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Abstract 
 
The area of formal verification of protocols has gained substantial importance in the recent years. The re-
search results and subsequent applications have amply demonstrated that the formal verification tools have 
indeed helped correct the protocols even after being standardized. However, the standard protocol verifica-
tion tools and techniques do not verify the security properties of a cryptographic protocol. This has resulted 
in the emergence of the security protocol verifiers to fill the need. In this paper, taking the two popular secu-
rity verification tools namely Scyther and ProVerif as the basis, we identify a few security protocols and im-
plement them in both Scyther and ProVerif, to aptly evaluate the tools, in terms of the security properties of 
the selected protocols. In the process, we not only characteristically present a comparative evaluation of the 
two tools, but also reveal interesting security properties of the protocols selected, showing their strengths and 
weaknesses. To the best of our knowledge, this is a unique attempt to juxtapose and evaluate the two verifi-
cation tools using the selected security protocols. 
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1. Introduction 
 
A protocol is a set of rules that followed the defined 
conventions to establish semantically correct communi-
cations between the participating entities. A security 
protocol is an ordinary communication protocol in which 
the message exchanged is often encrypted using the de-
fined cryptographic mechanisms. The mechanisms Sym-
metric Key Cryptography or Asymmetric Key Cryptog-
raphy are used to obtain various cryptographic attributes 
such as Confidentiality, Entity Authentication, Message 
Integrity, Non-repudiation, Message Freshness, to name 
a few [1]. However, merely using cryptographic mecha-
nisms, does not guarantee security-wise semantically 
secure operation of the protocol, even if it is correct. 
There indeed have been reported breaches in the security 
protocols, after being published and accepted as a safe 
protocol [2-4]. In such a scenario, in case of the ordinary 
communication protocols, recourse has been taken to the 
rigorous verification of the same using appropriate tool 
for the domain. As for example, the protocol verifier 
SPIN is used to verify the communication protocols for 
distributed software [5].  

Such successful use of the formal methods for veri-
fication has led to the upsurge in devising similar tools 
for verifying the security properties of a cryptographic 
protocol, too. In order to gain confidence in the crypto-
graphic protocol employed, it has been found desirable 
that the protocol be subjected to an exhaustive analysis 
that verifies its security properties. Some of the tools 
developed for the purpose are Scyther [6], ProVerif [7], 
Athena [8], Avispa [9], Casper/FDR to name a few. These 
tools differ in their input language and also in the way 
they verify the protocols and provide the output. 

However, an important fall-out of the emergence of a 
plethora of such tools is that, it often becomes difficult 
for a security engineer to identify the appropriateness 
and suitability of a tool for the protocol under considera-
tion. Motivated with this difficulty, we in this research 
report, document our attempt at evaluating the two 
popular cryptographic verification tools namely ProVerif 
and Scyther. We use six popular cryptographic protocols 
to implement the same and then analyze the protocols, 
using both these tools. In the process, interestingly, we 
not only comparatively evaluate the tools under consid- 
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eration, but also identify various interesting properties of 
the protocols used.  

To the best of our knowledge, this is a unique attempt 
to juxtapose and evaluate the two verification tools using 
the security protocols namely the Kao Chow Authentica-
tion Protocol [10], the 3-D Secure Protocol [11], the 
Needham Schroeder Public Key Protocol [3], the An-
drew Secure RPC Protocol [12], the Challenge Hand-
shake Authentication Protocol [13] and the Diffie- 
Hellman Key Exchange Protocol [14]. 

The rest of this paper is organized as follows: in sec-
tion 2, we describe the theoretical background which 
includes a brief introduction of Scyther and ProVerif 
tools. In section 3, we formally define the problem and 
survey the related work. In section 4, we present details 
of our implementation of various protocols, whereas do a 
comparative analysis of the two tools, before we draw 
the conclusion and show probable future work, in the last 
section. 
 
2. Theoretical Background  
 
2.1. Cryptographic Verification Tools 
 
As mentioned before, one can find a series of tools for 
the verification of the cryptographic protocols. We have 
selected Scyther and ProVerif amongst all these, for the 
comparative evaluation. This decision is largely driven 
by the popularity of these two tools amongst all, we sur- 
veyed. In this section we depict the vital characteristics 
of these two tools. 
 
2.1.1. Scyther 
Scyther is a tool used for security protocol verification, 
where it is assumed that all the cryptographic functions 
are perfect. The tool provides a graphical user interface 
that makes it easier to verify and understand a protocol. 
In addition, attack graphs are generated whenever an 
attack is found corresponding to the claim mentioned. 
The tool can also verify all the possible claims on the 
protocol. The tool can be used to find problems that arise 
from the way the protocol is constructed. It can also be 
used to generate all the possible trace patterns. The veri-
fication here can be done using a bounded or an un-
bounded number of sessions. The language used to write 
protocols in Scyther is SPDL (Security Protocol Descrip-
tion Language) [6]. 
 
2.1.2. ProVerif  
ProVerif is a software tool for automated reasoning 
about the security properties found in cryptographic proto-
cols. This was developed by Bruno Blanchet. This tool 

verifies the protocol for an unbounded number of ses-
sions, using unbounded message space. The tool is capa-
ble of attack reconstruction—wherein if a property cannot 
be proved, an execution trace which falsifies the desired 
property is constructed. There are two ways of providing 
input to this tool—Horn clauses or Pi calculus. In both 
cases, the output of the tool is essentially the same. Ex-
plicit modeling of attacker is not required. It is also pos-
sible to state whether an attacker is active or passive [7]. 
 
3. Related Work 
 
The main objective of our research is to dissect the 
two protocol verification tools, Scyther and ProVerif, 
and to provide a comparative analysis of the two. In 
order to analyze the tools, suitable standard input pro-
tocols are required to be identified. After careful ob-
servation of a series of such protocols, we have identi-
fied, implemented and analyzed six different security 
protocols using both these tools. As mentioned earlier, 
these protocols are namely the Kao Chow Authentica-
tion Protocol, the 3-D Secure Protocol, the Needham 
Schroeder Public Key Protocol, the Andrew Secure 
RPC Protocol, the Challenge Handshake Authentica-
tion Protocol and the Diffie Hellman Key Exchange 
Protocol. 

One can find a few attempts in the literature that con-
centrate on tools used for protocol verification, whereas 
very few of them provide a comparative analysis of pro-
tocol verification tools as in [15] and in [16]. However, 
there is no attempt that either focuses on or subsumes a 
detailed comparative analysis of the tools Scyther and 
Proverif, using the actual implementation of protocols as 
the basis. Hence, we believe our attempt here to be a 
unique one of its kind.  

In the next section, we discuss briefly the implementa-
tion of each of the protocol in Scyther as well as in 
ProVerif and analyze the same. 
 
4. Implementation and Analysis  
 
4.1. Kao Chow Authentication Protocol  
 
4.1.1. Definition 
The Kao Chow protocol is a mutual authentication and 
key distribution protocol aiming at strong authentication 
and low message overhead. A trusted third party, S, is 
used to generate and distribute keys. It is the responsibil-
ity of S to generate a fresh secret session key k. The two 
communicating parties, A and B, will use this key to 
encrypt future message exchanges. Both the parties have 
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secret keys shared with the server, Kas and Kbs, which 
are used to encrypt and decrypt any messages that are 
exchanged. Further, the protocol aims to authenticate the 
parties A and B to each other using their nonces Na and 
Nb [10]. The pseudocode of a typical protocol execution 
run is shown in Figure 1. 
 

Kao_Chow(Kas, Kbs) 
 
/* nonce = random number,  
id_X = identity of X,  
A,B = the communicating parties,  
S = Server,  
Kas = symmetric key between A and S,  
Kbs = symmetric key between B and S, 
k = session key between A and B */ 
 
{ 
Call (Sender_A(Kas) | Receiver_B(Kbs) |  
 Server_S(Kas,Kbs)).  
 /* Call the functions in parallel */ 
} 
 
Sender_A(Kas) 
{ 
StepA1:generate  nonce Na; 
 msg1 = (id_A,id_B,Na); 
send msg1 to S; 
 call StepS1. 
StepA2:receive msg3 from B;  
let msg3 = (part1, part2, Nb’); 
let (id_A’’,id_B’’,Na’’,k)  
=(sym_decrypt(part1) with  Kas) AND  
check_if(id_A’’= id_A) AND   check_if(id_B’’= id_B) 
AND   check_if(Na’’ = Na); 
  
let (Na’’’) = (sym_decrypt(part2)  with k) AND   
  check_if(Na’’’ = Na); 
 msg4 = sym_encrypt(Nb’) with k; 
 send msg4 to B; 
 call StepB2. 
} 
 
Server_S(Kas, Kbs) 
{ 
StepS1:receive msg1 from A; 
let (id_A',id_B',Na’) = msg1; 
 generate session_key k; 
 msg2 = ((sym_encrypt 
  (id_A',id_B',Na’,k)  
  with Kas),       
        (sym_encrypt(A',B',Na’,k)   
 with Kbs)); 
 send msg2 to B; 
call StepB1. 
} 
 
Receiver_B(Kbs) 
{ 
StepB1:receive msg2 from S; 
let(part1,part2) = msg2;  
 let(id_A’’,id_B’’,Na’’,k)=   
 sym_decrypt(part2) with Kbs;  
generate nonce Nb; 
msg3 = (part1,(sym_encrypt (Na’’)    with k),Nb); 
 send msg3 to A; 
 call StepA2. 

 StepB2:receive msg4 from A; 
let(Nb’’)=(sym_decrypt msg4 with k)  
AND check_if(Nb’’ = Nb); 
 return to Kao_Chow( ). 
} 

Figure 1. Kao Chow authentication protocol. 

 
4.1.2. Analysis  
When this protocol is verified using Scyther, attacks are 
found on the sender side as well as on the receiver side. 
However, we observe that the session key on the sender 
side (A) is secret whereas it is compromised on the re-
ceiver side. Because of this, there are synchronization 
and agreement attacks on both the sides. For the claim to 
check the secrecy of session key on the receiver (B) side, 
scyther outputs saying the claim is “Falsified” and that 
there is “At least 1 attack.” When a similar query is writ-
ten for the initiator side, scyther gives the output that the 
claim has been “Verified” and that there are “No at-
tacks”.  

When the same protocol is analyzed using ProVerif, 
we obtain a similar result. That is, it can also detect that 
the session key is not secret on the receiver side. The 
private free variable var is encrypted using the session 
key k and published over a public channel c, the output 
obtained is false i.e., the key is not secret on the initiator 
side. When a similar query is provided for the receiver 
side, ProVerif gives the output saying that session key is 
secret on the receiver side. When the parameter “at-
tacker” is set to passive, we do not obtain any attacks 
showing that there are no passive attacks on the protocol. 
The symmetric key Kas is secret on A side as well as the 
server(S) side. Kbs is also secret on the server side as 
well as B side. 

4.2. 3-D Secure Protocol 
 
4.2.1. Definition 
The 3-D Secure is an XML-based protocol used as an 
added layer of security for online credit and debit card 
transactions. Developed by Visa, its aim is to improve 
the security of Internet payments. It is offered to cus-
tomers as the Verified by Visa service. It has also been 
adopted by MasterCard, under the name MasterCard 
SecureCode. 

A transaction using Verified by Visa/SecureCode will 
initiate a redirect to the website of the card issuing bank 
to authorize the transaction. Each Issuer could use any 
kind of authentication method. The most common ap-
proach is a password-based method. Thus, to effectively 
buy on the Internet means using a secret password tied to 
the card. The Verified by Visa protocol recommends the 
bank’s verification page to load in an inline frame ses-
sion. In this way, the bank’s systems can be held respon-
sible for most security leaks [11].  
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The pseudocode of the protocol is shown in Figure 2. 
 

3-D_Secure(skC,pkC,skM,pkM,skB,pkB) 
 
/* nonce = random number, 
C = Customer, M = Merchant, B = Bank,  
pkX = public key of X,  
skX = secret key of X, 
PI = Payment information, with transaction ID,  
OI = order information, with transaction ID, PIMD = message 
digest of PI,  
OIMD = message digest of OI,  
POMD = message digest of concatenation of PIMD and OIMD. 
*/ 
{  
       Call (Customer_C(skC,pkM,pkB) |  Mer-
chant_M(skM,pkC,pkB) |   
  Bank_B(skB,pkC,pkM )).  
/* Call the functions in parallel */ 
} 
 
Customer_C(skC,pkM,pkB) 
{ 
  StepC1: generate  nonce Nc; 
msg1 = encrypt(brand,Nc) with pkM; 
send msg1 to M; 
call StepM1. 
StepC2: receive msg2 from M;  
let(Nc’’,tid) = (decrypt msg2 with   skC) AND  
check_if(Nc’’= Nc); 
generate session_key Kbc;   
/* between B and C */ 
 
msg3=((sym_encrypt(PI,(encrypt(hash  (con-
cat(hash(PI) AND hash(OI)))) 
  with skC),hash(OI)) with Kbc), 
     (encrypt Kbc with pkB), OI, hash(PI),   
     (encrypt(hash(concat(hash(PI) AND 
     hash(OI)))) with skC));  
  send msg3 to M; 
  call StepM2. 
  
StepC3: receive msg5 from B; 
let (user) = decrypt msg5 with skC; 
 msg6 = encrypt(user,hash(password))   with 
pkB; 
 send msg6 to B; 
 call StepB2. 
 } 
 
Merchant_M(skM,pkC,pkB) 
 { 
 StepM1: receive msg1 from C; 
 let (brand’,Nc’) = decrypt msg1    with 
skM; 
 generate new tid; 
 msg2 = encrypt(Nc’,tid) with pkC; 
 send msg2 to C; 
 call StepC2.     
StepM2: receive msg3 from C; 
Let (part3a,part3b,part3c,    part3d,part3e) = 
msg3 AND 
 check_if((decrypt(part3e)    with pkC) 
=hash(concat(part3d  
      AND hash(part3c)))); 
  
 /* compare the received and  calculated values of 
POMD */ 
  

 generate session_key Kbm; 
    
 /* between B and M */ 
       
 msg4 = (part3a,part3b,(sym_encrypt   (en-
crypt tid with skM) with   Kbm),(encrypt Kbm with 
pkB));  
 send msg4 to B; 
 call StepB1. 
 StepM3:  receive msg7 from B; 
 Let (part7a,part7b,part7c,part7d) =   msg7; 
 let(K’mb)=decrypt (part7b) with skM; 
let (tid’) = (decrypt(sym_decrypt   part7a with K’mb) 
with pkB)   AND check_if(tid’=tid);  
 msg8 = (part7c,part7d,(encrypt    (en-
crypt (tid,amount)   
with skM) with pkB)));  
send msg8 to B; 
call StepB3. 
 StepM4: receive msg9 from B; 
 let (tid’) = (decrypt msg9 with    skM) 
AND check_if(tid’ =tid); 
 return to 3-D_Secure( ). 
 } 
 
Bank_B(skB,pkC,pkM): 
 { 
 StepB1: receive msg4 from M; 
 let (part4a,part4b,part4c,part4d) =   msg4; 
 let Kbc = decrypt (part4b) with skB; 
 let (PI,encrypted_POMD,OIMD) =   
 sym_decrypt(part4a) with Kbc; 
let POMD = (decrypt(encrypted_POMD)   with pkC) 
AND check_if(POMD =   hash(concat(hash(PI) 
AND    OIMD))); 
 
 /* compare the received and  calculated values of 
POMD */ 
 
let Kbm = decrypt (part4d) with skB; 
 let tid = (decrypt(sym_decrypt   
 (part4c) with ks2) with pkM); 
msg5 = encrypt user with pkC; 
send msg5 to C;  call StepC3. 
 StepB2:  receive msg6 from C; 
let (user’,password’) = (decrypt    msg6 with 
skB) AND  
 check_if(user’ = user); 
 generate session_key K’mb;    
  
 /* between M and B */ 
  
 generate nonce Nb; 
msg7 = ((sym_encrypt(encrypt tid    with skB) 
with K’mb), 
(encrypt K’mb with pkM),  
(sym_encrypt(encrypt Nb with   skB) with K’mb), 
(encrypt K’mb with pkB)); 
send msg7 to M; 
call StepM3. 
 StepB3: receive msg8 from M; 
 let (part8a,part8b,part8c) = msg8; 
let (K’mb) = decrypt(part8b) with   skB; 
let (Nb’) = (decrypt(sym_decrypt    (part8a) with 
K’mb) with pkB)   AND check_if(Nb’ = Nb); 
 let (tid’,amount) = (decrypt    (de-
crypt(part8c) with skB)  
with pkM) AND  
check_if(tid’ = tid); 
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msg9 = encrypt tid with pkM;   
send msg9 to M; 
call StepM4. 
 } 

Figure 2. 3-D secure protocol. 

 
4.2.2. Analysis 
On analyzing this protocol with Scyther, we find that for 
five runs of the protocol, there are no attacks on the cus-
tomer(C) and merchant(M) side. However, the attacks 
are found on the bank(B) side. The session key Kbc and 
the customer’s password are secret on C side. On the M 
side, we find that the session keys Kbm, K’mb and Kbc are 
secret. On analyzing the claims on B side, we find that 
the session key K’mb and the customer’s password are 
secret. But, the keys Kbc and Kbm can be compromised 
here. These attacks bring a limitation of the tool Scyther 
to the fore. In Scyther, we have no provision of compar-
ing the values of two variables. For instance, in step 4, 
the bank receives POMD, PI and hash (OI). However, 
there is no way that we can write an “if” condition in this 
tool to check the equality of the received POMD and the 
calculated POMD (calculated using the function “hash” 
and the received value of hash(OI) and PI). The attacks 
that we see here are the result of such deficiencies in the 
tool. Had there been a way to compare values here, no 
attacks would have been found. In order to obtain attacks 
on session keys, a special “key-compromise” part needs 
to be added to the protocol. In this module, we first spec-
ify who the communicating parties are. Next, we provide 
the intruder with all the packets that have been used in a 
session and the values of the session keys for that session 
in order to verify if a freshness attack is possible. 

When the 3D-secure protocol is analyzed using Pro- 
Verif, no attacks are found. That is, the tool says that this 
protocol is perfectly secure and that there is no way that 
an intruder can gain knowledge of either the session keys 
(Kbc, Kbm, K’mb) or the customer’s password. This is be-
cause, in this tool we have the provision of writing an 
“if” condition to check for the equality of two values. For 
instance, in step B1, we see that the value POMD ob-
tained after decrypting a part of the message can be 
compared to the calculated value of POMD (using the 
received values PI and OIMD and the hash function) and 
the protocol proceeds only if these two values are found 
to be the same. This way, all the attacks are countered 
and the protocol becomes completely secure.  

Thus, we see that ProVerif provides this advantage 
over Scyther. Not being able to compare values in 
Scyther leads to attacks being found whereas in ProVerif, 
as the values can be compared, these attacks are not 
found.  

4.3. Needham-Schroeder Public Key Protocol 
 
4.3.1. Definition 
The Needham-Schroeder Public Key Protocol, based on 
public-key cryptography, is intended to provide mutual 
authentication between two parties communicating on a 
network. It is assumed here that the two parties know the 
public key of the other. Thus, encrypting the data is pos-
sible using the public key of the other party. Here, A and 
B represent the communicating parties [3]. 

The pseudocode of the protocol is shown in Figure 3. 
 
4.3.2. Analysis 
On verifying this protocol using Scyther, attacks are 
found. It is seen that all the attacks are on the B (receiver) 
side. Both the nonces, Na and Nb, can be obtained by the 
attacker. In addition, there are synchronization and agree-
ment attacks. Thus, the protocol is not secure. In addition, 
Scyther provides the facility of observing all possible 
trace patterns. For this protocol, a single trace pattern is 
obtained on the A (initiator) side as there is no intrusion 
possible here. 
 

Needham_Schroeder(skA,pkA,skB,pkB) 
 
/* pkX = public key of X,  
skX = secret key of X,  
nonce = random number,  
id_X = identity of X,  
A,B = the communicating parties. */ 
 
{  
 Call (Sender_A(skA,pkB) |  Receiver_B(skB,pkA)). 
 /* Call the functions in parallel  */ 
} 
 
Sender_A(skA, pkB) 
{ 
 StepA1: generate nonce Na; 
 msg1 =(encrypt(Na, id_A) with pkB);  
send msg1 to B; 
call StepB1. 
      StepA2:  receive msg2 from B; 
let(Na',Nb',X)=(decrypt(msg2) with   skA) AND 
check_if(Na' = Na)   AND check_if(X = B); 
  
 /* assign the 3 parameters of msg2  on decryption to 
Na’,Nb’,X respectively */ 
  
 msg3 = (encrypt(Nb') with pkB); 
send msg3 to B; 
 call StepB2. 
} 
 
Receiver_B(skB,pkA) 
{ 
     Step B1:  receive(msg1) from A; 
 let(Na',A')=(decrypt(msg1)with skB); 
  generate nonce Nb; 
      msg2 = (encrypt(Nz,Nb,B) with pkA); 
      send(msg2) to A; 
  call StepA2. 
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Step B2: receive(msg3) from A; 
      let (Nb') = (decrypt(msg3) with    skB) 
AND check_if(Nb' = Nb); 
return to Needham_Schroeder(). 
} 

Figure 3. Needham schroeder public key protocol. 

 
On B side, 2 trace patterns are obtained—one showing 

the normal run of the protocol and the other showing the 
man-in-the-middle attack. No attacks are found when the 
protocol is verified for a single run. But with 2 or greater 
runs, attacks are generated. 

In ProVerif, the protocol is run for an unbounded 
number of times. For checking the secrecy of nonces and 
keys in ProVerif, a random number is generated and it is 
encrypted using the nonce and broadcasted over a public 
channel. The results obtained are similar to those ob-
tained using Scyther. But, there is no way of checking 
for the synchronization and agreement attacks on either 
the receiver or the sender side. 

4.4. Andrew Secure RPC Protocol 
 
4.4.1. Definition 
This protocol is intended to distribute a new session key 
between two parties A and B. The protocol must guaran-
tee the secrecy of the new shared key k. In every session, 
the value of k must be known only by the participants 
playing the roles of A and B. The protocol must guaran-
tee the authenticity of k. In every session, on reception of 
message 4, A must be able to ensure that the key k in the 
message has been created by A in the same session. The 
final message contains N'b which can be used in future 
messages as a handshake number [12]. 

The pseudocode of the protocol is shown in Figure 4. 
 

Andrew_Secure_RPC(Kab) 
 
/*  nonce = random number,  
id_X = identity of X,  
A,B = the communicating parties,  
Kab = symmetric key between A and B,  
k = session key between A and B. */ 
 
{ 
Call (Sender_A(Kab) | Receiver_B(Kab)).  
 /* Call the functions in  parallel */ 
} 
 
Sender_A(Kab) 
{ 
  StepA1: generate  nonce Na; 
   msg1 = (id_A, (sym_encrypt(Na) with   Kab)); 
 send msg1 to B; 
 call StepB1. 
 

StepA2:  receive msg2 from B; 
let (Na'',Nb')=(sym_decrypt msg2   with Kab) AND 
check_if(Na'' = Na+1); 
 msg3 = sym_encrypt(Ns'+1) with Kab; 
 send msg3 to B; 
 call StepB2. 
  
StepA3: receive msg4 from A; 
 let (k,Nb1') = sym_decrypt(msg4)    with 
Kab; 
return to Andrew_Secure_RPC( ).   } 
 
Receiver_B(Kab) 
{ 
StepB1:  receive msg1 from A; 
let (id_A’,part) = msg1; 
 let (Na') = sym_decrypt(part) with   Kab; 
generate nonce Nb; 
     msg2 = sym_encrypt (Na'+1,Nb) with   Kab; 
     send msg2 to A; 
 call StepA2. 
 
 StepB2:  receive msg3 from A; 
 let (Nb'') = (sym_decrypt msg3 with   Kab) 
AND  
  check_if(Nb'' = Nb+1); 
 generate nonce Nb1; 
 generate session_key k; 
 msg4 = sym_encrypt(k,Nb1) with Kab; 
 send msg4; 
 call StepA3. 
} 

Figure 4. Andrew secure RPC protocol. 
 
4.4.2. Analysis  
When this protocol is verified using Scyther, attacks are 
found on the initiator side and none are obtained on the 
receiver side. The major attack is the one in which the 
session key is compromised. This is a freshness attack on 
the protocol. In this, an intruder can replay an old mes-
sage (the last message) and the party A has no way of 
knowing that this has come from B or some intruder. 
Thus, the intruder can establish a session with A using an 
older session key. Since the communication is not taking 
place in the proper order, there are attacks of synchroni-
zation and agreement as well. For the claim to check the 
secrecy of session key k on the initiator (A) side, scyther 
outputs saying the claim is “Falsified” and that there is 
“Exactly 1 attack”. The attack graph provides a complete 
flow diagram of the actions of the parties and the in-
truder. 

ProVerif also provides us with a similar result. That is, 
it can also detect that the session key is not secret on the 
initiator side. The private free variable var is encrypted 
using the session key k and published over a public 
channel c, the output obtained is false i.e. the key is not 
secret on the initiator side. When a similar query is pro-
vided for the receiver side, ProVerif gives the output 
saying that session key is secret on the receiver side. In 
order to obtain a complete trace pattern, the parameter 
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“traceDisplay” can be set to “long”. This provides an 
entire description of how the attack is executed. In addi-
tion, when the parameter “attacker” is set to “passive”, 
we do not obtain any attacks showing that there are no 
passive attacks on the protocol. It can be verified that the 
symmetric key Kab is secret on both the sides.  
 
4.5. Challenge Handshake Authentication  

Protocol 
 
4.5.1. Definition 
The Challenge Handshake Authentication Protocol (CHAP) 
uses a 3-way handshake to periodically verify the iden-
tity of the party. This is done upon initial link estab-
lishment, and may be repeated anytime after the link 
has been established. Once the link is established, the 
authenticator sends a challenge message to the party. 
The party responds with a value calculated using a 
one-way hash function. The authenticator checks the 
response against its own calculation of the expected hash 
value. If the values match, the authentication is ac-
knowledged; otherwise the connection has to be termi-
nated [13]. 

The pseudocode of the protocol is shown in Figure 5. 
 

Challenge_Handshake(Kas)  
 
/* challenge = a random value sent by server at irregular in-
tervals,  
id = identifier,  
A = client,  
S = server,  
Kas = shared secret between S and A. */  
{ 
Call (Server_S(Kas) |    Clent_A(Kas)).  
 /* Call the functions in  parallel */  
} 
 
Server_S(Kas) 
{ 
  StepS1: generate challenge Ns; 
       msg1 = (Ns, id); 
 send msg1 to A; 
 call StepA1. 
 
StepS2: receive msg2 from A; 
       check_if(hash(concat(Ns AND id AND  
 Kas)) = msg2); 
 msg3 = sym_encrypt(id) with Kas; 
 send msg3 to A; 
 call StepA2. 
} 
 
Client_A(Kas) 
{ 
StepA1: receive msg1 from S; 
 let (N’s, id’) = msg1; 
     msg2 = hash (concat(N’s AND id’ AND   Kas)); 
     send msg2 to S; 
 call StepS2. 
  

StepA2: receive msg3 from S; 
 let (id’’) = (sym_decrypt msg3 with   Kas) AND 
check_if(id’’= id’). 
} 

Figure 5. Challenge handshake authentication protocol. 
 
4.5.2. Analysis 
On analyzing this protocol with scyther, we see that the 
symmetric key (shared secret) is secret on both the sides, 
the server as well as the party which needs to be authen-
ticated. But, there are synchronization and agreement 
attacks on A side but not on the server(S) side. These 
attacks are caused because the first message from the 
server is not encrypted. Thus, it can be captured by any 
intruder. But this does not lead to the shared secret being 
compromised as the message from the A party to the 
server is hashed using a one way hush function. Thus, 
even if the intruder knows the hash value and the hashing 
algorithm, there is no way to unhash the value and obtain 
the original message. A single trace pattern is obtained 
for the server side. For the A side, 2 patterns are obtained 
—one specifying the normal run of the protocol and the 
other giving details of how the communication can be 
disrupted. 

When this protocol is verified using ProVerif, the 
output obtained shows that the symmetric key Kas can-
not be compromised on either the client side or the server 
side. Thus, the communication is secure. In addition, 
when the parameter “attacker” is set to “passive”, no 
attacks are found suggesting that there are no passive 
attacks on this protocol. 
 
4.6. Diffie-Hellman Key Exchange Protocol 
 
4.6.1. Definition 
Diffie–Hellman key exchange (D–H) is a cryptographic 
protocol that allows two parties that have no prior 
knowledge of each other to jointly establish a shared 
secret key over an insecure communications channel. 
This key can then be used to encrypt subsequent com-
munications using a symmetric key cipher. There are two 
publicly known numbers—a prime number p and a 
primitive root of that prime, g. Each party then chooses a 
random number which is less than p and using modular 
arithmetic, the key is calculated. Thus, a key is ex-
changed between two or more parties over an insecure 
channel [14]. 

The pseudocode of the protocol is shown in Figure 6. 
 

Diffie_Hellman( ) 
 
/* nonce = random number,  
A,B = the communicating parties,  
p = a large prime number,  
g = a primitive root of p. */ 
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{ 
Call (Sender_A( ) | Receiver_B( )). 
/*Call the functions in parallel  */  
} 
 
Sender_A( ) 
{ 
 StepA1: select n0;     
  
 /* 1 <= n0 < (p-1) */ 
  
 msg1 = (g^n0 mod p); 
 send msg1 to B; 
 call StepB1. 
 
StepA2: receive msg2 from B; 
 let (part2) = msg2; 
 Akey = ((part2^n0)mod p); 
return to Diffie_Hellman( ). 
} 
 
Receiver_B( ) 
{ 
 StepB1: receive msg1 from A; 
 let (part1) = msg1;     

      select n1;       
  
 /* 1 <= n1 < (p-1) */ 
 
Bkey = ((part1^n1)mod p); 
msg2 = (g^n1 mod p); 
       send msg2 to A; 
       call StepA2.     
} 

Figure 6. Diffie Hellman key exchange protocol. 

4.6.2. Analysis  
When this protocol is verified using ProVerif, we find 
that the generated key is not secret on the initiator side as 
well as the receiver side. 

This is because of a man in the middle attack. An int- 
ruder is able to capture the public values from both the 
legitimate parties and send its own generated public 
value to both of them. Thus, an intruder is able to estab- 
lish a session key with both the parties.  

The Diffie Hellman key exchange cannot be modeled 
using Scyther. The reason is that there is no way to show  

 

Table 1. Scyther and ProVerif characteristic comparison. 

Characteristics of SCYTHER Characteristics of PROVERIF 

 The protocol is modeled using the “spdl” language. 

 It is possible to run the protocol for either bounded or 

unbounded number of sessions. 

 Tool comes with its own graphical user interface. 

 It generates the following possible outputs namely Prop-

erty holds for n runs, Property is false and attack trace is 

shown, Property holds for all traces.  

 Attack graphs are generated which give a visual flow 

graph of a trace and are self explanatory. 

 All possible trace patterns are generated depicting proto-

col execution. 

 The communicating parties need to be modeled as roles. 

 It doesn’t provide any option to check for equality of 

different variables. 

 Tool by its own discretion checks for secrecy of all possi-

ble variables, no explicit “claims” are necessary. 

 The anticipated intruders along with the legitimate com-

municating parties have to be specified as agents. 

 In case of protocols which may suffer from a freshness 

attack, we have to put a key compromise module in the 

code which specifies that a complete session has been 

captured and the intruder also knows the session key. 

 There is no concept of channels. 

 The protocol is modeled using horn clauses or pi calcu-

lus. 

 Tool has to be run through command line interface. 

 It generates the following possible outputs namely Prop-

erty is true, Property is false and attack trace is generated, 

Property cannot be proven when false attack is found, 

Tool might not terminate. 

 Step by step trace is generated explaining the run and 

attack.  

 Trace is generated only for the property which is 

checked. 

 The communicating parties need to be modeled as proc-

esses. 

 Equality can be checked by using “if..then” or “let..in”. 

 It checks only those attacks for which the “query” has 

been specified in the code. 

 ProVerif does not require any such specification. 

 No special code for a freshness attack needs to be given 

in ProVerif. 

 Channels need to be specified for communication. 

 It is possible to run the protocol only for an unbounded 

number of sessions. 
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the equivalence of 2 exponential operations. That is, a 
rule that states (exp (exp (g,x),y) mod p) and (exp (exp 
(g,y),x) mod p) are the same cannot be specified. Thus, it 
is not possible to handle such exponentiations which 
need equivalence conditions to be explicitly mentioned. 
Hence, the tool is not able to know that the keys that 
have to be generated on both sides are ideally the same. 
 
5. Conclusions and Future Work  
 
Based on the implementation and evaluation as described 
above, we summarize the comparative analysis of Scyt- 
her and ProVerif in the Table-I.  

From this, it can be observed that applying formal 
methods to verify security protocols is an interesting and 
challenging research area. Using the tools Scyther and 
ProVerif, it is possible to model many security protocols 
in standard format, verify them and know the attacks 
they are susceptible to. We modeled six characteristic 
protocols and verified them using these tools. The tools 
vary in regards like their input language, manner in 
which the output is provided, the way in which traces of 
attacks are generated. Moreover, both the tools have a 
few limitations. Using these tools, it is easy to know 
what flaws these protocols suffer from so that the flaws 
can be rectified. Although verification using these tools 
does not ensure that the protocols once verified by these 
tools are flawless, still they provide a means to know 
many of the flaws easily. As a future work in this area, 
we plan to extend this comparative evaluation using 
other interesting protocols namely to have a better un-
derstanding of the differences in the cap- abilities of both. 
Our work can also be extended to model the same pro-
tocols using other tools to have a wider evaluation. 
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