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ABSTRACT 

Vaccination strategies are designed and applied to 
control or eradicate an infection from the population. 
This paper studies three different vaccination strate-
gies used worldwide for many infectious diseases in-
cluding childhood diseases. These strategies are the 
conventional constant vaccination strategy, the peri-
odic step (pulse) vaccination strategy and finally the 
mixed vaccination strategy of both the constant and 
the periodic one. Simulation of the different vaccina-
tion programs is conducted using three parameter 
sets of measles, chickenpox and rubella. The Poincaré 
section is playing as a filter of our simulation results 
to show a wide range of possible behavior of our 
model. Critical vaccination level is been estimated 
from the results to prevent severe epidemics. 
 
Keywords: Simulation; SEIR Model; Periodic  
Vaccination; Poincaré Filter; Childhood Diseases 

1. INTRODUCTION 

Vaccination programs are used as a tool to control the 
spread of epidemics. The simplest vaccination strategy is 
to vaccinate all susceptible individuals at a constant rate. 
This may also be combined with vaccination of a fixed 
fraction of very young children at the smallest possible 
age where maternal antibodies no longer confound the 
effect of the vaccine, commonly 9 - 18 months for mea-
sles. In the absence of vaccination, many common 
childhood diseases show a regular periodic oscillation 
with period of a whole number of years [1,2]. We ignore 
the effect of maternal antibodies in this paper, so children 
are vaccinated from birth. Much work has been done 
analysing seasonal periodic outbreaks of infectious dis-
eases considering seasonal variation in the contact rate 
[1-3]. 

Recently it is well known that in some circumstances a 
periodic vaccination strategy, for example pulse vaccina-
tion, can be a more efficient use of limited immunisation 

resources than continuous constant vaccination effort 
[4-6]. In this paper we study a general continuous peri-
odic vaccination strategy  and extend the results of 
[7]. This is combined with vaccination of a given propor-
tion of newborn individuals. As in many real diseases 
there is a time delay between an individual becoming 
infected and becoming infectious we introduced an ex-
posed or latent class into the model. We consider the 
model both with a periodic disease transmission rate and 
a constant one. 

 r t

If the combined vaccination strategy is applied in the 
situation where no disease is present, then the number of 
susceptibles eventually reaches a unique periodic solu-
tion. Our results lead us to conjecture that this combined 
periodic and fixed vaccination strategy is sufficient to 
eliminate disease from the population exactly when the 
weighted time-averaged disease-free susceptible popula-
tion is less than a certain threshold value. 

1.1. The Conventional Strategy 

The conventional strategy is used to vaccinate a fixed 
proportion of newborns of whom a proportion p, 
0 1p ,   are successfully vaccinated. This constant 
rate strategy reduces the effective total birth rate of sus-
ceptible individuals from N  to  where 1N p  
  is the per capita birth rate and  is the total popu-
lation size. So the effect of applying the conventional 
strategy is to significantly reduce the size of the suscep-
tible population [8]. 

N

Study of a simple SIR model with constant vaccination 
shows that there is disease free equilibrium point  
    , , 1 ,0, .S I R N p Np    

p

 Examination of the sta- 
bility of this disease free equilibrium shows that there is 
a critical level c  of the proportion of susceptibles who 
are successfully vaccinated given by  

0

1
1 ,cp

R
   

where 0  the basic reproductive number (the number 
of secondary cases produced by a single infected person 

R
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entering a population at the disease free equilibrium) is 
given by  

 
0

1
.

N p
R


 





 

This critical value of p determines the stability of the 
disease free equilibrium of the the SIR model. The dis-
ease free equilibrium is stable if c  and unstable 
when  To eradicate the infection from the popu-
lation by applying this constant rate vaccination strategy, 
it is necessary to keep the susceptible population beneath 
a certain critical value by vaccinating a large enough 
proportion p of the susceptibles such that c . 
Therefore the herd immunity must exceed a critical level 
in order for the reproductive number to be reduced to be 
less than unity in value [9]. Anderson and May [10] 
found that for parameter values corresponding to measles 
the critical value of  approximately. This 
means that, to eradicate the infection from the population 
it is necessary to vaccinate at least 95% of newborns 
immediately after the birth. But it is difficult and expen-
sive to implement a vaccination for a large population 
with such a large coverage. Also existing measles vac-
cines are only about 95% efficient. So it is better to try 
another vaccination strategy to find a way to keep the 
disease free equilibrium stable with a smaller coverage 
of vaccination. This new way is the time dependent vac-
cination strategy. 

p p
.cp p

p p

0.95cp 

1.2. The Pulse Vaccination Strategy 

Pulse vaccination vaccinates susceptibles at discrete 
points in time, usually at regular intervals. Many recent 
works studied epidemic models with pulse vaccination 
strategy. The pulse vaccination was the main aim of these 
epidemiological investigations [11-16]. One such exam-
ple is the use of annual immunisation days which were 
successful in eradicating measles from Gambia between 
1967 and 1972 [17]. In recent times a pulse vaccination 
strategy has been applied in South and Central America 
and highly successfully applied to poliomyelitis in the 
same region [18,19]. This method is now used in Brazil 
and is both easier to arrange and has a greater uptake 
than the conventional continuous vaccination strategy. 
Pulse vaccination has been used in Africa recently albeit 
with only partial success [6]. Agur et al. [4] discuss the 
possibility of implementation of the pulse vaccination 
method in Israel. 

Pulse vaccination has also been used in the United 
Kingdom. In November 1994 a single dose of combined 
measles and rubella (MR) vaccine was given to children 
aged 5 to 16 years. In England and Wales an average of 
92% of these children were vaccinated. This policy 
caused a significant fall in the number of cases of mea-

sles reported to the Office of Population Censuses and 
Surveys. It was concluded that application of pulse im-
munisation to all schoolchildren would probably prevent 
a large amount of morbidity and mortality and would 
have a marked effect on measles transmission for several 
years [5]. 

Nokes and Swinton [5] use simple steady-state and 
age-structured dynamic models to extend the theory of 
the mechanism of action of pulse vaccination, and to 
explore the relationship between the maximum permitted 
interval between pulses and key epidemiological, demo-
graphic and vaccination variables. 

Shulgin et al. [6] studied an SIR model with a pulse 
vaccination with each pulse at the time t is  
   r t p t nT   where  is a constant and 0 p 1,
 t

p

 is the Dirac delta function. They consider a series 
of pulse vaccinations 

0n
 vaccinat-

ing a fraction  of the susceptibles individuals at times 
separated by the inter-pulse vaccination period T. They 
found that an infection free solution is possible and the 
number of susceptible and recovered populations are 
periodic functions with period equal to the period of the 
vaccination pulse. 

  p   r t t nT

They also found that when the disease transmission 
rate   is a constant, the disease free periodic solution 
(DFS) is locally stable if the mean value of the sus- 
ceptible population, over a single pulse period, is below a 
certain critical value   cS

.cS
 



  

They used Floquet theory to examine the stability of 
the DFS when  t  is a non-constant periodic function 
with the same period as  r t . Floquet theory is a good 
framework to study the stability of a linear periodic 
system  

 tx A x  

where  tA  is a periodic matrix such that  
   tA AT t  . This framework starts by calculating 

the monodromy matrix of this system which is the 
fundamental matrix  t  at  .t T

Floquet multipliers which are the eigenvalues of the 
monodromy matrix are the critical parameters which 
determine the stability of the periodic linear system. If all 
the Floquet multipliers are less than unity in absolute 
value the trivial solution of the linear system is stable but 
if one of them is bigger than unity in absolute value the 
solution will be unstable [20]. 

Shulgin et al. [6] found that the necessary condition 
for all Floquet multiplier to be less than unity in absolute 
value is that  

   
0

1 ˆ d .
T

S
T

        
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Here  Ŝ   denotes the number of susceptibles at 
time   for the DFS. This is the condition for local 
stability of the disease free solution (DFS) and under this 
condition there is no chance of any severe epidemic to 
occur. 

Aron [21] studied an SEIR model with sinusoidal form 
of seasonal variation in the contact rate and introduced a 
time dependent vaccination rate  into this model. 
During this study the vaccination rate  is taken as 
a simple step function 

 p t
 p t

 
0 if

if .

t T
p t

p t


 



,

T



 

This strategy instantaneously introduces vaccination of 
a constant proportion  of newborns individuals at 
time . She found numerically that periodic endemic 
solutions coexist for the post-vaccination SEIR model. 
She also found that the period of the endemic solution 
depends on the pre-vaccination reproduction number. 
The vaccination strategy reduces the reproduction num-
ber by a factor [9] so the post-vaccination re-
production number is 

p

  
1

T

1 p
p  times the pre-vaccina- 

tion one. 

1.3. The Mixed Vaccination Strategy 

Finally in the mixed vaccination policy both the conven-
tional and the vaccination pulse strategies are applied 
simultaneously. Because the conventional strategy is 
currently used in many countries world wide, it is useful 
to combine both the pulse and the conventional strategy 
to provide a good comparison with the conventional 
strategy [5]. They also found that applying the mixed 
strategy allows the system to return back to its equilib-
rium level faster and with less chance of severe epidem-
ics than the conventional one. 

Shulgin et al. [6] also studied this strategy and they 
found that the optimal pulse interval between the vacci-
nation pulses is a factor   shorter than in the 
pulse vaccination strategy, where c  is the proportion 
of susceptibles who are vaccinated at birth. They found 
also that applying the mixed strategy is better than using 
only the pulse strategy, as in the mixed strategy the basic 
reproductive number is a fraction 

1 cp
p

 1 p



 of its value in 
the pulse strategy. Now we shall investigate a more real-
istic and complicated SEIR model with a general con-
tinuous periodic vaccination rate r t . Simulating the 
aggregation of the disease under the effect of different 
types of vaccination rates is our point of view. 

2. THE SEIR MODEL WITH 
VACCINATION 

The SEIR model of the spread of infectious diseases 
makes the following assumptions: 

1) The total population size is  and the per capita 
birth rate is a constant 

N
 . As births balance deaths we 

must have that the per capita death rate is also  . 
2) The population is uniform and mixes homogeneously. 
3) The population is divided into susceptible, exposed, 

infective and recovered individuals. The total number of 
individuals in each of these classes are respectively 

     , ,S S t E E t I I t    and .   R R t
4) The infection rate  t  is defined as the total rate 

at which potentially infectious contacts occur between 
two individuals. A potentially infectious contact is one 
which will transmit the disease if one individual is 
susceptible and the other is infectious, so the total rate at 
which susceptibles become exposed is  Bio- 
logical considerations mean that  is continuous. 
We also assume that either (i)  is not identically 
zero, positive, non-constant and periodic of period  or 
(ii)

  .t SI
 t

 t
T

 t   is a constant.  
5) The susceptibles move from the exposed class to 

the infective class at a constant rate   where  1   is 
the average latent period conditional on survival to the 
end of it.  

6) The infectives move from the infective class to the 
recovered class at a constant rate   where  1   is the 
average infectious period conditional on survival to the 
end of it.  

7) A fraction  p  0 p 1   of all new-born children 
are vaccinated. In addition all susceptibles in the po- 
pulation are vaccinated at a time dependent periodic rate 
 r t . This is the periodic vaccination strategy. We shall 

suppose that  r t  is periodic with period  for 
some integer numbers  including .  

LT
L 1L 

Our SEIR model with time dependent vaccination 
strategy can be written as a set of four coupled non-linear 
ordinary differential equations as follows: 

     d
1 ,

d

S
N p t SI r t S

t
             (1) 

   d
,

d

E
t SI E

t
               (2) 

 d
,

d

I
E

t
     I             (3) 

and 

 d
,

d

R
Np r t S I R

t
                (4) 

with 

.S E I R N                  (5) 

Here the disease transmission rate  and the 
vaccination rate 

 t
 r t  are non-zero, positive, continuous 

periodic functions. The system (1)-(5) has no equilibrium 
points but a disease free solution (DFS), with  
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    0E t I t   is still possible. 
Consider the region  in  defined by D 4

    4
, 0, .E I R N S E I R N     , ,D S

D

   0 0E I 

S E I R   

 

The system of differential equations (1)-(4) with initial 
conditions in  obviously starts off in the region . 
The right-hand sides of these equations are differentiable 
with respect to  and  with continuous de- 
rivatives. It is straightforward to show using standard 
techniques [22] (and considering separately the cases 

 and  or ) that the 
Equations (1)-(4) with initial conditions in  have a 
unique solution that remains in  for all time and 

. 

D

, ,S E I

0 E

N

R

0 0   0 0I 
D

D

3. THE DISEASE FREE SOLUTION 

In the case that  is a non-constant bounded con-
tinuous periodic function, there is no equilibrium point 
for the system (1)-(5). So there is no disease free equilib-
rium point. But still there is a periodic DFS correspond-
ing to the case that  In this case (1) 
becomes  

 r t

    0.E t I t 

    1 .
S

N p r t S
t

    
d

d

   E t I t

      (6) 

If , (6) has a solution for 0.  S t . We 
shall examine the behaviour of this solution. Integrating 
(6) we find that  

   

        

        exp
t

S t S t    

     

   

0

0

0 0

0 0

0

0

exp d

1 exp d

d d .

t

t

t

t

t t

t t r

N p t t r

t r


  

  

    

   

       

     





 









 (7) 

Hence 

    

 

   

   

0

0

0

0

0 0

0 0

0

1

d

1 exp d

d d .

t LT

t

t LT

t

t t

LT S t nLT

LT r

N p LT r

t r


  

0

exp

exp
t LT

S t n

  

    





   

   

    

     





 

 





 

 

nS S

   (8) 

Equation (8) gives a recursive relationship between the 
number of susceptibles at time 0   
If we let  then (8) defines a mapping 

,t nLT 1, 2,3, .n  
 0t nLT 

F  such that  

  1.n nF S S   

If 1  and  are different values of  then we 
have that  

S S2 S

     1 2 1 2 exp .F S F S S S LT     

So F  is a contraction mapping [23] and has a unique 
fixed point  0S t  such that  

     
    

 

0

0 0

0 0

0

0

1 exp d

             exp d d

1
             .

1 exp d

LT

t LT

t t

LT

S t N p LT r

t r

LT r



   

    

  





         

     


     



 



 (9) 

Hence   0 0 .S t LT S t  
.t

  So  is a periodic 
function of  Differentiating (9)  is con- 
tinuously differentiable with respect to  and  

S



0t
 0S t

    ,t ˆ ˆ 0E IŜ t S     and  
     t N S t   R̂ t R

LT

 is a disease free periodic so- 
lution of the system (1)-(5) which repeats itself every 

 years. We have the following result: 
Theorem 1. Equations (1)-(5) have a disease free 

periodic solution of period  which is continuously 
differentiable and this is the only disease free periodic 
solution to (1)-(5), and any disease free solution to (1)-(5) 
approaches this one as time becomes large. 

LT

Proof see [24] for the case . 1L 
Recall that 0 , the basic reproduction number of the 

disease is defined as the expected number of secondary 
cases caused by a single infected case entering the 
disease-free population at equilibrium [10]. Anderson 
and May [10] call this the basic reproduction rate, but it 
is a number not a rate. Consider a single newly infected 
person entering the population at the DFS. During the 
latent period this person suffers a death rate 

R

  and 
leaves for the infectious class at rate  . Assuming that 
the time taken for these two events to happen follow 
independent exponential distributions the probability that 
the individual survives his or her incubation period is 

    . Similarly the average length of the in- 
fectious period is  1    . The average value 
taken over a cycle of the expected number of secondary 
cases produced by a single infected person entering the 
population at the DFS is our conjectured value for , 
namely  

0R

   
  0 0

ˆ d1
.

LTc S
R

LT

   
   


          (10) 

Define 

   

 

       
 

sup
0

0
0,

ˆ exp d
,sup

1 exp

LT

t LT

R

t S t

LT


   

        

 


 

      
    


(11) 
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and 

  

 

       
 

inf
0

00,

ˆ exp d
.inf

1 exp

LT

t LT

R

t S t

LT


   

        

 


 

      
    


(12) 

It is proved that  with both of the 
inequalities being strict if 

sup inf
0 0 0

cR R R 
   ˆt S t  is non-constant on 

 0, LT

sup
0R 

 [22]. We expect that if 0  the disease will 
take off whereas if 0  the disease will die out. 
However we have been able to show only the result that 
if  the disease will die out and if  then 
the disease will take off if it is initially present. In the 
following sections we shall formally investigate these 
results [22]. 

1cR 
1cR 

1 inf
0 1R 

4. THE SIMULATION 

In this paper the simulations of the SEIR model with 
three different vaccination strategies have been con- 
ducted using the XPPAUT package and data estimated 
from the literature. Parameter values corresponding to 
the childhood diseases of measles, chickenpox and ru- 
bella have been used. 

A constant population size of  has 
been considered. We also supposed that 

1,000,000N 
0.02 year 

.0

 
corresponding to an average human lifetime of 50 years 
[2,21]. We chose this value to be consistent with pre- 
vious studies even though the actual value of the average 
lifetime in many countries is higher. For example the 
average lifetime in the UK is around  years. We do 
not feel that this will have much effect on the results of 
our simulations as we are mainly considering childhood 
diseases and the proportion of individuals who catch the 
disease at 50 years or later is negligible. Mainly the 
following specific values of 

70

1   and 1   have been 
taken as in [3,10,25-27] for our models: 

1) Measles:  and ;  1 9.49 days  
1 15.22 day  

1 3.65 days  
1 9.13 day  2) Chickenpox:  and ; s

1 10.65 days 
s

1 11.67 days  3) Rubella:  and . 
We have taken also 0  as estimated from the li- 

terature, for our simulations results for all of the bifur- 
cation diagrams presented and for the three diseases under 
investigation as follows: 0 0.0018 year   for measles, 
0.00113 year  for chickenpox and 0.0007 year  for ru- 
bella respectively. 

The key parameter in the analytical results was the 
basic reproduction number 0  [22,24]. So the computer 
simulations of our models were performed using values 
of 0  to insure that the disease is in the endemic 
state. The values of 0  were determined by the value of 

R

1R 

,
R

0  the mean level of the disease transmission function, 

and 1  which determines the amplitude parameter of 
the periodic transmission rate  .t  

This paper targeted the long term behaviour of the 
system in response to changes in the vaccination pa-
rameter, (the value the vaccination rate of the conven-
tional strategy, the amplitude of the vaccination function 
of both the pulse and the mixed one), which is our bifur-
cation parameter. The basic idea of this study is simply 
that, given a set of parameter values compound with ap-
propriate initial values then the endemic equilibrium so-
lution is obtained by running the system for a long time 
to eliminate transient solutions. Filtering the equilibrium 
solutions by looking at Poincaré sections of them taken 
every year (recall that the underlying seasonal variation 
in the contact rate has period one year). So in this paper 
the vaccination parameter is used as a filter of the long 
term equilibrium solution. By plotting the sections of the 
long term endemic equilibrium solutions against the vac-
cination parameter we obtain a number of points in a 
vertical line corresponding to each value chosen for the 
vaccination parameter. These points on the filter, repre-
sent the period of the stable long term periodic solution 
of our model. For example a single point indicates a so-
lution of period one year, two points a solution of period 
two years,  points a solution of period  years and 
an infinite number of points a chaotic solution. In the 
following simulation results which represent global bi-
furcation diagrams for SEIR model with vaccination us-
ing our filter are given. We say global because the filter 
described above is used to plot the bifurcation diagrams 
for a large range of values of the vaccination parameter. 
The comparison of the simulation results of our model 
show that the type of vaccination parameter affecting the 
pattern of the dynamics of the disease. The pattern of the 
mixed vaccination is the simplest pattern and the most 
controllable one. 

n n

This paper looked at bifurcation diagrams for three 
different vaccination functions one of which is the constant 
strategy. These three vaccination programs are applied 
for the SEIR model with the seasonally periodic trans- 
mission function the more realistic reparameterised step 
function as,  t     t0 1 1 , with mean value 0 , 
of period one year [22,24], where  

      
1

2 when 1 3, 2 3 ,

1 otherwise,

t t 
t

   


 

and  t  is the largest integer number less than  .t
Our three different vaccination strategies are of the 

following forms: 
1) The constant vaccination function   1P t p  to 

vaccinate the newborns as many as possible all the time.  
2) The periodic binary step vaccination function  
   1p t p t   with period one year to vaccinate the 

susceptible population  S t , where  
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    1 when 2 3,

0 otherwise.

t t
t

    


 

3) The mixed vaccination strategy which is composed 
of the periodic function    1p t p t 

  .P t p
0.5p

, combined with 
the constant vaccination one  In all of our 
simulations we have taken  . 

The simulation study is been designed to start off just 
before school opening days. It means that the disease 
transmission rate is at its highest value. Therefore at this 
critical moment we start our vaccination to control the 
disease dynamics or possibly prevent severe epidemics to 
occur. We simulate our model with the three different 
vaccination strategies under consideration by varying the 
vaccination parameter 1  from  to  in value. 
Then plotting the long term solution against the vac- 
cination parameter to have wide range of possible be- 
haviour of the disease under consideration. From the 
obtained patterns we can decide easily which vaccination 
strategy is more effective than the others. 

p 0 1

We start off our simulation with the most studied dis-
ease, measles, with the three different vaccination strate-
gies under consideration. Figure 1(a) represents the bi-
furcation diagram of measles when the vaccination 
strategy is the convectional constant one. This pattern 
shows that at low level of vaccination rate measles have 
long period solutions, these solution tend to chaos be-
haviour by a series of period doubling. This complicated 
pattern is interrupted by six, ten and twelve years peri-
odic solutions. Increasing the value of 1  we obtained a 
region of long period or aperiodic solutions until 1  
reaches the value  approximately then a long period, 
20 years or more, periodic solution appears up to the 
value 1 . Increasing the value of 1  slightly 
again a one year periodic solution appears and persists to 
decrease and tends to its limiting value at the end of 
range. These results agree with the previous results [4,10] 
which predict that, the effective value of 1  of the 
conventional constant vaccination strategy should exceed 
0.95 in value. In other words the percentage of the num-
ber of vaccinated newborns should exceed 95% to pre-
vent severe epidemics to occur. This proportion of new-
borns is very difficult to be vaccinated for different rea-
sons [22]. 

p
p

0.9

0.96p  p

p

Figure 1(b) represents the bifurcation diagram of 
measles when the vaccination parameter is the amplitude 
of the periodic step function . This pat-
tern start off by long period periodic solution at low val-
ues of the amplitude of the vaccination function. In-
creasing the value of 1  aperiodic solutions interrupted 
with long period solutions appear until the value of the 
amplitude reaches the value 0.3. Unlike the conventional 
vaccination strategy, increasing the amplitude slightly a  

   1p t p t

p

three years periodic solution is obtained followed by a 
one year periodic solution which persists until the value 
of 1  becomes 0.5 in value. This one year periodic so-
lution is interrupted with a long period periodic solution. 
Increasing the value of 1  more the one year periodic 
solution persists but decreases to its limiting value as the 

1  tends to the end of its range. It is important to note 
that, the step periodic vaccination forces the behavior of 
the system to be simply more than the conventional one. 
and the control of the dynamics of the disease is possible 
for a lower values of  compared with the conven-
tional strategy. 

p

p

1p

p

Figure 1(c) represents the corresponding bifurcation 
diagram of measles when the vaccination strategy is the 
mixed strategy and amplitude 1  of the periodic step 
function 

p
   1p t p t

p
p

 is vaccination parameter. In 
this vaccination strategy there is another proportion of 
vaccinated newborns, this proportion is been taken as 

. This pattern starts with a band of long period 
periodic solutions followed by six years periodic so- 
lutions then a one year periodic solutions interrupted 
with long period periodic solutions. When the value of 

1  exceeds 0.2 a one year periodic solution appears and 
persists until the of 1  reaches 0.5 in value. Increasing 
the value 1  further the one year periodic solution 
decreases monotonically to its limiting value as the am- 
plitude parameter tends to its end of range. It is important 
to note that the level of susceptible population is half the 
value of the corresponding value of the susceptible 
population when the vaccination strategy is the step 
periodic one only. This result is expected and obtained in 
several previous works. The most important result here 
and it seems to be a novel result is the simple pattern of 
measles with the mixed vaccination strategy. This pat- 
terns shows disappearance of very long period solutions 
and the pattern does not contain any chaotic behaviour.  

50%

p

Therefore we can claim that the mixed vaccination 
strategy is the most effective policy to control measles 
disease. Moreover using this mixed vaccination strategy 
reduces the number of the susceptibles in the system by a 
fraction  which is the rate at which the newborns are 
vaccinated. 

p

Figure 2(a) represents the bifurcation diagram of 
chickenpox with the vaccination strategy. Similar to 
measles this pattern shows that at the conventional vac-
cination strategy can not eradicate nor control the disease 
until the vaccinated proportion of the newborns exceeds 
the value of 0.95. This pattern contains different bands of 
periodic solutions and long period possibly aperiodic 
solutions until the constant vaccination rate 1 0.95p  . 
Therefore when the rate 1  exceeds the value 0.95, the 
number of susceptibles start to fall down monotonically. 
In other words the percentage of the number of vacci-  

p
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Figure 1. The bifurcation diagrams of measles parameter values of number 
of susceptibles against vaccination parameter (a) the values of p1 of the 
convection constant vaccination strategy P(t) = p1; (b) the amplitude p1 of 
the non constant periodic vaccination function p(t) = p1 ± (t) and (c) the 
amplitude p1 of the mixed vaccination strategy of both the constant and pe-
riodic step one. 
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Figure 2. The bifurcation diagrams of chickenpox parameter values of 
number of susceptibles against vaccination parameter (a) the values of p1 
of the conventional constant vaccination strategy P(t) = p1; (b) the ampli-
tude p1 of the non constant periodic vaccination function p(t) = p1 ± (t) and 
(c) the amplitude p1 of the mixed vaccination strategy of both the constant 
and periodic step one. 
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nated newborns should exceed 95% to prevent severe 
epidemics to occur. This proportion of newborns is very 
difficult to be vaccinated for different reasons [22]. 

 OPEN ACCESS 

Figure 2(b) represents the bifurcation diagram of 
chickenpox when the vaccination is the periodic step 
function    1p t p t

p

. This pattern start off by six 
year periodic solution then followed by a series of period 
doubling to a band of long period periodic solution. In-
creasing the vaccination parameter a band four years 
periodic solution appears followed by two years periodic 
solutions then eight years periodic solutions appear 
which is terminated into a one year periodic solutions. 
Increasing the value of the vaccination parameter more a 
band of long period periodic solutions appears followed 
by a three years periodic solution which is interrupted by 
a one year periodic solution until the value of 1  
reaches the value 0.6. Increasing the value 1  again a 
one year periodic solution appears and decreases slowly 
to its limit as 1  tends to one. Similar to measles dis-
ease, the pattern corresponding to the step periodic vac-
cination is more simple than the conventional one. Also 
when 1  exceeds the value 0.6 there is only a one year 
band of solution which is easy to control at lower values 
of  compared with the conventional strategy. 

p
p

p

1

Figure 2(c) represents the corresponding bifurcation 
diagram of chickenpox when the vaccination strategy is 
the mixed strategy. This patterns starts with a one year 
periodic solution followed by a seven years periodic so-
lution then a one year periodic solution switched into a 
three years periodic solution. Increasing the amplitude 
farther another band of one year periodic solution is ob-
tained and interrupted with a sixteen and a six years pe-
riodic solutions. This one year periodic solution persists 
until the amplitude 1  reaches 0.5 in value. Increasing 
the value the vaccination parameter slightly the one year 
periodic solution starts to decrease monotonically to 
reach half the value of the limiting value of susceptibles 
when the step vaccination strategy is applied only as p1 

tends to one in value. Similar to measles disease, the 
pattern of chickenpox with the mixed vaccination strat-
egy shows neither long period solutions nor any chaotic 
behaviour. 

p

p

Figure 3(a) represents the bifurcation diagram of ru-
bella with the vaccination strategy. Similar to measles 
this pattern shows that using the conventional vaccina-
tion strategy can not eradicate nor control the disease 
until the vaccinated proportion of the newborns exceeds 
the value of 0.95. This pattern contains different bands of 
periodic solutions and long period possibly aperiodic 
solutions until the constant vaccination rate 1 0.95p  . 
Therefore when the rate 1  exceeds the value 0.95, the 
number of susceptibles starts to fall down monotonically. 
In other words the percentage of the number of vacci-
nated newborns should exceed 95% to prevent severe 
epidemics to occur. This proportion of newborns is very 

difficult to be achieved for many different reasons [22]. 

p

Figure 3(b) represents the bifurcation diagram of ru-
bella when the vaccination is the periodic step function 
   1p t p t . This pattern starts off by three years pe-

riodic solution then followed by a band of four years 
periodic solutions then six years periodic solution ap-
pears. Increasing the vaccination parameter slightly two 
years periodic solutions appears followed by eight years 
periodic solutions then to another two years periodic 
solution for the second time. Increasing the value of the 
vaccination parameter more another band of six years 
periodic solutions appears again followed by a one year 
periodic solution at the midway of the vaccination range. 
Unlike the pattern of the constant vaccination strategy, 
increasing the vaccination parameter again a band of four 
years periodic solution continues to appear until the 
value of vaccination parameter reaches the value 0.6. 
Increasing the value 1  again a one year periodic solu-
tion appears and persists to the limiting value of 1 . 
Similar to measles disease, the pattern corresponding to 
the step periodic vaccination is simpler than the conven-
tional one. Also when 1  exceeds the value 0.6 there is 
only a one year band of solution which is easy to control 
at lower values of  compared with the conventional 
strategy. 

p

p

1p

p

Figure 3(c) represents the corresponding bifurcation 
diagram of rubella when the vaccination strategy is the 
mixed strategy. This patterns starts with a band of long 
period periodic solutions or aperiodic solutions corre-
sponding to very low values of the amplitude parameter 
followed by a band of three years periodic solution then 
a one year periodic solution switched suddenly into a 
five years periodic solution and return back to one year 
periodic solution again which persists until the amplitude 
becomes 0.5 in value. Increasing the value of the vacci-
nation parameter slightly this one year periodic solution 
starts to decrease monotonically to approach half the 
corresponding value of susceptibles when the step vac-
cination strategy is applied only as the 1  tends to one 
in value. Similar to measles and chickenpox diseases, the 
pattern of rubella with the mixed vaccination strategy 
shows the simplest behaviour. 

p

5. SUMMARY AND DISCUSSION 

It is important to simulate our model with exposed or 
latent class and with different vaccination strategy, to 
evaluate which strategy is more efficient. We have 
simulated the control of the dynamics of three childhood 
infectious disease by using three different types of 
vaccination strategies. We perform these simulations for 
an SEIR model with a seasonally varying disease 
transmission rate. Using a periodic vaccination strategy 
in such an SEIR model seems to lead to periodicity in the 
disease dynamics [22]. In this paper we try to control or  
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Figure 3. The bifurcation diagrams of rubella parameter values of number 
of susceptibles against vaccination parameter (a) the values of p1 of the 
convectional constant vaccination strategy P(t) = p1; (b) the amplitude p1 
of the non constant periodic vaccination function p(t) = p1 ± (t) and (c) the 
amplitude p1 of the mixed vaccination strategy of both the constant and 
periodic step one. 
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possibly eradicate diseases by applying the most efficient 
vaccination strategy. Efficiency means sometimes fewer 
number of vaccinated individuals leads to perfect control 
of the disease. This work can be summarised as follows: 
In Section 1 a short introduction to common practically 
used vaccination strategies was given. Section 2 outlined 
the SEIR model which we studied and gave the as- 
sumptions formulating the model. Section 3 addressed 
the results of the previous work by [22,28] which showed 
that there is a unique DFS for our SEIR epidemic model 
and this solution is periodic with period equal to that of 
the vaccination function. Also a conjectured expression 
for 0 , the basic reproduction number of the disease, is 
given when the vaccination campaign 

R
 r t

p
 is used. 

Lower and upper bounds,  and 0  respectively, 
for this expression were also defined. In this section the 
stability of the DFS of our model is stated. We found that 
the DFS was GAS when  and in this case the 
infection will ultimately fade out of the population [22, 
28]. 

inf
0R

sup
0R 

suR

1

Section 4 comprises the computer simulations model 
for different infectious diseases including measles. The 
simulation results presented in this paper were conducted 
when the basic reproduction number 0  However 
we tried to simulate our model with a seasonal variations 
in the incidence of childhood infectious diseases due to 
the opening and closing of schools using our suggested 
reparameterised periodic step function  

. Also we use a periodic step vac- 
cination strategy that starts to give the susceptibles a 
pulse of vaccine at the opening of schools, using the 
vaccination function . These new results 
for this periodic contact rate 

1.R 

   0 1 1t     t

   1p t p t 
   1 0 1t   t



 in 
combination with the vaccination strategy 

, are totally original for any set of pa- 
rameter values of childhood infectious diseases. 
   1p t p t 

For a highly infectious disease such as measles, using 
vaccination at birth only, approximately 91% - 94% of 
newborn individuals must be vaccinated to guarantee 
elimination of the disease [10]. It is hard to achieve this 
level of vaccination coverage, particularly bearing in 
mind that measles vaccine efficacy is only around 95%, 
that some individuals may be difficult for the health ser-
vices to locate and others may refuse vaccination for 
various other reasons. Using a continuous periodic vac-
cination strategy in conjunction with vaccination of a 
fixed proportion of newborn individuals, reduces the pro- 
portion of newborns who need to be immunised to a 
more realistic level. Moreover from (9) one can see eas-
ily that using such a mixed vaccination strategy uni-
formly reduces the level of fluctuation of susceptibles in 
the DFS compared with a purely periodic vaccination 
function . Hence it is more optimal to use a 
combined vaccination approach in order to prevent major 

outbreaks of infectious disease occurring. 

 0p 

We conjectured that to control or eradicate the disease 
it was both necessary and sufficient to keep the mean 
value of the product of the disease transmission rate and 
the susceptible population at the DFS beneath a critical 
threshold value. If this is true then it is possible for a few 
individuals to be vaccinated, provided only that the 
weighted mean value of the number of susceptibles at the 
DFS over the period of the vaccination function does not 
exceed the threshold value, the disease will still be 
eradicated. This contrasts with the strategy of constant 
vaccination where a critical fixed level of immunisation 
effort must always be applied to guarantee eradication, 
and this is an advantage of a periodic vaccination strat-
egy over a constant one.  

However the simulation results have indicated that 
using different functional forms of vaccination strategies 
generates different patterns of solutions for each disease 
parameter. The bifurcation diagrams show that the sim-
plest patterns are those of the mixed vaccination strategy. 
Apart from some of the results these diagrams show a 
one year solution for the whole diagram except the first 
quarter of range of the vaccination parameter. The most 
complicated diagrams are those of the constant vaccina-
tion parameter which show a wide range of periodic and 
aperiodic solutions all over there patterns for all of the 
three diseases. 

It is interesting to note the difference between the bi-
furcation diagrams in the case of using a periodic pulse 
vaccination function and the constant conventional vac-
cination strategy for all of the three diseases, (measles, 
chickenpox and rubella) studied. The bifurcation diagram 
for the periodic step vaccination shows that the disease 
reaches the DFS at a vaccination level of less than 60% 
of the total number of the susceptible population. On the 
other hand the constant vaccination strategy failed to 
control the disease before the vaccination rate exceeds 
95%. 

Finally it is important to note the difference between 
the bifurcation diagrams, when using the periodic pulse 
vaccination function and using the mixed vaccination 
strategy for all of the three diseases under investigation. 
The patterns show that, the level of vaccinated popula-
tion at which the disease starts to be controlled, in the 
case of using the mixed vaccination strategy is much 
fewer than that of the only periodic vaccination strategy. 
The diagrams show that, the effective vaccination pa-
rameter p1 in the case of the mixed vaccination is about a 
third of the that of the only periodic pulse vaccination 
strategy for all of the three diseases. Using a continuous 
periodic vaccination strategy in conjunction with vacci-
nation of a fixed proportion of newborn individuals, re-
duces the proportion of newborns who need to be immu-
nised to a more realistic level. Moreover from (9) one 
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can see easily that using such a mixed vaccination strat-
egy uniformly reduces the level of fluctuation of suscep-
tible in the DFS compared with a purely periodic vacci-
nation function . This agrees with our simulation 
results. As the diagrams show that at the end of range of 
the vaccination parameter, the number of susceptible 
population in the system when the mixed vaccination 
strategy is used, is approximately half its corresponding 
number of susceptible population in the system when the 
purely periodic vaccination strategy is used. Hence it is 
more optimal to use a combined vaccination approach in 
order to prevent major outbreaks of infectious disease 
occurring. 

 0p  
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