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Abstract 
 
A Nim-type computer game of strategy on plane is described in this paper. It is demonstrated that winning 
strategies of this two-person game are determined by a system of equations with two unknown integer se-
quences. Properties of winning points/states are discussed and an O(loglogn) algorithm for the winning states 
is provided. Two varieties of the Game are also introduced and their winning strategies are analyzed. 
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1. Introduction 
 
A Nim game is probably one of the most ancient of all 
known games. There are several varieties of Nim: cate-
gorical games in which no draw is possible; futile games 
which permit a tie (draw); Grundy’s game is a special 
type of Nim. The game is played by the following rules: 
given a heap of size n, two players alternately select a 
sub-heap and divide it into two unequal parts. A player 
loses if he or she cannot make a legal move. The Misere 
form of Nim is a version in which the player taking the 
last piece is the loser, [1].  

In Fibonacci Nim, two players deal with a pile of n 
stones, where n>1. The first player may remove any 
number of stones, provided that at least one stone is left. 
Players alternate moves under the condition that if one 
player removed x stones, then another one may remove 
at most 2x stones. Some of them are described in [1-5]. 

Several years ago the author of this paper introduced a 
Nim game with a heap of N stones, where each player is 
allowed to take at most m stones, provided that he/she 
does not repeat the last move of her/his opponent (“do 
not be a copycat”). The player taking the last stone is the 
winner. However, a player loses if he/she cannot make a 
feasible move. Winning strategies for an arbitrary m>1 
were provided by the author of this paper and imple-
mented in [6] and [7] by his graduate students. 

In the late 1980’s the author also introduced a variety 
of the Nim-game that is discussed in this paper. In the 
paper we study properties of winning points, provide an 
algorithm for direct computation of winning points and 
analyze its complexity. It is demonstrated that the algo-
rithm has O(loglogn) time complexity and does not re-
quire any storage, save a couple of numbers that are 
pre-computed at the beginning of the game. Preliminary 
results of this paper are published in [15]. 
 
2. Two-player Game on Plane 
 
1) The Game starts after two distinct non-negative inte-
gers  0 0,S L  are selected randomly; here. 

01 p S  < ; ;    (1)  0 0qS L 0: ; :S S L L  0

Remark 1: In the following discussion (S, L) is a point 
on a two-dimensional plane with integer coordinates; all 
further points are located in the positive quadrant of the 
plane; p and q determine a “level” of the Game. It is as-
sumed that 0  S <L holds, otherwise we swap the co-
ordinates. 

2) Three types of moves that allowed are: horizontal, 
vertical and diagonal. 

The players on their move may decrease either 
a). The first coordinate on an integer t, (S, L) (S – t, L), 

{horizontal move, h-move, for short} or  
b). The second coordinate on an integer u, *© Boris S. Verkhovsky April, 2001 
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(S, L) (S, L – u), {vertical move, v-move, for short} or 
c). Both coordinates on the same integer x, 

(S, L) (S – x, L – x), {diagonal move, d-move, for short}; 
The first player that reaches (0,0)-point on her/his 

move is the winner of the Game. An analogous Nim 
game was introduced by Wythoff [14]. Whytoff’ game is 
played with two heaps of counters: a player is allowed to 
take any number from either heap or the same number 
from both. The player taking the last counter wins. 

As in every two-person game with complete informa-
tion, this Game has a winning strategy for one of the 
players [8-10]. In the following discussion we consider 
that a Human (Hugo) plays against a Computer (Cora). 

All points can be divided onto two classes: winning 
points for Cora and losing points for Cora. It is clear that 
a winning point for Cora is a losing point for Hugo, and 
vice versa. 

Definition 1: We will say that the Game is in a win-
ning state if after Cora’s move it is in a winning point. 

Let’s denote Cora’s winning states as , for . 
Here = (0, 0).  

nw 0n 

0

Example 1: The 1 = (1, 2) point is a Cora’s winning 
point, because Hugo cannot reach 0 = (0, 0) point on 
his move. The 2 = (3, 5) is another winning point for 
Cora, because on his move Hugo cannot reach either 

= (0,0) point or = (1,2) point. 

w
w

w

w
w

0w 1

On the other hand, after any move by Hugo, Cora 
reaches either (0,0) or (1,2). 
 
3. Seven Properties of Winning Points 
 
P1. It is easy to see that if (c,d) is a winning point, then 
(d,c) is also a winning point. 

P2. With exception of the (0,0)-point, in all other win-
ning points . Indeed, let (c,c) be a winning point 
for Cora. Then Hugo can reach the (0,0)-point using a 
diagonal move, {via subtracting the same y = c from 
both coordinates}. 

c d

P3. If the Game is in a winning point w after Cora’s 
move, then there is no move by which Hugo can reach 
another winning state . On the other hand, if the Game 
is in a losing point l, then there exists at least one move 
that transforms the Game into a winning state. For ex-
ample, if after Hugo’s move the Game is in the state (7, 
9), then there are two winning moves for Cora: (4,7) and 
(3,5).  

w

In general, let W be a set of all winning points and L 
be a set of all losing points. Then after one move the 
Game is transformed from W to L. However, if the Game 
is in L, then there exists at least one move that transforms 
the game into W. Formally it means that, if ( , )S L W , 
then for any positive integer u,  or ( , )L W S u

( , )S L u W   or ( , )S u L u W  

kw ,k kc d

i i k kd c d c

. 
P4. Proposition 1: There are no two winning points 
= ( ) and = ( ) such that iw ,i ic d

r                 (2) 

where r is an integer. 
Proof: Let's assume that for i < k Equation (2) holds 

and i: kv d d 

iw

iw
,i ic d

 Then after Cora’s move  Hugo can 
reach  via a diagonal move, i.e., by subtracting from 
both coordinates the same integer v.  

kw

P5. Let  and  be two distinct winning points. 
Then all ,  are distinct integers, otherwise 
Hugo would be able to transform the Game into another 
winning state.  

kw
,k kc d

 ,S L 

n nd c n

P6. Proposition 2: Let . Then for every 
n=1,2,…holds 

W

 

)m

:

.               (3) 

Proof: Let’s assume that there exists at least one win-
ning point , for which , and m is 
the smallest integer; and let 

( ,mc d m md c m 

m ms d c
)

 . 
Consider ( ,s s : if s < m, then  since by 

assumption m is the smallest.  
c d s sd c s 

Therefore, m m s sd c sd c   

m sc
, 

or m sd d c  

m sd c c
.  

Let :z dm s   

)

. Then there is a diagonal 
move that transforms one winning  point into 
another winning point ( ,

( , )m mc d

s sc d , which contradicts with 
the definition of a winning point. Therefore, 1s m   
is impossible. 

Let’s now assume that . 1s m 
1m kd dObserve that   , otherwise for k 1m   

. k mc c

1md
Consider Hugo’s move ( , , 1)m mc d 

mc mwhere  

m mc d



1)

. But in this case Cora cannot 
make either a horizontal move or a diagonal move that 
transforms the Game into a winning state. The latter im-
plies that ( ,   is a winning state, which in its 
turn contradicts the earlier assumption that  is 
the winning state. Q.E.D. 

( , )m mc d

P7. Theorem 1: {Fundamental property of the win-
ning points}: 

a) Let 01 x 2;   and for all   0k 

  2: 1 / 2k k kx x x 11  

k

 ;            (4) 

b) Let limG x
k

 ; 
c) (S, L) is a winning point if  

 S L S G                  (5) 

Copyright © 2010 SciRes.                                                                             IJCNS 
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StepL6: :n nb a n  . For the sake of simplicity of further discussion, we 
assume that in every point (c,d) c<d. Then the conditions (9)-(11) also hold for k = n.  Q.E.D. 

Applying the Steps L1-L6, we sequentially generate 
the winning points 

 
4. Game in Progress: An Example 

W={(1,2); (3,5); (4,7); (6,10); (8,13); (9,15); (11,18); 
(12,20); (14,23); (16,26); (17,28); (19,31); (21,34); 
(22,36); (24,39); (25,41); (27,44);…}, 

 
Let (S0,L0) = (29,51) be a randomly generated initial point; 

Hugo makes the 1st move; in italics are shown Hugo’s 
moves; in bold are Cora’s winning points Table 1. i.e.,  17 17,a b = (27,44). 

Therefore from the StepL3 J = {11, 12, 13, 14, 15, 16, 
17}, and u = 29. 

 
5. System of Equations with Infinite Sequences Then  18 18,a b = (29,47). 
  
Proposition 3: 1). Let A:={ na }; B:={ nb } be monotone 
increasing sequences of positive integers; here 1 1a   
and n = 1,2,…; 

6. Alternative Formulation of L1-L6 Algo-
rithm 

 2). Let the sequences A and B satisfy the following 
system of equations: W1: 

B A                    (6) 

B A N                    (7) 

B A N                    (8) 

where in (7) ={ , B A }n nb a
i.e.  is a sequence of pair-wise differences of 
corresponding elements of B and A, and N is the set of all 
natural numbers {1,2,3,…}. Then the system of Equa-
tions (6)-(8) with unknown sequences A and B has a so-
lution. 

B A

Proof {by induction}: The following algorithm is a 
constructive proof that a solution of (6)-(8) exists. 
Indeed, the sequences A={ n  can be itera-
tively generated using an analogue of the Sieve of 
Eratosthenes: 

}; { }na B b

StepL1: ;  1 1, : (1,2a b 
: {A 

)

1

StepL2: Let }; 1k

..,b
1 2 1

1 1 2 1k  be sequences such that for every 
k<n the following conditions hold: 

, ,.., ka a a 

:kB    , ,b b

1 2 .. ka a a    ; 

1 2 .. kb b b    1



              (9) 

1 1k kA B                 (10) 

and for every  1 1i k  

i ib a i                    (11) 

StepL3: Let J = {j: ;  1

StepL4: Compute an integer u := minx, where x >
1}j nb a  

1na   
and for all  x ; i J

:a 
ib

StepL5: u;  n

1 : 1;a   1 : 2;c   1 : 1;j   

W2: for n=1,2,… do  1 :na  1;nc 
W3: if 1 1nn ja a  n 

:
 

then 1nc   1;cn   1n :j  ;nj  
else  1 :nc  2;nc   1 :nj  1;nj   

Here, n  stands for the largest index k of k  that 
was used in , and n  stands for the largest number 
of the set {1,2,...,k} which we cover for 

j b
{ }na c

andj ja b  for 
j n  [11]. 

 
7. Sequences A, B and Winning Points 
 
Theorem 2: For every integer  1n 

 : ,n n nw a b                (12) 

Proof: The following sequence of steps is a construc-
tive proof of Theorem1. Indeed, let  

:m L S                   (13) 

T1. If mS a , then by (3), (7) and (13) mb L ; 
{Hugo is now in the winning point}. 

T2. If m , then Cora selects y := S – am; S := S – y 
and L := L – y; since S > am implies that L > bm. Indeed 

S a

m am mL S m b  
S a

  . 
T3. {If m , then Cora finds either an index k < m 

such that ka S  or an index i < m such that ib S }. 
T3a. If there exists an integer k < m such that ka S , 

then we select : kL b ; {both m  and kS a a S  
imply that k < m and k . Indeed, an assumption that 

 leads to a contradiction, because  implies 
that S <

L  b
k m m  k

ma ak , but ka S }. 

 
Table1 

Player Hugo Cora Hugo Cora Hugo Cora 

Examples of moves (23,51) (14,23) (6,15) (6,10) (4,6) (3,5) 

Type of move h-move v-move d-move v-move v-move d-move 
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T3b. If there exists an integer i < t such that ib S , 
then we assign ; ; {since  implies 
that : }, [6]. 

:L S
i ia b 

: iS a
S L

ib S
ia L

 
8. Iterative Algorithm and its Complexity 
 
In applications for computer games, an iterative compu-
tation of na  for a large n is time consuming, 
since its time complexity T(n) and space complexities 
S(n) are both of order O(n). For instance, if , 
then we need to generate and store one trillion pairs of 
integers. A brief analysis shows that this is well beyond 
of current size of memory for PC. A more efficient algo-
rithm is described below. 

andn b

)

n

t

t

1210n 

 
9. Direct Computation of an and bn 
 
To decrease the complexity of computation of an and bn 
and avoid excessive storage, let's find a closed-form ex-
pression for := v(n). Then from (11)  na

:nb  v(n)+n               (14) 

Conjecture 1: (properties of winning points): 
C1. ; / (ma m z o m 

and              (15) lim /m
m

a m z




where z is a constant. 
C2. For every integer  1n 

na nz                     (16) 

The property (16) and the asymptotic behavior (15) 
are observed in numerous computer experiments.  

Conjecture 2: For large n 

/nb a = z + o(n)               (17) 

Remark 2: The Conjecture 2 is also based on extensive 
computer experiments. 

Theorem 3: Conjecture 1 implies that z is an irrational 
number.  

Proof: An assumption that z is a rational number leads 
to contradiction. Assume that z = q/s, where both q and s 
are relatively prime integers. Then there exists an infinite 
number of pairs  and  such that = . Indeed, 
select 

na rb na rb

n := (q+s)st and r := qst           (18) 

Then for the integer t = 1,2,3,… it follows from (16) 
and (14) that  

 na q s q                (19) 

and ,            (20) 2
rb q t qs 

which is a violation of the conditions (6) and (10). 

Conjecture 3: z=g+1, where g is a golden ratio, 

i.e.,  5 1 / 2g               (21) 

The property (21) is observed in numerous computer 
experiments. It plausibility follows from the following: 
Since for a large n = nz + o(n) na

and = (z+1)n + o(n)         (22) nb

then it follows from (17) and (22) that  

/nb an   (z+1)/z  z          (23) 

Then for large n's, z is a positive solution of the equa-
tion.  

2 1 0x x                (24) 
i.e., z  ( 5 1 )/2, {the value of the golden ratio +1}. 

Let the Game be in the state (S, L) after Hugo’s move 
and let 

m := (13). L S

Then the Game is implicitly in one of five states 
{where by convention holds that S < L}: 

A. (S, L) = ( ), {the game is in a winning state 
for Hugo};  

,m ma b

B. (S, L) = ( ), where ; ,i ja a
,a b

i j
C. (S, L) = ( ); where either  or ; i j

,b a
i j i j

D. (S, L) = ( ), i j i j ;  
E. (S, L) = ( ), ,b bi j i j . 
However, from the condition (11) alone we do not know 

yet in which of the states A, B, C, D or E the Game is. 
 
10. Algorithm for Winning Points (AWP) 
 
A1: Let  m := L S ;  

A2: Using (16) and (21), compute ;  m

if m

a
a S  then by (11) ; {Hugo is now in the 

winning state }; 
mb L

mw
aA3: if  then do y := ; S :=mS  mS a S y  and 

L := L y ; 
A4: if there exists an integer k < m such that ka S  

then : ;kL b   
else find an integer i < m such that ; ib S :L S ; 

: iS a .  
 
11. Validation of AWP 
 
V1. In A3, S > am implies that L > bm. 
  Then m mL S m a m b    

S a
; 

V2. If m , then there exists either an integer k < m 
such that ka S  or an integer i < m such that ib S ; 

V3. Both mS a  and k  imply that k < m and 

k . Indeed, an assumption that  leads to a 
contradiction, because 

a S

m k
L b k m

  implies that S< m ka a , 
but ka S ; 
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V4. In A4,  implies that . Hence 
. 

ib S

S 

ia L
i ia b S L  
Example 2 {case m }: Let the Game be in the 

state (S, L) = (19, 26) after the Hugo’s move. 
a

Because m = 26–19 = 7, compute =11 
and 18.  

7a  7( 1)g   
7

Since 11 < 19 and 18 < 26, then Cora moves  
b 

S := S – m = S – 7 and L := L – m = L – 7; 
Example 3 {case }: Let now after Hugo’s move 

(S, L) = (15, 32). 
mS a

Since m = 32–15 =17, compute =27.  17

Since 17 , but 15 = , then Cora’s move is 
L := 15 and S := L – 6 = 9. 

a  17( 1)g   
15 a 6b

Example 4: {case }: Let (S, L) = (14, 29) after 
Hugo’s move. 

mS a

Since m = 15, compute 15a  15( 1)g    =24. 
Since , but 14 = , then Cora moves  15

L := 29 – 6 = 23. 
14a 

b
9a

9

Example 5: {case m }: Then , and the 
game is in the winning state for Hugo. 


a S mb  L

 
12. Fibonacci Properties of Winning Points 
 
1. If n is an odd Fibonacci number, i.e., if 2 1kn F  , 
then  

na = 2kF                 (25) 

2. If n is an even Fibonacci number, i.e., if 2kn F , 
then  

na =               (26) 2 1 1kF  

Indeed, ;  
3 5 7 9

3; 8; 21; 55F F F Fa a a a   
1; 4; 12;a a a   33a But  . 

2 4 6F F F 8F

 
13. Solution of Equation with Unknown Index 
 
On the step A4 of the algorithm we must solve either 
equation k  or i  in order to respectively 
determine the indices k or i. In order to determine the 
indices we must solve either the equation  

a S b S

ka S                  (27) 

or the equation  

ib S                   (28) 

This can be done by using (16) 

ka = =S             (29) ( 1)k g  

S

I 1) Find the smallest integer  satisfying the ine-
quality kg > S; if  then  

*k
*k g S   

*k= ; ;             (30) k *k
a 

I 2) If  is the smallest integer satisfying the ine-

quality (g+1) > S 

*i

*i
then 

i =  and             (31) *i *i
b S

If (16) has an integer solution, then from (29) we find 
the smallest integer k =  satisfying the inequality *k

*k (g+1)>S               (32) 

Otherwise, {if ( 1)k g    S } we solve the equation 

ib S .  
Then from (14) and (29) 

ib  ( 1)i g    + i = S           (33) 

Example 6: Find an integer index k such that 
102ka  . Then *k  64 is the smallest integer for which 

holds 
*k  102/(g+1) {see (29)}. 

 
14. Required Accuracy for g 
 
It is assumed that in the Examples 3-6 and 8 we know the 
exact value of an irrational number g. However, to find 
an integer solution of (17) for an arbitrary large index k 
or i we must compute g with a high precision. Let  

2
1 2/10 /10 .. /10 ..n

ng d d d         (34) 

where  is the i-th decimal digit of g id
and  

g(t):= = 10 /10t tg  
2/10 /10d d1 2 .. /10t

td         (35) 

i.e., g(t) contains only the first t decimal digits of g. 
Theorem 4: Let 10kn  . an = S           (36) 

Then for all  also holds that kt 
   :t
na ng t    = S.            (37) 

 
15. O(loglogn) Time Complexity for Win-

ning Strategies 
 
It is easy to verify that a positive root of (24) can be 
computed using a Newton iterative process 

   2
1 : 1 / 2r r rx x x 1   , 

Where 

0 : 1.618x                 (38) 

The process (38) has the following properties: 
a).It converges to (1 5 )/2, i.e., for large r  

rx   (1 5 )/2+ r ,          (39) 

where r  is a degree of accuracy (error) after r iterations. 

Copyright © 2010 SciRes.                                                                              IJCNS 
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b). The error r  satisfies the inequality 
2

0 0

r
r

r x g    , 

i.e., it has a quadratic rate of convergence, and 
3

0 0.001 10   , [12].           (40) 

Then from the inequality 3 210 10
r k  

3 2r k 



n

 we derive that 

              (41) 

Thus 

 2log / 3r k      2 10 10 10log log /3 log logn         

(42) 

The inequalities (42) are derived from (36), (40) and 
(41). Then from analysis of (37) it follows that the time 
complexity T(n) for solution of (16) is equal  

T(n)=O(loglogn). 

The Table 2 shows how many Newton iterations r(n) 
are required to compute  as a function of n. n

In addition, we do not need to store any winning 
points. Instead, as it is demonstrated below, only a single 
real value of 

a

*g  must be stored. 
However, =10364( 1)g    102 . Hence the equa-

tion  does not have a solution. On the other 
hand, i  does have a solution. Indeed, from (33) 
it follows that i 102/(g+2)=38.961, i.e., =39. And 
finally . 

102ka 
b 

39(g

102


2) 102   

*i

 
16. Solution of Index Equations Revisited 
 
R0.1. Let S := s; L := l; where both integers (s, l) are gen-
erated randomly at the beginning of the Game; let t :=L – S; 

R0.2. r := ; using the iterative process (36), 
compute  

log t 

rx ;                 (43) 

R0.3. Let  

*g := rx ;               (44) 

{during the entire Game use *g  as an approximation of 
g in the Equations (29) or (33)}; 

R1. Find the smallest integer  satisfying the ine-
quality 

*k

k *g >S                (45) 

if   *
*k g S   

then k= ; ;         (46) *k *k
a  S

R2. If  is the smallest integer satisfying the ine-
quality  

*i

*i  ( *g +1) > S             (47) 

Table 2. Logarithmic growth of r(n). 

10kn   [0,3] [4,6] [7,12] [13,24] 

r(n) 0 1 2 3 

 

then i =  and            (48) *i *i
b S

Example 7: Let at the beginning of the Game s := 2,718,282 
and l := 3,141,593. 

Then m :=L – S = l – s = 323,311< . From the ine-
quality 6 , {see (40) and (41)}, it follows that r =1. 
Hence, only one iteration of (38) is necessary to find 

610
3 2r 

*g  
with required accuracy.  
 
17. The Algorithm 
 
It is assumed that Hugo makes the first move by ran-
domly generating positive integers  and  such 
that 

0S 0L

 0 01L e S Q               (49) 

where e is Euler number, {see Remark3 below}; 
V: m := L – S; 
if m = 0 then z := S; S := S – z; L := L – z; {end of the Game: 
Cora is the winner}; 
else 

10: log ;t m    ; 

 2: log / 3r t    ;  0 : 1.618;x 

for k from 0 to 1r    
do  

2
1 : ( 1) / (2 1)k k kx x x    ; 

: rG x ; ; :ma Gm   

if S = m  then the Game is already in the winning state 
for Hugo; 

a

{Nevertheless Cora might decide to continue the 
Game hoping that Hugo will make a mistake, i.e., he will 
“miss the point”}; 
if L > 3 then with prob = 1/2 c: = 1 or 2; :L L c  }; 
goto V; 
else if  mS a

z Sthen : ; : ; :ma L L z S S z;       goto V; else  

: /k S G    ;               (50) 

kG S   then 

: ; :y m k L L y;               (51) 

else : / ( 1)i S G    ; ; :ia Gi   

: ; : ; : ; :iu L a temp S S L u L temp      ; goto V. 
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

0S

Remark 3: In order to assure that the first randomly 
generated point is not a winning point, it is sufficient to 
select such  and  that  0S 0L

 0 0 0 ( 1)S L S g              (52) 

That is guaranteed by (47) and (15), since  

0 01.718 1.618L S  . 

 
18. Randomization 
 
Let a  and  be the number of integers on interval [1, 
M] such that  and 1  respectively, 
i.e., + =M. 

n

n

bn
1 ka M  kb M 

a

Then 
bn

  / ( 1)an M M g   

and                      (53)   2/ ( 1)bn M M g 

Hence, if a pair of integers (S, L) is generated ran-
domly, then it is more likely that they will be elements of 
the sequence A, than the sequence B.  

Remark 4: The sequence of the operations (50) and (51) 
in the Algorithm is based on the observation that for 
every M, .    a bn M n M

That is why on the A4 we first check whether there is 
a solution of  and only then whether there is a 
solution of i . This sequence of verifications de-
creases the average complexity of the algorithm. Another 
approach is to randomize the sequence of these operators: 
Namely, with the probability g = 0.618 to execute (50) 
and then, if necessary, to execute (51). And with the 
probability g = 0.382 to execute (51) and only then, if 
necessary, to execute (50). 

ka S
b S

Example 8: If M = 50, then  50 31an   and 
. Thus, if u is an arbitrary selected integer on 

the interval [1, 50], then with probability g there exists 
an index k such that k , and with probability 

 50 19bn 

a u 2g = 
0.382 there exists an index i such that . ib u
 
19. The First Move 
 
Without a third independent party, it seems impossible to 
introduce a random and trustworthy mechanism for de-
ciding whose move is the first. As a palliative solution, 
the following procedure is suggested: immediately, after 
the first point ( 0 , 0 ) is generated, Hugo has a short 
period of time (say, a couple of seconds) to decide who 
must make the first move. One way to preclude Hugo 
from cheating and to introduce more variety to the Game, 
select Q := 2Q on every consecutive run of the Game 

with the same player. More detailed analysis of possible 
alternatives is beyond the scope of this paper. 

S L

 
20. Varieties of Nim-Game on Plane 
 
Of many possible varieties I consider only two: the Attri-
tion game and the Flip-Flop game. 

In both games the moves are the same as in the Game 
described above in this paper. Only the goals are differ-
ent. 

Attrition game: The first player that reaches point (0, 
0) is a loser. 

Flip-flop game: Only once during the Game players 
on their move can change the goal of the Game if  

2 7L S                 (54) 

 
21. Winning Strategies 
 
Let the winning points k  in the Attrition game. It is 
clear that both 1 = (0,1) and 2 = (2,2) are the win-
ning points for Cora. Indeed, after Cora’s move (0, 1) 
Hugo is losing the Game. The same is with (2,2): after 
that move Hugo is forced to reach (0,0), because Hugo 
can make either (0,2) or (1,1) or (1,2) move. Then Cora 
moves (0,1) and Hugo has no other choice but move 
(0,0). 

w
w w

Winning points kf  in Flip-Flop game: Although it 
seems confusing, actually the winning points for the 
Flip-Flop Game are very simple. It follows from an ob-
servation that for all  2k

k w = ,               (55) kw

i.e., 2 w   (3,5); 3 w   (4,7); and only  and 1 (2, 2)w 
0 w (1,0) . 

Hence, if the Game is in the attrition phase, then  

k kf w , otherwise k kf w .       (56) 

From the (56) winning strategy it follows that “Only 
once during the Game” — requirement is inessential and 
it is introduced for a psychological reason only. The 
Game can be further modified if the flipper must pay for 
every flip, and the winner gets the “bank”. 

After this paper was completed, the author discovered 
that the Game has been described in [13,14]. 
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