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Abstract 
 
Threaded Algebraic Space Time (TAST) codes developed by Gamal et al. is a powerful class of space time 
codes in which different layers are combined and separated by appropriate Diophantine number . In this 
paper we introduce a technique of block layering in TAST codes, in which a series of layers (we call it Block 
layers) has more than one transmit antenna at the same time instant. As a result we use fewer layers (Dio-
phantine numbers) for the four transmit antennas scheme, which enhances the coding gain of our proposed 
scheme. In each block layer we incorporate Alamouti’s transmit diversity scheme which decreases the de-
coding complexity. The proposed code achieves a normalized rate of 2 symbol/s. Simulation result shows 
that this type of codes outperforms TAST codes in certain scenarios. 
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1. Introduction 
 
It is well know that wireless communications systems over 
Rayleigh fading channels can benefit from the simultane-
ous use of multiple antennas at both the transmitter and 
receiver to convey information either more reliably or at 
higher rates than would be possible for single antenna sys-
tem. The remarkable paper of Alamouti [1] which is con-
sidered a benchmark in space time coding, is based on or-
thogonal design for two transmit antennas offer full diver-
sity and simple linear maximum likelihood (ML) detectors 
that decouple the transmitted symbols.  

Unfortunately, the Hurwitz-radon theorem showed that 
square complex linear processing orthogonal designs can-
not achieve full diversity and full rate simultaneously for 
more than two antennas. Later on such type of proof has 
also been shown in [2]. In [3] Jaffarkhani et al. has gener-
alized the scheme of orthogonal STBC codes construction 
for more than two transmit antennas by compromising ei-
ther the diversity or coding gain. Some researchers have 
also introduced codes with higher rates and better per-
formances by sacrificing the simplicity of ML decoding 
and thus orthogonality. In [4] a layering concept in STBC, 
called vertical Bell Lab layered space-time (V-BLAST), 
was introduced, but the main draw back of this code was its 
inflexibility with number of antennas.  

Extending the work of layering concept of [4], H. Gamal 
et al. [5] introduced a new architecture in STBC codes, 

known as Threaded Space Time (TST) codes. In this ar-
chitecture, independent codes streams are distributed 
throughout the transmission resource array in different 
threads. Of course the efficient separation of individual 
layers from one another was the primary objectives in the 
design of such codes. The main draw back of this type of 
code is the complexity of ML decoder which rises expo-
nentially with number of transmit antennas. 

Threaded Algebraic codes [5] based on Diophantine ap-
proximation theory and number field were further general-
ized in [6,7] for arbitrary number of transmit and receive 
antennas, retaining full rate and maximum diversity. Such 
types of high rate STBC codes have also been constructed 
using division algebras [8,9]. 

In this paper we propose a technique of construction 
TAST codes within the framework of [6]. The proposed 
codes are flexible both in term of usage of antennas (at 
both ends) and Diophantine numbers. We use term AF 
TAST code for being flexible in term of antennas and DNF 
TAST code for being flexible in term of Diophantine 
numbers. As a result the DNF TAST code for four transmit 
antennas scheme provides higher coding gain and higher 
code rate retaining maximum diversity as that of original 
layered codes. This framework is based on TAST code 
with a slight modification in the definition of layer that in 
this scheme we may use more than one transmit antenna 
for transmitting same block or a series of layers 

The rest of paper is organized as follow:  
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A brief review of previous work on TAST code is out-
lined in Section 2. In Section 3 we present the new ap-
proach of flexible TAST code construction in term of an-
tennas’ flexibility. In Section 4 we discuss flexible TAST 
codes in term of Diophantine numbers. The decoding is 
presented in Section 5 and finally Section 6 presents our 
conclusion. 
 
2. Preliminaries 
 
As our proposed framework is based on the threaded 
space time architecture [6], so for sake of completeness 
we review some notation from [6]. 

A layer in an TN T  (where TN  denote the num-
ber of transmit antennas) transmission resource array is 
identified by an indexing set l 

TN TI I  where
TNI   

 1,2,..., TN  and the t-th symbol interval on antenna a 
belongs to the layer if and only  ,a t l . This indexing 
set must satisfy the requirement that if  ,a t l , then 
either t t  or a a  (i.e., that a is a function of t). 
The definition will be clearer from Table 1 given below, 
which depicts a view for four transmit antennas having 
four layers. 

Where for layer l , 1,...,l n  of the codeword, the set 
of matrix entries in positions are given by 

( , ( 1) mod( ) 1),              1,...,t l t n for k n     

With an arbitrary number of threads, the TAST codes 
are constructed by transmitting a scaled DAST code [10] 
in each thread, i.e., 

l l l l l lx   x M s               (1) 

is transmitted over thread ll . Where lx  are encoded 
symbols, lM  is an T TN N  real or complex rotation 
matrix, l l lx M s  are rotated complex information 
symbol vectors and  , 1,...,l l L   are the Diophantine 
numbers chosen to ensure full diversity and maximize 
the coding gain of the component codes. In [6] l  is 
given by 

( 1)/ Tl N
l                  (2) 

where  ( 0)ie     is an algebraic number 
 
3. AF TAST Codes 
 
In some communication systems (for example UMTS), 
the number of antennas varies among base stations and 
 

Table 1. Thread distribution. 

1 4 3 2 

2 1 4 3 

3 2 1 4 

4 3 2 1 

mobile devices, so it is vital to design a flexible MIMO 
transmission scheme supporting various multi-element 
antennas. As a minimum requirement, the mobile station 
might only be informed about the number of transmit 
antennas at the base station. Based on its own number of 
receive antennas, it can then decide which decoding al-
gorithm to apply. Conventional STBC codes offer great 
complexity in varying the number of receive/transmit 
antennas. The TAST codes [6] are flexible with respect 
to number of transmit/receive antennas. In this section 
we introduce a different and simple technique of flexible 
ST codes construction which are also flexible with re-
spect to number of transmit/receive antennas and reduc-
ing decoding complexity.  

We start with basic simple Alamouti code. 

*
1 2

1 *
2 1

l

s s
A

s s

 

  
  

                  (3) 

*
3 4

2 *
4 3

l

s s
A

s s

 

  
  

                  (4) 

*
5 6

3 *
6 5

l

s s
A

s s

 

  
  

                  (5) 

*
7 8

4 *
8 7

l

s s
A

s s

 

  
  

                  (6) 

For 1 l L        (L being the numbers of layers) 
 
where l  is Diophantine number and it is not difficult 
to verify that taking any one matrix from (3) to (6) re-
sults a simple Alamouti codes as we know from (2) that 

1 1  . 
As our proposed scheme is flexible with respect to 

number of transmit and receive antennas, so by simple 
reshuffle of (3) to (6) we get different structure of TAST 
codes for different set up of transmit/ receive antennas.  
Below is a body of a simple program that might be used 
for this purpose. 

Let NT, NR, L, A, denote number of transmit antennas, 
number of receive antennas, number of layers, and num-
ber of Alamouti matrices (given in (3) to (6)), respec-
tively. 
Initialization, NT, NR 
Condition (No. of transmit & receive antenna) 
Select (value for L and A) 
Process (build TAST codeword matrix with given no. of 
L ,and NT) 
end 

Note that for all the following structure of codes we 
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consider Diophantine number l  same as in (2). 
For case of NT = 2, (Alamouti code) we simply take 

any one matrix from ((3) to (6)). For NT = 2 and NR ≥ 2, 
we shall add any two matrices from ((3) to (6)) with a 
minor manipulation. To save space we avoid going in 
detail. Likewise for NT = 3 and NR ≥ 2, we add any three 
matrices from ((3) to (6)) with a slight modification. In 
same way we can develop a code for NT = 4. In next sec-
tion we discuss one of such type of code for NT = 4 and L 
= 2. 
 
4. DNF TAST Code 
 
In case of Diophantine numbers flexibility, the case is 
interesting for NT = NR = 4 and L = 2. Therefore in what 
follows, we discuss a case for NT = 4 and L = 2, and at 
the end of this section we give the numeral representa-
tions for others set up as well. 

The necessary condition of layering concept in [5] that 
the more than one antenna cannot transmit symbols from 
a given layer at a given time instant has been relaxed. A 
group of transmit antennas may now belong to a series of 
layers (for simplicity we call a series of layers as block) 
for a given symbol period.  

A block layer is indexed by a set b, 
TN Tb b b   

 ( , ) 1, 2,...., Tb w t N  . Like TAST [6] and DAST [10] 
schemes, the idea is to map each block layer to a differ-
ent subspace so that they are as far away from each other 
as possible. With the concept of block layers, the total 
number of layers becomes less and consequently a less 
number of Diophantine numbers are required which in-
creases the coding gain. Also, real or complex rotated 
symbols are used to further increase the coding gain. In 
each block we use Alamouti’s transmit diversity scheme 
that ensures simple decoding at the receiver. 

Combining (3) to (6) 

1 1 2 2

2 4 1 3

( ) ( )

( ) ( )

A A

A A

 
 

              (7) 

Or more precisely 

* *
1 1 1 2 2 3 2 4

* *
1 2 1 1 2 4 2 3

* *
2 7 2 8 1 5 1 6

* *
2 8 2 7 1 6 1 5

s s s s

s s s s

s s s s

s s s s

   

   

   

   

  
 
 
 

  
 
 

         (8) 

It is straightforward to verify that the modified repre-
sentation in (8) has the same property as the original 
Alamouti code. However, this modified representation 
clearly falls within the scope of the threaded coding 
framework.  

In (8) 1  and 2  are two Diophantine numbers 

and 1, 2 8[ ,..., ]s s s  is the rotated information vector to 
be transmitted. 

In matrix form the DNF-TAST code for NT = NR = 4 
and L = 2 is given in (9) which uses 2q  PSK or QAM 
signal constellation, and has a rate of R = 2q. For TAST 
code we use the notation 

TN ,L,RT  while for flexible 
TAST code we use 

TN ,L,RT , where the subscripts in both 
cases show the numbers of transmit antennas, number of 
layers, and symbols per channel use, respectively.  

4,2,4

1 1 2 2

1 1 2 2

2 2 1 1

2 2 1 1

 
 
 
 
 
 

T               (9) 

The transmitted symbol lx  corresponding to source 
information symbol ls  over thl  block layer is 

( )   ,  1,...,l l l l l l lx l L   s x M s  

where L represents the total number of block layers and 

l l lx M s  are the rotated information symbol vectors. 
Here lM is an T TN N  real or complex rotation matrix 
built on an algebraic number field ( )  with   an 
algebraic number of degree n, and the numbers ,l  

1,...,l L  are the Diophantine numbers. Both for real 
and complex rotation matrices we use the matrices same 
as given in [6]. 

In general, one can use different rotation matrices in 
different blocks. A general and simple MATLAB pro-
gram which generate rotation matrix Md of any dimen-
sion 2qd  on a number field  cos 2 / 8Q d  is given 
in [10].  

sqrt(2 / )*cos( / (4* )

*(4*[1: ]' 1)*(2*[1: ] 1));

d pi d

d d


 

M
     (10) 

To construct a rotation matrix Md of higher dimen-
sions in d the following recursive approach can be 
used [11]. 

1 2
/2 /2

2 1
/2 /2

d d
d

d d




M M
M

M M
           (11) 

where 1
/2dM is the optimal real rotation in dimension d/2 

and 2
/2dM is an orthogonal transformation in dimension 

d/2. The Diophantine approximation intends to achieve 
full diversity and maximize the coding gain [6]. For a 
DNF-TAST code with L layers the Diophantine numbers 
are chosen same as (2) with L denoting number of block 
layers.  

For a neat comparison for NT = 4 and L = 2, we repro-
duce the code as given in [8] in (12). It is crystal clear 
that the performance of the code in (8) is much better 
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than in (12), as the former contain no zeros in transmis-
sion matrix. 

4,2,2

1 0 0 2

2 1 0 0

0 2 1 0

0 0 2 1

 
 
 
 
 
 

T               (12) 

For NT = 3 and L = 2, we can get flexible TAST code 
by deleting last row and adding last and second last 
columns in (12).  

3,2,2

1 0 2

2 1 0

0 2 1

 
   
  

T                (13) 

For NT = 3 and L = 3, we can get flexible TAST code 
by adding third thread on empty layer in (13).  

3,3,3

1 3 2

2 1 3

3 2 1

 
   
  

T                (14) 

For NT = 2 and L = 2,we get a code by deleting last 
row and adding last and second last columns in (13).  

2,2,2

1 2

2 1

 
  
 

T                 (15) 

 

5. Decoding 
 

For the set up with one and three Diophantine numbers, 
we can use simple decoding schemes given in [1] and [6] 
respectively. Here we elaborate decoding scheme for our 
proposed code in (9). 

The received signal can be written as 

, ,TN L RY H N T             (16) 

where H is the R TN N  complex Gaussian random 
channel matrix with element ,  , 1, 2,...,i j Rh i N  and 

1, 2,..., Tj N , and N is a complex Gaussian random 
noise vector.  

Let  

( )Ty vec Y              (17) 

arranges the matrix TY  in one column vector by stack-
ing its columns one after other, and let  

1 2, ,....,
R TN Ny y y   y          (18) 

Simplifying equation (1) and (16), we get 

u n     y              (19) 

where  

 
M A

M
A M

                 (20) 

where A is a 4 40  matrix, M , and  are respectively 
rotation matrix, Diophantine matrix and the channel ma-
trix given in (20), (21) and (22), and n is obtained by 
converting Tvec(N ) into column vector by stacking its 
columns one after other, and u is a vector carrying source 
information symbols. 

1

2

ˆ 



 

  
 

                 (21) 

where 

1

*
1

1

*
1

1

1

*
1

1

*
1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


















  

and 

2

*
2

2

*
2

2

2

*
2

2

*
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


















  

 1 2=  h h               (22) 

where  

1

* *
1

1

2 3

* *
3 3 1,2,3,4

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

ij ij

ij ij

ij ij

ij ij i
j

h h

h h
h

h h

h h





 

  


  
  
  
  
  
  
    

 

and 

2

1

* *
1

3 2

* *
2 3 1,2,3,4

4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

ij ij

ij ij

ij ij

ij ij i
j

h h

h h
h

h h

h h





 

  


  
  
  
  
  
  
    
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Note that 1h  and 2h  are stacked into column for 
different values of i. 

The simulation results given in Figure 1 confirm our 
mathematical analysis for obtaining better performances 
of our proposed code in (9) over his brethren codes with 
L = 2 and 4. When comparing with the code when L = 2 
as given in (12), our proposed codes absolutely, however 
in case when L = 4, our code outperform at low SNR. 
Due to the hardware constraint we could not carried out 
simulation for large no of antennas but we intelligently 
guess that our code gains better performance over the 
both codes for large no of antennas. 
 
6. Conclusions 
 
TAST codes with different number of transmit/ receive 
antennas and Diophantine numbers have been proposed. 
A code having four transmit antennas and two layers is 
discussed which attains a better performance as com-
pared to same class of code having four layers in certain 
scenarios. For four receive antennas our proposed code 
outperform TAST code at low SNR, but for higher SNR 
TAST code works better. Due to limitation of hardware 
we could not simulate for higher number of receive an-
tennas but we guess intelligently that increasing the 
number of receive antennas may enhance the perfor- 
mance of our proposed code. In addition ML decoding is 

 

 

Figure 1. Comparison of different class of TAST codes. 

another positive point of our scheme. 
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