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ABSTRACT 

We consider n observations from the GARCH-type model: Z = UY, where U and Y are independent random variables. 
We aim to estimate density function Y where Y have a weighted distribution. We determine a sharp upper bound of the 
associated mean integrated square error. We also make use of the measure of expected true evidence, so as to determine 
when model leads to a crisis and causes data to be lost. 
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1. Introduction 

We suppose that 1, , nZ Z  is a sample of a strictly sta- 
tionary and exponentially strongly mixing process  i i

Z
  

where, for any , i
,i i iZ U Y                   (1) 

 iU
i  is a sequence of identically distributed ran- 

dom variables with common known density Uf  and 

i  is a sequence of identically distributed random 
variables with common unknown density Y

 iY
f . For any 

, i  and i  are independent. We suppose that i U

Y

Y
f  is a weighted density of the form 

       , 0,1X
Y

w x f x
f x x


 ,          (2) 

where  is a known positive function, Xw f  an un- 
known density of a random variable X  and   is the 
unknown normalization parameter: 

      
1

0

d .Xw X w x f x x     

Our goal is to estimate Xf  when only 1, , nZ Z  are 
observed. The Equation (1) is a GARCH-type time series 
model classically encountered in financial models see [1] 
and practical examples of Equation (2) can be found in 
e.g. [2-4]. 

In this article, we construct a linear wavelet estimator 
and measure its performance by determining upper bounds 
of the mean integrated squared error (MISE) over Besov 
space. 

In what follows, we have also surveyed the role of data 

and evidential inference in the model. The data play a 
very important essential role in statistical analysis, to the 
extent that many statistical researchers believe in the 
famous saying: “Ask the data.” We consider the Test 


1 1

2 2 1

:

: 1

H

H

 
   


     ,
          (3) 

for the model and we evaluate the sensitivity of the value 
in the test hypotheses. In this test, the evaluation criterion 
is the area between the curves of the cumulative dis- 
tribution functions under 1H  and 2H  hypotheses. De- 
tails on evidential inference can be found in [5,6]. Also 
[7] have studied about Comparing of record data and 
random observation based on statistical evidence. 

Through the rest of the paper, at first assumptions and 
then an introduction about wavelets are presented in 
Section 2. The estimators and results are given in Section 
3. In Section 4, general explanations regarding evidential 
inference and its application in a test. The proofs are 
gathered in Section 5. 

2. Assumptions and Wavelets 

2.1. Assumptions 

We formulate the following assumptions: 
 Without loss of generality, we assume that Xf  and  

Yf  have the support  0,1  and  2 0,1Xf   where 

      
1 21

2 2

0

0,1 : 0,1 ; d .g g x x
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 We suppose that for any m , the m -th strongly 
mixing coefficient of  i i

Z
  by 

 
     

,0 ,,

sup ,
Z Z

m

m
A B F F

a A B
  

   A B  

where, for any , let  be the u ,
Z

uF  -algebra ge- 
nerated by 1, u , uZ Z  and ,

Z
uF   is the  -algebra 

generated by . ,u uZ Z  ,
We suppose that there exist three (known) constants, 

0, 0c    and 0   such that 

 exp .ma c
  m  

This assumption is satisfied by a large class of 
GARCH processes. See e.g. [8-10]. 
 For any  0,1x , it follows from the independence 

of 1U  and 1Y  that the density of 1Z  is 

   
1 1

d .Z U Y
x

x
f x f f y

y y

 
  

 
 y  

 We suppose that there exists two constants, 0  
and 0c  , such that 

C 

 
 

0,1
sup .Z
x

f x C


               (4) 

and 

 
 

 
 

 
 

0,10,1 0,1
sup , sup , inf .

xx x
w x C w x C w x c

 
     (5) 

2.2. Wavelets and Besov Balls 

Let  be a positive integer, and N   and   be the 
Daubechies wavelets  which satisfy  dbN

    1 ,supp supp N N    . 

Set 

   
   

2
,

2
,

2 2

2 2

j j
j k

j j
j k

,

.

x x k

x x k

 

 

 

 
 

Then, there exists an integer   such that, for any 
integer  , the collection  

     
   

, , 0, , 2 1 ; ;

0, , 1 , 0, , 2 1

k

j

k

j k

     

    


 

  

 ,j k
 

is an orthonormal basis of  (the space of square- 
integrable functions on 0,1). We refer to [11]. 

2[0,1]

For any integer  , any  can be ex- 
panded on  as 

2[0,1]h


       
2 1 2 1

, , , ,
0 0

, 0,1
j

k k j k j k
k j k

h x x x x   
  

  

   


 


,  

where ,j k  and ,j k  are the wavelet coefficients of 
 defined by h

   

   

1

, ,
0

1

,
0

d ,

d .

,j k j k

j k

h x x x

h x x x

j k  










          (6) 

Let  and . A function  be- 
longs to 

0, 0, 1M s p   1r  h
 ,

s
p rB M

0
 if and only if there exists a constant 

 (depending on M   M ) such that the associated 
wavelet coefficients Equation (6) satisfy 

 

1
1

2 1
1 2 1

,
1 0

2 .
j

rrp
pj s p

j k
j k

M



 

  

  

              
   

We set 1, ,k k    . Details on Besov balls can be 
found in [12]. 

3. Estimators and Results 

Firstly, we consider the following estimator for   

   
 

1

2
1

1ˆ .
n

i i i

i i

w Z Z w Z

n w Z






 
   
 
          (7) 

Then, for any integer j   and any , 
we estimate  

 0, , 2 1jk  

      
1

, , , ,
10

ˆ
ˆd , ,

n

j k X j k j k j k i
i

f x x x T Z
n

   


    (8) 

where, for any  : 0,1h   ,  is the operator T

              
 2

.
h x w x xh x w x xh x w x

T h x
w x

  
  (9) 

,ˆ j k  and ̂  are similar with multiplicative censoring 
model (see [13]). 

We are now in the position to define the considered 
estimators for X . Suppose that . We de- 
fine the linear estimator 

f  ,
s

X p rf B H
f̂  by 

     
0

0 0

2 1

, ,
0

ˆ ˆ , 0,1
j

j k j k
k

f x x x 




  ,     (10) 

where ,ˆ j k  is defined by Equation (8) and  is the 
integer satisfying 

0j

     01 2 3 1 2 31 2 2 .s q s qjn n            (11) 

Lemma 3.1 

 Let ̂  be Equation (7) and . 

Then we have 

   
1

0

dXw x f x x  

1 1
.

ˆ 
   
 

  

 Let 1, , nZ Z  be Equation (1), T  be Equation (9) 
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and for any integer j   and any  ,  0, , 2 1jk 

 
1

,
0

j k X j k  , df x   x x . Then we have 

  
1

n

, , .j k i
i

T Z
n

  


   
 
 j k  

 For any integer j   and any  , let  0, , 2 1j k

,ˆ j k  be Equation (8) and    
1

, ,
0

dX j kj k f x x  x .  

Then, under the assumptions of Subsection 2.1, there 
exists a constant  such that 0C

  , , ,

1 1
ˆ .

ˆj k j k j k i j kZ
n

    ,
1

n

i

C T



    

 






 

Proposition 3.1 For any integer j   and any 
 Then, under the assumptions of Sub- 

section 2.1, 
0, , 2 1jk   

 
 

   
0 ,

0,1
sup

3

22 .
j

j k
x

T x


C  

    0

2
2

, 0 2 .jj kT Z C   

Proposition 3.2 Let  for any integer 0,1q , j   
and any , let 0, ,2 jk   1 ˆ ,j k  be Equation (8) and  

   
1

, ,
0

dj k X j kf x x x   . Then, 

 there exists a constant 0C   such that 

    2
,

1

2 .
n

j q
j k i

i

C
T Z

n n

  



   
 
  

 there exists a constant 0C   such that 

1
.

ˆ
C

n
   
 

  

 there exists a constant 0C   such that 

    2 2
, ,ˆ 2 .j q

j k j k

C

n
     

Theorem 3.1 (Upper bound for ) Consider Equa- 
tion (1) under the assumptions of Subsection 2.1. Sup- 
pose that 

f̂

s
X p r,f B H  with 0, 2, 1s p  r  . For any  

0,1q  ˆ and f  be Equation (10), then there exists a  

constant  such that 0C 

      
1 2 2 2 3

0

ˆ d s s q
Xf x f x x Cn   

  
 
 .



 

Remark that 2 2 3s s qn    is the slower than the op- 
timal one in the standard density estimation problem i.e. 



4. Statistical Evidence 

4.1. Statistical Inference 

The evidential approach to statistical inference concerns 
a novel approach in statistical analysis. Evidential infe- 
rence is solely based on data as evidence and calculation 
of the evidence strength. It is not influenced by mental 
and personal components and factors such as former 
beliefs and loss functions. Using evidential inference in 
the model Equation (1), we will survey when censoring 
of data will lead to considerable data loss, and we will 
determine the time when data is lost by determining an 
appropriate criterion. In the model i i iZ U Y  for 

 1, ,i  n , the data observed from the variable iZ  are 
denoted by the subscript (cen), and the data observed 
from the variable i  are denoted by the subscript (ncen). 
Considering the Test Equation (3) in the above model, 
due to the symmetry of the test hypotheses in evidential 
methods and without losing the generality of the problem, 
the value of is assumed to be 

Y

1  . In order to support 

1H  and 2H  hypotheses, we now use the following cri- 
terion: 

 
 

,cen

ncen





abc

γ
abc

              (12) 

where  cen abc  and  ncen abc  are the measure of 
expected true evidence in the censored and uncensored 
data respectively, and   is the criterion of the support 
of data from 1H  hypothesis against 2H  hypothesis. 
This support criterion is optimal when the area between 
the two curves of   cumulative functions under 1H  
and 2H  is maximum, please see [15]. This area which 
is denoted by  abc  in the form of 

     

     

   

2 1
0 0

1 1

1 2
0 0

1 2

d d

1 d 1

= ,

      
1 1

d     

 

 

   



 

 

abc

E E

 

where  i   is the cumulative distribution function of 
  and  i E  is the mean value of   under 

 1, 2:H ii  hypotheses. In view of [6], the support 
criterion   is defined as follows: 

,
1







                   (13) 

where   is the likelihood ratio and for the two 
censored and uncensored cases we have 

 
 

 
 

11

2 2
and ,

YZ
cen ncen

Z Y

f yf z

f z f y



 
         (14) 

2 2 1s sn   (see e.g. [14, Chapter 10]). This deterioration 
is due to the presence of GARCH model and weighted 
distribution. where  i

Zf z  and  i
Yf y  are likelihood functions  
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for iZ  and  variables respectively, in the Equation 
(1) under  hypotheses. 

iY

iH i: 1, 2 

4.2. Measuring Statistical Evidence 

We consider i.i.d case for variables in the Equations (1) 
and (2), also set  and then, we investigate the 
behavior of 

  1w x 
  by means of simulation. In addition, we 

analyze 1H  and 2H  hypotheses in Test Equation (3) 
by determining support criterion   of the measure of 
expected true evidence  abc . The programming 
codes of this part are written in the MAPLE (15) envi- 
ronment. 

Example 1. In this example, we generate data from 
gamma and uniform distribution as follows, considering 
multiplicative censoring model: 

   
 

Gamma 2, and Uniform 0,1

and : for 1,2

i i i

i i

Y U

H i



 

 

 
 

Then, according to Equations (13) and (14), we calcu- 
late the support criterion and the likelihood ratio via be- 
low relations: 

,
1

cen
cen

cen








 

such that 

 
 

1
1 21

2

1 1

2

1

e .

n

i
i

n
z

Z
cen

Z

f z

f z


 









 
  

 
 

   
 

 

and 

,
1

ncen
ncen

ncen








 

such that 

 
 

1

1 21

2

2 1 1

2

1

e .

n

i

n
yiY

ncen

Y

f y

f y


 









 
  

 
 

   
 

 

For different values of   and n , we calculate the 
value of   according to Equation (12). The results can 
be observed in Table 1. By carefully considering this 
table, it is observed that as the value of   increases 
(which implies the distance growth between 1  and 

2 ), the value of   gets closer to one. In other words, 

cen  approaches ncen  more and more. This fact 
can be interpreted in this way that if the distance between 

1

abc abc

  and 2  is large, the data lost in censored data i  is 
negligible. That is to say, evidential inference draws our 
attention to the time when 2

Y

  is close to 1 . The above 
analysis can also be observed in Figure 1. 

In what follows, the variations of sample volume ratio 
increase against   are investigated, and the value of  

  in the 
 


different values of  and . 1n 2n

If 2

1

25
1.25

20

n

n
   then 1.6  . The result can be 

viewed in Figure 2, If 2

1

15

10

n

n
 1.5 2.1 then   . 

The result can be viewed in Figure 3, If 2

1

n

n

20
2 

10
    

then 2.5   . The result can be viewed in Figure 4. 
The above results can be interpreted in this way that as 

the sample volume increases from a certain stage on, the 
value of   remains constant. In other words, it can be  

intuitively said that the 
 
 

2

1

,
ArgMax 

,

n

n

 
 

 ratio tends to  

the constant   value, which this also leads to an in- 
crease in evidential strength. 

5. Proofs 

In this section,  denotes any constant that does not 
depend on  and . Its value may change from one 
term to another and may depends on 

C
,j k n

  or  . 
 

Table 1. Computed values for γ. 

n value   value 

 α = 1.1 α = 1.6 α = 2.1 α = 2.6 α = 3.1 α = 3.6 α = 4.1

10 0.5122 0.6427 0.7580 0.8398 0.8994 0.9317 0.9596

15 0.5165 0.6879 0.8273 0.9141 0.9572 0.9799 0.9894

20 0.5291 0.7251 0.8773 0.9516 0.9824 0.9931 0.9970

25 0.5219 0.7614 0.9145 0.9738 0.9923 0.9981 0.9991

30 0.5329 0.7881 0.9409 0.9862 0.9968 0.9992 0.9995

 

 


2

1

,
ArgMax 

,

n

n

 
 

 equation is determined for  Figure 1. γ computed from gamma distribution for dif- 
ferent values of n. 
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Figure 2. The most relative changes when sample size n1 = 
20 increases to n2 = 25 happens in α = 1.6. 

 

 

Figure 3. The most relative changes when sample size n1 = 
10 increases to n2 = 15 happens in α = 2.1. 
 

Proof of Lemma 3.1. 
Proof can be found in [13].  
Proof of proposition 3.1. 
1. By Equation (9) and Equation (5), we have 

  

 
         

   

     

,

, ,

2

,

, ,

1

.

j k

j k j k

j k

j k j k

T x

x w x x x w x

w x
x x w x

C x x



 



 

  
  

 
   
 

 

Figure 4. The most relative changes when sample size n1 = 
10 increases to n2 = 20 happens in α = 2.2. 
 

Therefore 

 
  

 
  

 
   

0

0 0

,
0,1

, ,
0,1 0,1

3 3

2 2 2

sup

sup sup

2 2 2 .

j k
x

j k j k
x x

j
j j

T x

C x

C C



 



 

   
 
 

    
 

x       (16) 

2. By Equation (9) and Equation (5), we have 

   
      

2

, 0

2
2

, 0 , 0 .

j k

j k j k

T Z

C Z Z



 
          



 
    (17) 

By Equation (4) and under the assumptions of Sub- 
section 2.1 and also doing the change of variables 

2 jy x k  , we have 




   (15) 

  
     

 

2

, 0

1 1
2 2

, ,
0 0

2
2

d d

d .
j

j k

j k Z j k

k

k

Z

x f x x C x x

C y y C



 






 

 

 





    (18) 

Using again Equation (4) and the assumptions of Sub-  

section 2.1, the equality      3 2
, 2 2j j

j k x x k      

and doing the change of variables 2 jy x k  , we ob- 
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tain 

   

        

 

2

, 0

21 1 2

, ,
0 0

2
22 2

d

2 d 2 .
j

j k

j k Z j k

k
j j

k

Z

dx f x x C x x

C y y C



 






   
 

 

 

 





   (19) 

Combining Equations (17)-(19), we obtain 

   2
2

, 0 2 .jj kT Z C             (20) 

The proof of Proposition 3.1 is complete. 
Proof of Proposition 3.2. 
1. We have 

  

       

   

      

   

      

0 0

0 0

0 0

,
1

2

, ,2
1 1

2

, 12

2 1

, ,2
2 1

2

, 12

2 1

, ,2
2 1

,

2 ,

2 ,

n

j k i
i

n n

j k v j k
v

j k

n v

j k v j k
v

j k

n v

j k v j k
v

T Z
n

T Z T Z
n

T Z
n

T Z T Z
n

T Z
n

T Z T Z
n

 

  

 

  

 

  



 



 



 

 
 
 






































 .

  (21) 

Using Equation (20) we obtain 

        2
2

, 1 , 1 2 .jj k j kT Z T Z C       (22) 

also 

      

        

      

0 0

0 0

0 0

1

, ,
2 1

, 0 ,
1

, 0 ,
1

,

,

, .

n v

j k v j k
v

n

j k j k m
m

n

j k j k m
m

T Z T Z

n m T Z T Z

n T Z T Z

 

 

 



 





 

















    (23) 

By the Davydov inequality (see [16]) and for any 
 we obtain 0,1q 

      

 
       

0 0

0 0

, 0 ,

2 12

, ,
0,1

,

10 sup .

j k j k m

q q
q
m j k j k

x

T Z T Z

a T x T Z

 

 




         



 0

Putting Equation (24), Eq tion (16) and Equation (20) 
to

(24) 

ua
gether, we have 

      
   

0 0, 0 ,

2 1 23

,

10 2 2 2 .

j k j k m

j q jq jq q
m

Z T Z

a C Ca


  

 
q

m

       (25) 

Since C

T 

1 1

n
q q
m m

m m

a a


 

   , we obtain 

      
   

0 0

1

, ,
2 1

2 2

1

,

2 2 .

n v

j k v j k
v

n
j q j qq

m
m

T Z T Z

nC a nC

 


 

 



 









       (26) 

Putting Equations (21) and (22) and Equation (26) 
together, we have 

    2
,

1

2 .
n

j q
j k i

i

C
T Z

n n
 



  
 
         (27) 

2. We have 



   
 

   
 
   

 
   

 

2
1

2

1

2 2 2
2 1

1 1 
ˆ

1

2
, .

n
i i i

i i

i i i

i

n v
v v v

v v

w Z Z w Z

n w Z

w Z Z w Z

n w Z

w Z Z w Z w Z Z w Z

n w Z w Z

 



 


        
 

   
 

   
   

 



   

 

 





(28) 

By Equation (5), we have 

   
 2

.i i i

i

w Z Z w  Z
C

w Z


  

 
            (29) 

By the Davydov inequality (see [16]) we obtain 

   
 

   
 2 2

, .m
v

Ca
w Z w Z

  
 

   (30) 

Combining Equations (28)-(30), we obtain 

v v v qw Z Z w Z w Z Z w Z     

1

1 n
qC C  

1 .
ˆ m

m

a
n n 

        
           (31) 

3. Using Lemma (3.1), Equation (27) and Equation 
(31), then 

  
  

    

2

, ,

2 2

, ,
1

2
,

1

ˆ

1 1
ˆ

1
2 .

ˆ

j k j k

n

j k i j k
i

n
j q

j k i
i

C T Z
n

C
C T Z

n n



  


 










              

             





 

 

 (32) 

The proof of Proposition 3.2 is complete. 



Proof of Theorem 3.1. For any integer  , any 
 2 0,1 can be expanded on   as Xf   
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0

,
0 0

,X j
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2 1 2 1
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j k j k j kf x x 
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Record Data and Random Observation 
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1 2
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