widespread 
use in population genetic studies to characterize genetic 
divergence within and among the populations or species 
[12] 

2. ALLOZYME MARKERS 

Analysis of allozyme loci remained one of the most 
popular approaches in examining population genetics 
and stock structure questions in fishes [13]. The tech-
nique is rapid, relatively inexpensive and provides an 
independent estimate of level of variation within a 
population without an extensive morphological and 
quantitative survey [14]. Isohyets are structurally differ-
ent molecular forms of an enzyme system with qualita-
tively the same catalytic function encoded by one or 
more loci [15]. Isohyets, which are encoded by different 
alleles of the same gene locus, are designated as “al-
lozymes” or “alloenzymes” [16]. Amino acid differences 
in the polypeptide chain of the different allelic forms of 
an enzyme reflect changes in the underlying DNA se-
quence. Depending on the nature of the amino acid 
changes, the resulting protein products may migrate at 
different rates (due to charge and size differences) when 
run through a gel subjected to an electrical field. Differ-
ences in the relative frequencies of alleles are used to 
quantify genetic variation and distinguish among genetic 
units at the levels of populations, species, and higher 
taxonomic designations. Disadvantages associated with 
allozymes include occasional heterozygote deficiencies 
due to null (enzymatically inactive) alleles and sensitive 
to the amount as well as quality of tissue samples. In 
addition, some changes in DNA sequence are masked at 
the protein level, reducing the level of detectable varia-
tion. Some changes in nucleotide sequence do not 
change the encoded polypeptide (silent substitutions), 
and some polypeptide changes do not alter the mobility 
of the protein in an electrophoretic gel (synonymous 
substitutions). At present 75 isozyme systems represent-
ing several hundred genetic loci are known [17]. With 
the strength as codominant marker, ease of use, and low 
cost, the allozyme markers are popular in population 
structure and phylogenetic studies, though has limited 
role in aquaculture genetics. 

3. MITOCHONDRIAL DNA MARKERS 

Mitochondrial DNA (mtDNA) analysis is being increas-
ingly used in recent population and phylogenetic surveys 
of organisms. Studies of vertebrate species generally 
have shown that sequence divergence accumulates more 
rapidly in mitochondrial than in nuclear DNA [18]. This 
has been attributed to a faster mutation rate in mtDNA 
that may result from a lack of repair mechanisms during 
replication [19] and smaller effective population size due 
to the strict maternal inheritance of the haploid mito-
chondrial genome [20]. Due to its rapid rate of evolution, 
mtDNA analysis has proven useful in clarifying rela-
tionships among closely related species. Different parts 
of the mitochondrial genome are known to evolve at 
different rates [21]. Almost the entire mtDNA molecule 
is transcribed except for the approximately 1-kb control 
region (D-loop), where replication and transcription of 
the molecule is initiated. In general, non-coding seg-
ments like the D-loop exhibit elevated levels of variation 
relative to coding sequences such as the cytochrome b 
gene [22], presumably due to reduced functional con-
straints and relaxed selection pressure. The 16S rRNA 
gene in the mitochondrial genome is one of the slowest 
evolving genes [21] whereas rapidly evolving regions 
are control regions [23,24]. Due to non-Mendelian mode 
of inheritance, the mtDNA molecule is considered as a 
single locus [2]. In addition, because mtDNA is mater-
nally inherited, the phylogenies and population struc-
tures derived from mtDNA data may not reflect com-
plete picture of the nuclear genome if gender-biased mi-
gration or selection [20] or introgression [25] exists. 

Analyses of mtDNA markers have been used exten-
sively to investigate stock structure in a variety of verte-
brates including fishes [26-30], birds [31-34], mammals 
[35] and reptiles [36-39]. 

4. RANDOM AMPLIFIED  
POLYMORPHIC DNA (RAPD) 
MARKERS 

RAPD markers are the amplified products of less func-
tional part of the genome that do not strongly respond to 
selection on the phenotypic level. Such DNA regions 
may accumulate more nucleotide mutations with poten-
tial to assess inter-population genetic differentiation [40]. 
The amplification of genomic DNA by PCR with arbi-
trary nucleotide sequence primers, RAPD can detect 
high levels of DNA polymorphisms [41,42]. The tech-
nique detects coding as well as non-coding DNA se-
quences, and many of the most informative polymorphic 
sequences are those derived from repetitive (non-coding) 
DNA sequences in the genome [43]. Because 90% of the 
vertebrate nuclear genome is non-coding, it is presumed 
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that most of the amplified loci will be selectively neutral. 
RAPD loci are inherited as Mendelian markers in a 
dominant fashion and scored as present/absent. RAPDs 
have all the advantages of a PCR-based marker, with the 
added benefit that primers are commercially available 
and do not require prior knowledge of the target DNA 
sequence or genome organization. Other advantages of 
RAPDs include the ease with which a large number of 
loci and individuals can be screened simultaneously. 
Shortcomings of this type of marker include the diffi-
culty of demonstrating Mendelian inheritance of the loci 
and the inability to distinguish between homozygotes 
and heterozygotes. Analysis follows the assumption that 
populations under study follow Hardy-Weinberg expec-
tations. In addition, the presence of paralogous PCR 
product (different DNA regions which have the same 
lengths and thus appear to be a single locus), low repro-
ducibility due to the low annealing temperature used in 
the PCR amplification, have limited the application of 
this marker in fisheries science [44]. 

5. SINGLE NUCLEOTIDE  
POLYMORPHISM (SNP) 

Single nucleotide polymorphism (SNP) describes poly-
morphisms caused by point mutations that give rise to 
different alleles containing alternative bases at a given 
nucleotide position within a locus. SNPs are becoming a 
focal point in molecular marker development since they 
represent the most abundant polymorphism in any or-
ganism’s genome (coding and non-coding regions), 
adaptable to automation, and reveal hidden polymor-
phism not detected with other markers and methods [9, 
10]. Theoretically, a SNP within a locus can produce as 
many as two alleles, each containing one of two possible 
base pairs at the SNP site. Therefore, SNPs have been 
regarded as bi-allelic. SNP markers are inherited as 
co-dominant markers. Several approaches have been 
used for SNP discovery including SSCP analysis [45], 
heteroduplex analysis, and direct DNA sequencing. DNA 
sequencing has been the most accurate and most used 
approach for SNP discovery. SNPs are not without their 
limitations, however, might provide marginal additional, 
or even less, utility in some applications (e.g. relatedness) 
[9]. 

6. MICROSATELLITE MARKERS 

Microsatellites consist of multiple copies of tandemly 
arranged simple sequence repeats (SSRs) that range in 
size from 1 to 6 base pairs [e.g., ACA or GATA; 46,47]. 
Abundant in all species studied to date, microsatellite 
motifs have been estimated to occur as often as once 
every 10 kb in fishes [48]. Microsatellites tend to be 
evenly distributed in the genome on all chromosomes 

and all regions of the chromosome. However, data from 
whole genome sequencing has somewhat contradicted 
this statement. They have been found inside gene coding 
regions [49], introns, and in the non-gene sequences. 
Most microsatellite loci are relatively small, ranging 
from a few to a few hundred repeats. Regardless of spe-
cific mechanisms, changes in numbers of repeat units 
can result in a large number of alleles at each microsatel-
lite locus in a population. Microsatellites have been in-
herited in a Mendelian fashion as codominant markers. 
Microsatellites were found to be informative in several 
species, which showed almost no variation at other 
markers [50]. However, use of microsatellite markers 
involves a large amount of up-front investment and ef-
fort. Each microsatellite locus has to be identified and its 
flanking region sequenced to design of PCR primers. 
Due to polymerase slippage during replication, small 
size differences between alleles of a given microsatellite 
locus (as little as 2 bp in a locus comprised of 
di-nucleotide repeats) are possible. Microsatellites re-
cently have become an extremely popular marker type in 
a wide variety of genetic investigations. 

7. NEW DEVELOPING MARKERS IN 
FISHERIES AND AQUACULTURE 

Various type of DNA markers have been developed, in-
cluding Allozymes, microsatellites, RAPDs, mt-DNA 
and SNPs. These markers in fish populations have re-
vealed high levels of genetic variation distributed 
throughout the fish genome. A recent initiative has been 
made to accelerate efforts of DNA marker development, 
genome mapping and species identification. Major pro-
gress has been made toward Expressed Sequence Tags 
(EST) and DNA barcode development in several aqua-
culture species.  

8. EXPRESSED SEQUENCE TAGS (ESTs) 

Expressed sequence tags (ESTs) are single-pass se-
quences generated from random sequencing of cDNA 
clones [51]. The EST is use to identify genes and ana-
lyze their expression by means of expression profiling. It 
helps for rapid and valuable analysis of genes expressed 
in specific tissue types, under specific physiological 
conditions, or during specific developmental stages. 
ESTs offer the development of cDNA microarrays that 
allow analysis of differentially expressed genes to be 
determined in a systematic way [52], in addition to their 
great value in genome mapping [53]. For genome map-
ping, ESTs are most useful for linkage mapping and 
physical mapping in animal genomics such as those of 
cattle and swine, where radiation hybrid panels are 
available for mapping non-polymorphic DNA markers 
[54]. A radiation panel is composed of lines of hybrid 
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cells, with each hybrid cell containing small fragments 
of irradiated chromosomes of the species of interest. 
Typically, the cells from species of interest are radiated 
to break chromosomes into small fragments. The radi-
ated cells are unable to survive by themselves. However, 
the radiated cells can be fused with recipient cells to 
form hybrid cells retaining a short segment of the radi-
ated chromosome. Characterization of the chromosomal 
break points within many hybrid cell lines would allow 
linkage and physical mapping of markers and genes. In 
spite of its popularity in mammalian genome mapping 
[55, 56], radiation hybrid panels are not yet available for 
any aquaculture species. Development of radiation hy-
brid panels from aquaculture species is not expected in 
the near future, given the fact that physical mapping us-
ing BAC libraries can provide even higher resolution 
and the fact that BAC libraries are already available 
from several aquaculture species. Therefore, ESTs are 
useful for mapping in aquaculture species only if poly-
morphic ESTs are identified [57]. The value of EST re-
sources and applications of bioinformatics in aquaculture 
genetics/genomics is inevitable, and it is expected that 
various EST databases will serve as rich sources of ge-
nomic information not only for aquaculture geneticists, 
but also for aquaculture physiologists, immunologists 
and biotechnologists. 

9. DNA BARCODING 

The principle of conservation biology is the preservation 
and management of biodiversity. The two major prob-
lems to such an endeavor are the difficulty of developing 
an assessment of this diversity for prioritization of hot-
spots of species richness [58] and the identification of 
lineages particularly worthy, or in need, of preservation 
[59-64]. Understudied taxa are greatly susceptible to 
extinction [65], suggesting there is a conservation pen-
alty for our ignorance. Even there are millions of uni-
dentified and unknown species [66]. DNA barcodes, 
segments of approximately 600 base pairs of the mito-
chondrial gene cytochrome oxidase I (COI), have been 
proposed as a fast, efficient, and inexpensive technique 
to catalogue all biodiversity [67-70]. Barcoding is the 
use of universal polymerase chain reaction (PCR) prim-
ers to amplify and sequence an approximately 600-base- 
pair fragment of the COI gene. That portion of sequence 
is then compared using distance-based algorithms with 
an existing database of “known” sequences from speci-
mens previously identified by taxonomists. DNA bar-
codes from a small portion of the mitochondrial genome 
might seem like an effective and rapid way to assess at 
least some, perhaps minimal, level of biodiversity. And 
for groups that are already relatively well known, espe-
cially birds and mammals, molecular studies based on 

barcode sized sequences have revealed cryptic DNA 
lineages and may be helpful [70].  

10. APPLICATION OF MOLECULAR 
MARKERS SPECIES  
IDENTIFICATION 

The inter-specific genetic divergence established through 
species specific diagnostic molecular markers provides 
precise knowledge on phylogenetic relationships and 
also resolve taxonomic ambiguities [71-74]. These 
markers can be used to detect hybrid and introgressed or 
backcrossed individuals [75], distinguish early life his-
tory stage of morphologically close species [76] both in 
hatchery and in natural populations.  

Species-specific allozyme markers have been identi-
fied in many fishes [Tilapia: 72,77,78; Sciaenid: 73; 
Anguilla sp: 79; Mugilidae: 80] Specific diagnostic al-
lozyme loci were used for different species: apache trout 
(Oncorhynchus apache), cutthroat (Oncorhynchus clarki) 
and rainbow trout (Oncorhynchus mykiss) [81] and 
Gambusia affinis and G. holbrooki [82]. Allozyme 
markers have also been used for individual classification 
in cyprinid species Zacco pachycephalus and Z. platypus 
[83], in cyprinodontid species V. letourneuxi and V. his-
panica [84], in mullets Mullus barbatus and M. surmu-
letus [85] and hake species Merluccius australis and M. 
hubbsi [86]. 

Species-specific diagnostic RAPD fingerprints were 
generated in several fish species and their taxonomic 
relationship has been analyzed. The RAPD-PCR tech-
nique was employed to identify three endemic morpho-
logically similar Spanish species of Barbus: Barbus bo-
cagei, B. graellsii and B. sclateri that have similar mor-
phologies [87]. RAPD markers were characterized to 
identify five species of family Cyprinidae: Chon-
drostoma lemmingii, Leuciscus pyrenaicus, Barbus bo-
cagei, Barbus comizo, all endemic in the Iberian Penin-
sula, and introduced Alburnus alburnus [88], for study-
ing genetic relationship and diversities in four species of 
Indian Major carps (family Cyprinidae): rohu (Labeo 
rohita), kalbasu (L. calbasu), catla (Catla catla) and 
mrigal (Cirrhinus mrigala) [89], for identification of 
three eel species, A. japonica, A. australis and A. bicolor 
[90] and to estimate the population structure and phy-
logenetic relationships among the eight species of the 
genus Barbus [88].  

Large variation in mtDNA sequences among species 
can be utilized to produce species-specific markers. 
Since the structures of mitochondrial RNA genes (tRNA 
and rRNA) and the functional molecule of the 16S rRNA 
are highly conserved among the animal taxa that are 
related even distantly [21], change of even few nucleo-
tides in such a gene between closely related taxa might 
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indicate a substantial degree of genetic divergence [2]. 
Mt-DNA sequences have been used as useful marker for 
species-specific identification in many fishes [Tuna: 91; 
Billfish: 92 Snappers: 29, 93; Myctophidae: 94; Grey 
mullets: 95]. Comparable levels of divergence based on 
12S rRNA and 16S rRNA sequences have been reported 
for several recently diverged fish species [genus Ster-
noptyx: 96; Cyclothone sp: 97]. Sequence variation in 
the control region (D-loop) of the mitochondrial DNA 
(mtDNA) was examined to assess the genetic distinct-
iveness of the short-jaw cisco, Coregonus zenithicus [98] 
and revealed high similarity of C. zenithicus and the 
related species C. artedi, C. hoyi, C. kiyi, and C. clupea-
formis 

Identification of Astyanax altiparanae (Teleostei, 
Characidae) in the Iguacu River, Brazil, was done on the 
basis of mitochondrial DNA and RAPD markers [99]. 
Two species, Acipenser baeri, and A. stellatus, was 
studied using mitochondrial DNA (D-loop, cytochrome 
b (cyt-b) and ND5/6 genes) sequencing to determine 
whether traditionally defined subspecies correspond to 
taxonomic entities and conservation management units 
[100].  

11. GENETIC VARIATION AND  
POPULATION STRUCTURE STUDY 
IN NATURAL POPULATIONS 

Molecular markers provide direct assessment of pattern 
and distribution of genetic variation [5] thus helping in 
answering, “if the population is single unit or composed 
of subunits”. Several evolutionary forces affect the 
amount and distribution of genetic variation among 
populations and thereby population differentiation [101]. 
Geographic distance and physical barriers enhance re-
productive isolation by limiting the migration and in-
crease genetic differentiation between populations [102]. 
Impact of migration and gene flow on genetic differen-
tiation also depends upon effective size of receiving 
population and number of migrants. Increased computa-
tional power and mathematical models have enhanced 
the scope of conclusions that can be drawn out of geno-
type data generated through molecular markers. Some of 
the possibilities are assignment of migrants [103], de-
termination of genetic bottlenecks [104], effective 
breeding population estimates [105] besides genetic 
variation and differentiation estimations [106-108]. 
These markers have been extensively employed across 
various taxonomic groups [mosquito: 109; turtle: 39; 
amphibians: 7; panda: 110; five vertebrate classes in-
cluding fish, amphibian, reptiles, birds and mammals: 6]. 
Experiments on fish populations have significantly con-
tributed towards development of science of population 

genetics, models and analytical softwares.  
Population genetic structure has been investigated us-

ing allozyme markers in many fish species [Oncorhyn-
chus gorbuscha: 111; Tenualosa ilisha: 112 and Lal et al., 
113; Pagrus auratus: 114].  

Fifteen random primers were used to analyze the ge-
nome DNA of Jian carp (Cyprinus carpio var jian) by 
the RAPD technique [115]. Study on cold tolerant traits 
for common carp Cyprinus carpio was conducted by 
Chang et al. [116] and nine RAPD-PCR markers associ-
ated with cold tolerance of common carp were identified. 
The genetic diversity has been studied using RAPD 
markers in Carassius auratus [117], Epinephelus merra 
population [118] and Solea solea [119]. 

Genetic variation have been assessed with Allozyme 
and RAPD markers on  Mullus surmuletus L., [120] 
and three species of Pimelodidae catfish [121].  

Population structure has been examined using mi-
crosatellite markers of sockeye salmon [122], Chinook 
salmon [123] and Arctic charr populations [124]. Ge-
netic variation have been assessed using microsatellite 
genetic markers to identify the population structure of 
brook charr, Salvelinus fontinalis [125] and 14 popula-
tions of northern pike (Esox lucius) in the North Central 
United States and in six populations from Quebec, 
Alaska, Siberia, and Finland [126].  

Based on five microsatellite loci, the genetic structure 
of endangered fish species Anaecypris hispanica was 
studied in eight distinct populations in the Portuguese 
Guadiana drainage to determine levels of genetic varia-
tion within and among populations and suggested impli-
cations for conservation of the species [127].  

Combination of allozyme and microsatellites was used 
to investigate genetic divergence in Salmo trutta [128] 
and Salmo salar [129].  

Alarcon et al. [130] represents population genetic 
analysis of gilthead sea bream (Sparus aurata) and 
Kanda [131], Kanda and Allendorf [132] examine popu-
lation genetic structure of bull trout Salvelinus confluen-
tus using a combination of allozyme, microsatellite and 
mtDNA variation. 

Genetic variability of Salmo trutta [133] and Sparus 
aurata [130] was evaluated on the basis of Allozyme, 
Microsatellites and RAPD markers.  

Patterns of population subdivision and the relationship 
between gene flow and geographical distance in the 
tropical estuarine fish Lates calcarifer (Centropomidae) 
were investigated using mtDNA control region se-
quences [134].  

Allozymes and mtDNA sequences were assessed to 
evaluate the genetic variability in small marine fish Po-
matoschistus microps [135], brown trout [136] and 
Macquaria novemaculeata [137]. 



T. Chauhan et al. / Advances in Bioscience and Biotechnology 1 (2010) 281-291 

Copyright © 2010 SciRes.                                                                    ABB 

286 

12. COMPARISON OF GENETIC  
VARIATION BETWEEN WILD AND 
HATCHERY POPULATIONS  

Molecular markers also find application in aquaculture 
to assess loss of genetic variation in hatcheries through, 
comparison of variation estimates between hatchery 
stocks and wild counterparts. The information is useful 
obtained in monitoring farmed stocks against inbreeding 
loss and to plan genetic up gradation programmes. A 
major aspect such studies address is concerned with the 
assessment of farm escapes into the natural population 
and introgression of wild genome.  

Brook trout Salvelinus fontinalis from ustocked waters, 
naturalized lakes, and hatcheries in New York and 
Pennsylvania were analyzed electrophoretically for al-
lozyme expression [138]. All wild-unstocked samples 
were highly differentiated populations and significantly 
different from each other and from hatchery samples.  

Genetic diversity was investigated using microsatel-
lites between farmed and wild populations of Atlantic 
salmon [139]. Farmed salmon showed less genetic vari-
ability than natural source population in terms of allelic 
diversity.  

Variation in allozymes and three microsatellite loci 
was assessed in populations of wild and cultured stocks 
of Sparus aurata [140] and Sparius auratus [130]. The 
microsatellite heterozygosity values were high in wild, 
but lower in the cultured samples. 

13. ASSESSMENT OF DEMOGRAPHIC 
BOTTLENECK IN NATURAL  
POPULATION 

Demographic bottlenecks occur when populations ex-
perience severe, temporary reduction in size. Because 
bottlenecks may influence the distribution of genetic 
variation within and among populations, the genetic ef-
fects of reductions in population size have been studied 
extensively by evolutionary biologist [141,142].  

It may often be necessary to perform genetic analyses 
of temporal replicates to estimate the significance of 
spatial variation independently from that of temporal 
variation in order to ensure the reliability of estimates of 
a defined population structure. Such estimates provide 
understanding about changes in genetic variation, effec-
tive population size and other historical bottlenecks and 
can be extrapolated to define evolutionary trends of spe-
cies. Today various models are available that can resolve 
bottlenecks or effective population size changes through 
use of heterozygosity excess, linkage disequilibrium etc. 
However, estimates through temporal changes are con-
sidered more accurate. Analysis of temporal changes is 
limited due to lack of historical data as well as samples. 

Therefore, such studies are limited and mostly use ar-
chived samples, wherever available. In vertebrates, a 
limited number of studies have specifically assessed the 
temporal changes in genetic variation for more than one 
generation.  

Microsatellite DNA markers have been used to assess 
bottlenecks in many fish species. A microsatellite analy-
sis of DNA was performed, from archived scales to 
compare the population structure among four sympatric 
landlocked populations of Atlantic salmon [143], Atlan-
tic salmon [144], European hake [145] and steelhead 
from [146].  

Larson et al. [147] recommended close monitoring of 
negative effects on sea otter population based on the 
conclusion from mtDNA, D-loop, microsatellite vari-
ability comparison between prefur trade and present 
population. Prefur trade DNA samples were obtained 
from excavated bones.  

14. PROPOGATION ASSISTED REHA-
BILITATION PROGRAMMES 

Habitat alterations and over harvesting have contributed 
to the decline or disappearance of numerous natural 
populations. In addition, reinforcement programs of wild 
populations based on releases of hatchery reared fish of 
non-native origin compromise the conservation of rem-
nant native trout resources. Effect of these programmes 
through releases in natural populations has been studies 
in many fishes through molecular markers.  

Beaudou et al. [148] found through allozyme poly-
morphism that brown trout (Salmo trutta L.) in the 
Abatesco river basin on the eastern coast of Corsica res-
toration was mainly due to the populations of the tribu-
taries, which had been less disturbed by the spate. This 
study has shown that the wild population was primarily 
restored by the surviving individuals, particularly those 
from the tributaries that escaped the spate.  

To assess the levels of gene introgression from cul-
tured to wild brown trout populations, four officially 
stocked locations and four non-stocked locations were 
sampled for one to three consecutive years and com-
pared to the hatchery strain used for stocking. Allozyme 
analysis for 25 loci included providing allelic markers 
distinguishing hatchery stocks and native populations 
[133]. Different levels of hybridization and introgression 
with hatchery individuals were detected in stocked 
drainages as well as in protected locations.  

The foregoing review incorporates the wide spectrum 
of information that the molecular markers provide. The 
literature indicates that different markers have been em-
ployed depending upon the question to be answered. The 
importance of the research on molecular markers im-
proved due to enhanced computational power, large data 



T. Chauhan et al. / Advances in Bioscience and Biotechnology 1 (2010) 281-291 

Copyright © 2010 SciRes.                                                                    ABB 

287

available that has enabled researchers to derive various 
mathematical estimators. Such innovations provide in-
sight concerning the population bottleneck, migration 
patterns besides the genetic structure in natural popula-
tions. 
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