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ABSTRACT 

MicroRNAs (miRNAs) are short (~22 nt) non-coding 
RNAs that play an indispensable role in gene regula- 
tion of many biological processes. Most of current 
computational, comparative, and non-comparative 
methods commonly classify human precursor micro- 
RNA (pre-miRNA) hairpins from both genome pseudo 
hairpins and other non-coding RNAs (ncRNAs). Al- 
though there were a few approaches achieving prom- 
ising results in applying class imbalance learning 
methods, this issue has still not solved completely and 
successfully yet by the existing methods because of 
imbalanced class distribution in the datasets. For 
example, SMOTE is a famous and general over-sam- 
pling method addressing this problem, however in 
some cases it cannot improve or sometimes reduces 
classification performance. Therefore, we developed a 
novel over-sampling method named incre-mental- 
SMOTE to distinguish human pre-miRNA hairpins 
from both genome pseudo hairpins and other ncRNAs. 
Experimental results on pre-miRNA datasets from 
Batuwita et al. showed that our method achieved bet- 
ter Sensitivity and G-mean than the control (no over- 
sampling), SMOTE, and several successsors of modi- 
fied SMOTE including safe-level-SMOTE and bor- 
der-line-SMOTE. In addition, we also applied the 
novel method to five imbalanced benchmark datasets 
from UCI Machine Learning Repository and ach- 
ieved improvements in Sensitivity and G-mean. These 
results suggest that our method outperforms SMOTE 
and several successors of it in various biomedical 
classification problems including miRNA classifica- 
tion. 
  

Keywords: Imbalanced Dataset; Over-Sampling; 
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1. INTRODUCTION 

MicroRNAs (miRNAs) are short (~22nt) non-coding 
RNAs (ncRNAs) that play an indispensable role in gene 
regulation of many biological processes. The tiny miRNAs 
can target numerous mRNAs to induce mRNA degrada- 
tion or translational repression or both, they could regulate 
20% - 30% of human genes [1]. The miRNAs are tran- 
scribed as long primary miRNAs (pri-miRNAs) which are 
processed into 60 - 70 nt precursor miRNAs (pre- 
miRNAs) by Drosha-DGCR8. The pre-miRNA is trans-
ferred from Nucleus to Cytoplasm by Exp5-RanGTP and 
then split by Dicer-TRBP into miRNA duplex (~22 nt) [1]. 

The first miRNAs were characterized in early 1990s [2] 
but research on miRNAs has not revealed multiple roles 
in gene regulation (transcript degradation, translational 
suppression or transcriptional and translational activation) 
yet. Until the early 2000s, miRNAs were recognized as 
essential components in most biological processes [3-6]. 
Subsequently, miRNAs have become a hot topic and a 
large number of miRNAs, particularly 21,264 different 
miRNAs have been identified in various species so far 
according to the release 19 of miRBase [7]. However, the 
identification of miRNAs from a genome by existing 
experiment techniques is so difficult, expensive, and re-
quires a large amount of time. Therefore, computational 
methods with two main approaches based on compara- 
tive and non-comparative methods play important role to 
detect new miRNAs. The rationale idea of the first ap- 
proach—comparative methods is that miRNA genes are 
conserved in closely related genomes in hairpin second- 
dary structures. Several comparative methods are pre- 
sented such as RNAmicro [8], MiRscan [9], miRseeker 
[10], MIRcheck [11], and MiRFinder [12]. These con- 
servation-dependent comparative methods are successful 
to predict hundreds of miRNAs with high sensitivity in 
closely related species. However, they are unable to 
identify novel miRNAs without close homologies due to 
lack of current data or unreliability of alignment algo- 
rithms [13], especially due to possibly rapid evolution of *Corresponding author. 
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miRNAs. Particularly, the report from Berezikov et al. 
[14] has emphasized that non-conserved miRNAs in hu-
man genome missed by comparative methods are rela-
tively large and even have not still been recognized yet.  

Meanwhile, the second approach—non-comparative 
methods are promising for recognizing additional 
miRNAs which are non-conserved miRNAs. The main 
idea of these methods is based on hairpin secondary 
structures of pre-miRNAs. Sewer et al. [15] used clus- 
tering approach to predict novel miRNAs in the same 
cluster with known miRNAs. Xue et al. [16] proposed 
the classification of real and pseudo pre-miRNA hairpins 
based on 32 features of structure-sequence triplet. Clote 
et al. [17] and Hertel et al. [8] also identified that hairpin 
secondary structures are popular in many types of 
ncRNAs and a huge number of pseudo hairpins and hair- 
pin structures can be found among secondary structures 
of other ncRNAs. In addition, machine learning ap- 
proaches including random forest prediction model [18, 
19]; hybrid of genetic algorithm and support vector ma- 
chine (GA-SVM) [20]; feature selection strategies based 
on SVM and boosting method [21]; hidden Markov 
model (HMM) [22] have also been used. 

Therefore, both genome pseudo hairpins, other 
ncRNAs and machine learning approaches should be 
applied. In addition, miRNA prediction problem should 
be also considered as imbalance class distribution. Batu- 
wita et al. [23] proposed an effective classifier system, 
namely microPred which used a complete pseudo hairpin 
dataset and ncRNAs. In their research, they focused on 
handling with class imbalance problem in datasets where 
samples from the majority class (9248 = 8494 pseudo 
hairpins + 754 other ncRNAs) significantly outnumber 
the minority class (691 pre-miRNAs). Xiao et al. [24] 
presented several network parameters based on two-di- 
mensional network of pre-miRNA secondary structure 
such as bracketed, tree, dual graph, etc. Their dataset 
contained 3928 positive samples (animal pre-miRNAs) 
and 8897 negative samples (8487 pseudo hairpins and 
410 ncRNAs). Therefore, this dataset is suffered from 
imbalance problem, that is, the negative dataset outnum- 
bers the positive dataset. The main problem of class im- 
balance distribution is that normal learners are often bi- 
ased to the majority class, leading to good classification 
for the majority class samples while misclassification for 
many minority class ones. In order to solve these class 
imbalance learning problems, some solutions have been 
developed, including two main types: the external meth- 
ods at data processing level and the internal methods at 
algorithm level. One of remarkable solutions is SMOTE 
which is a famous and general over-sampling method 
addressing this problem. For example, experimental re- 
sults of Batuwita et al. [23] suggested that the best clas- 
sifier has been developed by applying the SMOTE 

method. However, there are still some drawbacks of 
SMOTE, particularly in some cases it cannot improve or 
sometimes reduces classification performance. Therefore, 
in our research we developed a novel over-sampling 
method to achieve better classification performance than 
both of the control method (no over-sampling) and 
SMOTE in the classification of pre-miRNAs for human 
miRNA gene prediction. Moreover, in order to demon- 
strate the applicability of our methods, we also compare 
our methods with several successors of modified 
SMOTE including safe-level-SMOTE [25] and border- 
line-SMOTE [26]. 

The structure of this paper is organized as follows: 
Section 2 gives a brief introduction to SMOTE and some 
related works, then shows its drawback; Section 3 intro- 
duces three variations of our novel method, incremental- 
SMOTE, which is improved from SMOTE; Section 4 
analyses the experiments and compares our novel me- 
thod with the control, SMOTE, safe-level-SMOTE, and 
borderline-SMOTE methods. Finally, conclusions are 
described in Section 5.  

2. METHOD 

2.1. SMOTE 

Chawla et al. developed a minority over-sampling tech- 
nique called SMOTE [27] in which the minority class 
samples are over-sampled by creating synthetic samples 
rather than by over-sampling with replacement. SMOTE 
provided a new approach to over-sampling and intro- 
duced a bias towards the minority class. The results in 
[27] showed that this approach could improve the per- 
formance of classifiers for the minority class. 

In a less application-specific manner, synthetic sam- 
ples are generated by operating in “feature space” rather 
than “data space”. The minority class is over-sampled by 
synthesizing new samples along the line joining the mi- 
nority samples and their nearest neighbors. Depending 
on the requirement of over-sampling amount, nearest 
neighbors are selected by chance. Synthetic samples are 
generated in the following way: firstly, compute the dif- 
ference of feature vector between each minority class 
sample and its randomly selected nearest neighbor. Then, 
multiply this difference by a random number between 0 
and 1, and finally add it to the feature vector of the mi- 
nority sample. In this way, the synthetic minority sample 
is generated along the line segment between two specific 
features.  

This approach is effective in forcing the decision re- 
gion of the minority class to become more general as 
shown in Figure 1. Figure 1(a) presents a typical case of 
imbalanced data where samples from the majority class 
greatly outnumber the minority class. As a result, the 
majority class samples are well-classified whereas many 
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thetic samples are generated between two sets of minor-
ity class samples named Source (S) and Destination (D). 
Figure 2(b) describes step by step the generation of syn- 
thetic samples by using SMOTE method: at the first step, 
a set of synthetic samples (X1) is generated, and at the 
next step, another new set (X2) is generated; the process 
is repeated and the sets of generated synthetic samples 
can be different in each step.  

samples from the minority class are easy to be misclassi- 
fied. Therefore, imbalanced dataset problem requires a 
new and more adaptive method such as SMOTE. Figure 
1(b) describes synthetic samples generated by SMOTE 
to achieve more balanced distribution so that the classi- 
fier recognizes all samples correctly. 

A variation of SMOTE, namely borderline-SMOTE is 
proposed by Han et al. [26] as the improvement of 
SMOTE. The authors analyzed most of the classification 
algorithms and attempt to learn the borderline of each 
class as exactly as possible in the training process. Those 
samples far from the borderline may make a little con- 
tribution to classification. Therefore, their method was 
based on the same over-sampling technique to SMOTE, 
but the difference is it only over-sampled the borderline 
samples of minority class instead of over-sampling all 
samples of the class as in SMOTE. 

In Figure 2(b), we could realize the drawbacks of 
SMOTE method: S and D do not change in the process 
of generating synthetic samples; and synthetic minority 
class samples will not be paid any attention after they are 
generated. Therefore, in order to address these drawbacks 
and improve classification accuracy of the SMOTE me- 
thod, we focus on how to utilize generated synthetic sam- 
ples as members of Source and Destination sets for further 
generation. This idea will be presented in next section, a 
novel method namely incremental- SMOTE. Another modification of SMOTE, safe-level-SMOTE 

is also presented by Bunkhumpornpat et al. [25]. Instead 
of randomly synthesizing the minority samples along the 
line joining a minority sample and its selected nearest 
neighbours, this method ignored nearby majority samples. 
The safe-level-SMOTE method carefully generated syn- 
thetic samples along the same line with different weight 
level, called safe level. The safe level was computed by 
using nearest neighbour minority samples. 

Moreover, although X is generated by S and D, S is 
the decisive factor in generating X. In contrast, D is only 
a randomly selected nearest neighbor to be used in com- 
bination with S in this generation. Therefore, the change 
of S will lead to the change of X as shown below in in- 
cremental-SMOTE2 and incremental-SMOTE3. 

Based on the analysis, we present three new methods, 
incremental-SMOTE1, incremental-SMOTE2, and incre- 
mental-SMOTE3. Although SMOTE and several successors of modified 

SMOTE including borderline-SMOTE and safe-level- 
SMOTE are famous and general over-sampling methods 
addressing the imbalanced class distribution problems, in 
some cases they cannot improve or sometimes reduce 
classification accuracy.  

2.3. Incremental-SMOTE1 

The idea of incremental-SMOTE1 is simple: the Des- 
tination set is expanded incrementally while keeping the 
Source set to be unchanged in all steps. Figure 3 illus- 
trates more details about this idea. In step 1, using 
SMOTE, a set of synthetic samples X1 is generated from 
two sets—Source (S) and Destination (D) sets as men- 
tioned above. In step 2, the Destination set is expanded 
by merging X1 into it. Similarly in step 3, the Destina- 
tion set is expanded again by merging X2 into it. The 
process is repeated in further steps. 

2.2. Drawback of SMOTE 

As discussed above, one particular synthetic sample is 
generated by using SMOTE as shown in Figure 2(a). 
Blue sample x is a synthetic sample generated along the 
line joining a minority class sample s and its randomly 
selected nearest neighbor d. Generally, the set of syn-  
 

 
(a)                                        (b) 

Figure 1. Advantages of SMOTE. Black, red, and blue dots indicate majority class samples, 
minority class samples, and synthetic minority class samples, respectively. The discrimina-
tion hyperplane is the brown line. (a) The original dataset with an erroneous classifier biased 
by the imbalanced dataset; (b) Synthesize some new minority class samples by applying 
SMOTE with a perfect classifier. 
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(a)                                     (b) 

Figure 2. Synthetic samples generated normally by SMOTE. Both red and blue dots indicate 
minority class samples. The latter indicate synthetic minority class samples generated by 
using SMOTE. (a) Particularly, one synthetic minority class sample is generated along the 
line of two minority class samples by using SMOTE; (b) Generally, a set of synthetic sam-
ples is generated from two sets named Source (S) and Destination (D). 

 

 

Figure 3. The idea of incremental-SMOTE1. 
 

Pseudo-code of incremental-SMOTE1 is as follows: 
Algorithm incremental-SMOTE1 (T, N). 
Input: The number of minority class samples T; Am- 

ount of incremental-SMOTE1 N (%);   
Output: (N × T/100) synthetic minority class samples 
0) Initialize and assign two new sets with the same 

size as the number of minority class samples.  
Source = T; Destination = T; 
1) Generate the new set X of T synthetic samples by 

using SMOTE. 
X = new synthetic samples generated at this step; 
2) Merge X into the Destination set. 
Destination = Destination + X; 
3) Repeat from Step 1 N/100 times. 

2.4. Incremental-SMOTE2 

Incremental-SMOTE2 is based on a reversal idea: the 
Destination set now is kept to be the same in every step, 
and the Source set is expanded incrementally. It is shown 
clearly in Figure 4. 

Pseudo-code of incremental-SMOTE2 is as follows: 
Algorithm incremental-SMOTE2 (T, N). 
Input: The number of minority class samples T; 

Amount of incremental-SMOTE2 N (%); 
Output: (N × T/100) synthetic minority class samples 
0. Initialize and assign two new sets with the same size 

as the number of minority class samples.  
Source = T; Destination = T; 
1) Generate the new set X of T synthetic samples by 

using SMOTE. 
X = new synthetic samples generated at this step; 
2) Merge X into the Source set. 
Source = Source + X; 
3) Repeat from Step 1 until (N × T/100) synthetic mi-

nority class samples are generated. 

2.5. Incremental-SMOTE3 

The idea of incremental-SMOTE3 is the combination of 
incremental-SMOTE1 and incremental-SMOTE2: both 
Source and Destination sets are expanded. Figure 5 
shows more details for this idea.  

Pseudo-code of incremental-SMOTE3 is as follows: 
Algorithm incremental-SMOTE3 (T, N). 
Input: The number of minority class samples T; 

Amount of SMOTE N (%);  
Output: (N * T/100) synthetic minority class samples 
0) Initialize and assign two new sets with the same 

size as the number of minority class samples.  
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Figure 4. The idea of incremental-SMOTE2. 
 

 

Figure 5. Thes idea of incremental-SMOTE3. 
 

Source = T; Destination = T; 
1) Generate the new set X of T synthetic samples by 

using SMOTE. 
X = new synthetic samples generated at this step; 
2) Merge X into the Source and Destination sets. 
Source = Source + X; 
Destination = Destination + X; 
3) Repeat from Step 1 until (N × T/100) synthetic mi-

nority class samples are generated. 

2.6. Classifier 

For binary class classification, Support Vector Machine 
(SVM) is widely used to build a classifier discriminating 
the classes [28]. SVM is based on simple ideas origi-
nated in statistical learning theory [29] which has high 
generalization capability, optimizes global classification 
solution and could be successfully applied in bioinfor- 
matics. In addition, in order to more generally evaluate 
the performance of our method, two different classifica- 
tion methods other than SVM were used, namely k- 

Nearest Neighbour (k-NN) and Random Forest (RF). 
Implementation of SVM, k-NN, and RF in kernlab 

[30], class [31], and random Forest [32]package avail- 
able at the Comprehensive R Archive Network (CRAN) 
was used, respectively. In our research, we used Radial 
Basis kernel (Gaussian kernel) of kernlab for SVM. 
Kernlab is an extensible package for kernel-based ma- 
chine learning methods in R and includes various kernels 
such as Linear kernel, Radial Basis kernel (Gaussian 
kernel), Polynomial kernel, etc. Moreover, all hyper- 
parameters for k-NN and RF, as well as other hyper-pa- 
rameters for SVM such as cost, class weights, etc. were 
also set to be default values. 

2.7. Evaluation Measures 

A confusion matrix of binary class classification is 
shown in Table 1. In the field of binary classification in 
imbalanced data, most of the studies consider the class 
label of the minority class as positive. Thus, the class 
labels positive and negative are given to the samples in 
minority and majority classes, respectively. In Table 1, 
the first column presents the actual class label of the 
samples, and the first row is their predicted outcome 
class label. TP and TN denote the number of positive and 
negative samples that are classified correctly, while FN 
and FP denote the number of misclassified positive and 
negative samples, respectively. 

If the dataset is extremely imbalanced, for example, 
with an imbalance ratio of 99 to 1, even when the classi- 
fier classifies all the samples as negative, the accuracy of 
classification is still high up to 99%. As a result, accu- 
racy is not used to evaluate the performance of classifier 
for imbalance datasets, and more reasonable evaluation 
metrics should be presented [33,34]. 

In medical science, bioinformatics, and machine lear- 
ning communities [23,24,33,34], the sensitivity (SE) and 
the specificity (SP) are two metrics used to evaluate the 
performance of classifiers. Sensitivity measures the pro- 
portion of actual positives which are correctly identified 
as such, while specificity can be defined as the propor- 
tion of negatives which are correctly identified. Kubat et 
al. [35] proposed the Geometric mean metric defined as 
follows.  

G-mean = SE SP  

There are many researches applying this metric for 
evaluating classifiers as commonly used in imbalanced  
 
Table 1. A confusion matrix for binary class classification. 

 Predicted Positive Predicted Negative

Observed Positive TP FN 

Observed Negative FP TN 
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class distribution [23,34-37]. Therefore, we use this met- 
ric to measure the performances of the classifiers in our 
research. 

3. RESULTS 

3.1. miRNA Dataset 

The miRNA datasets selected in this research were 
downloaded from the website of microPred classifier 
system [23] and miRNA network-level [24]. MicroPred 
consists of three kinds of non-redundant human se-
quences: 691 pre-miRNAs, 8494 pseudo hairpins, and 
754 other ncRNAs (9248 hairpins). The first type is posi-
tive, and the others are negative. Meanwhile, miRNA 
network-level dataset contains 3928 positive samples 
(animal pre-miRNAs) and 8897 negative samples (8487 
pseudo hairpins and 410 ncRNAs). Class imbalance ratio 
of the positive to negative dataset of microPred and 
miRNA network-level was 1:13 and 1:2, respectively. It 
means that these datasets have imbalanced class distribu-
tion with majority class samples outnumbering minority 
ones. In microPred dataset, 48 features were used to rep-
resent each sample while there were only 21 features 
used in miRNA network-level dataset. This was shown 
clearly by Xiao et al. [24] who presented 24 network 
features but three of them (Girth, M_coreness, and Tran-
sitivity) were meaningless because all samples are the  

same value in both classes. Subsequently, the rest 21 
features were meaningful and thus used in miRNA net- 
work-level dataset. 

3.2. Classification Imbalance Learning Results 

The experiments were executed to compare five methods: 
control method (no over-sampling), SMOTE, safe-level- 
SMOTE, borderline-SMOTE, and incremental-SMOTE. 
SVM, k-NN, and RF were used as the classifiers. The 
classification performance of the methods was estimated 
by 10-fold cross-validation. For each test, nine-tenth of 
the complete dataset was used as a training set. Then, in 
case of SMOTE, safe-level-SMOTE, borderline-SMOTE, 
and incremental-SMOTE, minority samples in the train- 
ing set over-sampled with the value of k is set to 5 like as 
SMOTE. After the training by an SVM, k-NN, or RF 
model using the (possibly over-sampled) training set, the 
model was tested against the remaining one-tenth of the 
dataset (i.e. test set). This process was repeated for all 
10-fold with different combination of training and test 
sets. The values for the criteria of performance, sensitiv- 
ity, specificity, and G-mean were calculated by averaging 
20 independent runs of 10-fold cross-validation and 
summarized in Table 2. Furthermore, two-sample t-test 
with equal variance was conducted to assess whether the 
averages of G-mean by different methods are signifi- 
cantly different.  

 
Table 2. Classification performance for microPred and miRNA network-level datasets expressed in percent. 

SVM k-NN RF 
Dataset Method 

SE SP G-mean SE SP G-mean SE SP G-mean 

No over-sampling 97.82 99.98 98.89 58.54 99.82 76.44 99.46 99.97 99.72 

SMOTE 98.68 99.96 99.32 81.40 98.06 89.34 99.70 99.97 99.84 

increSMOTE1 99.10 99.95 99.52 84.74 97.26 90.78 99.78 99.97 99.88 

increSMOTE2 98.94 99.95 99.44 90.98 94.52 92.74 99.80 99.97 99.88 

increSMOTE3 98.93 99.95 99.44 89.49 94.66 92.04 99.79 99.97 99.88 

Safe level-SMOTE 98.72 99.96 99.34 81.27 97.53 89.03 99.72 99.97 99.84 

Borderline-SMOTE1 98.65 99.96 99.30 79.39 97.73 88.08 99.64 99.97 99.80 

microPred 

Borderline-SMOTE2 98.80 99.93 99.36 83.93 96.58 90.03 99.97 99.94 99.96 

No over-sampling 80.43 96.51 88.10 79.85 94.92 87.06 82.58 95.92 89.00 

SMOTE 88.08 91.32 89.69 84.77 90.23 87.46 87.28 91.82 89.52 

increSMOTE1 88.57 90.99 89.77 84.69 90.74 87.67 86.24 93.02 89.57 

increSMOTE2 89.62 89.31 89.47 87.58 85.71 86.64 87.01 92.12 89.53 

increSMOTE3 89.67 89.24 89.45 87.47 85.27 86.36 86.38 92.78 89.52 

Safelevel-SMOTE 88.22 91.20 89.70 84.97 89.84 87.37 85.66 93.51 89.50 

Borderline-SMOTE1 86.58 93.14 89.80 83.35 91.25 87.21 85.47 93.59 89.44 

miRNA 
network 
level 

Borderline-SMOTE2 86.63 93.01 89.76 86.09 85.50 85.80 85.09 93.92 89.39 
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Table 3. The description of the imbalanced datasets from UCI. 

Name Examples Attributes Imbalance ratio 

Breast-w 683 10 1:1.90 

Haberman 306 3 1:2.78 

Blood 748 4 1:3.20 

Breast-p 198 32 1:3.21 

Yeast 1484 8 1:28.10 

Ionosphere 351 34 1:1.79 

Glass 214 9 1:6.38 

Satimage 6435 36 1:9.28 

 
Experimental results on the microPred dataset showed 

that our method achieved better G-mean than control 
method, SMOTE, safe-level-SMOTE, and borderline- 
SMOTE on two of three classifiers. For example, with 
using SVM, although the sensitivity and G-mean in- 
creased for control method (97.82% and 98.89%), 
SMOTE (98.68% and 99.32%), safe-level-SMOTE 
(98.72% and 99.34%), borderline-SMOTE1 (98.65% and 
99.30%), and borderline-SMOTE2 (98.80% and 99.36%), 
they also increased by (99.10% and 99.52%), (98.94% 
and 99.44%), and (98.93% and 99.44%) for incremental- 
SMOTE1, incremental-SMOTE2, and incremental- 
SMOTE3, respectively. However, it is different in the 
criterion of the specificity: in comparison with control 
method (99.98%), the specificity was decreased by 
0.02% for SMOTE, safe-level-SMOTE, and borderline- 
SMOTE1 (99.96%, 99.96% and 99.96%); 0.03% for in- 
cremental-SMOTE1, incremental-SMOTE2, and incre- 
mental-SMOTE3 (99.95%, 99.95%, 99.95%, and 99.95%); 
and 0.05% for borderline-SMOTE2 (99.93%). 

The assessment by t-test on the microPred dataset 
suggested that SMOTE, safe-level-SMOTE, borderline- 
SMOTE1, and borderline-SMOTE2 significantly out-
performs the control method (with p-value 2.2E−16, 
2.2E−16, 4.7E−15, and 2.2E−16, respectively) and this is 
also similar with incremental-SMOTE1, incremental- 
SMOTE2, and incremental-SMOTE3 in comparison with 
the control method (with p-values 7.24E−14, 4.5E−13, 
and 6.2E−10, respectively). Furthermore, it is easily rec- 
ognized that three methods used in our research also re- 
markably outperform SMOTE, safelevel-SMOTE, bor- 
derline-SMOTE1, and borderline-SMOTE2 with p-values 
(5.4E−5, 3.7E−3, and 2.1E−2); (1.9E−4, 1.2E−2, and 
4.0E−2); (3.4E−5, 2.4E−3, and 1.3E−2); and (5.6E−4, 
3.2E−2, and 8.0E−2), respectively. 

In addition, the experimental results and the assess- 
ment by t-test on the miRNA network-level dataset also 
suggested that our method significantly achieved better 
G-mean than control method, SMOTE, and safe-level- 
SMOTE by using all three classifiers, and significantly 
outperformed borderline-SMOTE on two of three classi- 

fiers (for more details, see Tables 2 and 5). 

3.3. Benchmark Datasets 

To demonstrate the applicability of our methods, we also 
performed experiments using eight real-world imbal- 
anced benchmark datasets from UCI Machine Learning 
Repository [38]: Radar data (ionosphere), Breast Cancer 
Wisconsin (breast-w), Haberman’s Survival (haberman), 
Blood Transfusion Service Center (blood), Wisconsin 
Prognostic Breast Cancer (breast-p), Glass Identification 
(glass), Landsat Satellite (satimage), and Yeast (yeast) 
with different class imbalance ratio as shown in Table 3. 
For highly imbalanced problems, the classes “head-
lamps”, “damp grey soil”, and “ME2” of glass, satimage, 
and yeast datasets, respectively, were converted into mi- 
nority class and the remaining classes of each dataset 
became majority class. Except ionosphere, glass, and 
satimage, these datasets contain biomedical data.  

The experiments were executed under the settings al- 
most the same as above. The values for the performance 
criteria, sensitivity, specificity, and G-mean were calcu- 
lated by averaging 20 independent runs of 10-fold cross- 
validation and summarized in Table 4. The results also 
suggested that our method achieved better G-mean than 
the control method, SMOTE, safe-level-SMOTE, and 
borderline-SMOTE methods. Furthermore, the assess- 
ment by two-sample t-test showed that SMOTE, safe- 
level-SMOTE, and borderline-SMOTE significantly 
outperforms the control and our methods remarkably 
outperform the control, SMOTE, safe-level-SMOTE, and 
borderline-SMOTE with p-values smaller than 0.05 in 
most cases (for more details, see Table 5). 

In addition, we calculated the correlation between the 
proportion of negative samples in the dataset (i.e. degree 
of imbalance) and improvement by the methods each 
with different classifiers as shown in Table 6. In case of 
SMOTE, the improvement from no-oversampling was 
calculated. However, in case of other methods, im- 
provement from SMOTE was calculated. The results 
suggested that improvements by SMOTE, incremental- 
SMOTE2, and incremental-SMOTE3 have positive cor-
relation to the degree of imbalance. In contrast, other 
methods have opposite characteristics. Among them, the 
improvements by SMOTE have shown relatively stronger 
correlation. These characteristics were observed more 
clearly when we used RF. Actually, only the combina- 
tions of RF with SMOTE, safelevel-SMOTE, and incre- 
mental-SMOTE2 showed the correlation values with p- 
values less than 0.05. 

4. CONCLUSION 

In this paper, we addressed a problem in human miRNA 
gene recognition, and showed that it requires a better 
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Table 4. The comparison of Sensitivity (SE), Specificity (SP) and G-mean expressed in percent. 

SVM k-NN RF 
Dataset Method 

SE SP G-mean SE SP G-mean SE SP G-mean

No over-sampling 98.44 94.13 96.26 95.71 97.10 96.40 96.35 97.02 96.68 

SMOTE 98.71 95.12 96.90 98.32 96.41 97.36 97.14 96.56 96.85 

Safelevel-SMOTE 98.86 95.49 97.16 99.25 95.38 97.30 96.99 96.56 96.78 

Borderline-SMOTE1 99.07 94.00 96.50 98.40 95.82 97.10 96.78 96.66 96.72 

Borderline-SMOTE2 99.44 94.07 96.72 98.98 95.26 97.10 97.03 96.47 96.75 

increSMOTE1 99.44 95.48 97.44 99.25 96.05 97.64 97.43 96.56 96.99 

increSMOTE2 99.48 95.43 97.43 99.38 95.80 97.57 97.55 96.43 96.99 

Breast-w 

increSMOTE3 99.54 95.41 97.46 99.23 95.90 97.55 97.51 96.48 97.00 

No over-sampling 18.77 92.87 41.71 28.09 87.87 49.65 23.52 91.13 46.26 

SMOTE 53.21 65.49 58.99 55.43 65.38 60.15 41.48 77.04 56.49 

Safelevel-SMOTE 66.79 56.18 61.22 66.05 54.36 59.89 44.57 75.71 58.06 

Borderline-SMOTE1 66.98 55.18 60.76 61.67 56.31 58.91 40.19 75.16 54.93 

Borderline-SMOTE2 69.07 54.67 61.41 69.14 49.73 58.61 41.17 74.13 55.20 

increSMOTE1 68.40 57.47 62.67 62.78 60.67 61.69 45.80 77.98 59.73 

increSMOTE2 68.02 57.36 62.44 63.83 59.96 61.81 50.37 76.00 61.84 

Haberman 

increSMOTE3 66.48 57.78 61.95 62.53 60.76 61.61 51.73 70.67 60.43 

No over-sampling 30.65 94.21 53.71 27.56 91.03 50.07 29.24 90.04 51.27 

SMOTE 74.04 60.35 66.84 51.88 74.70 62.24 50.28 72.47 60.35 

Safelevel-SMOTE 65.76 68.61 67.08 57.67 68.39 62.79 54.07 71.11 62.00 

Borderline-SMOTE1 61.91 71.97 66.65 55.70 70.23 62.53 45.79 74.71 58.47 

Borderline-SMOTE2 50.11 84.89 65.22 63.96 62.87 63.39 55.31 64.75 59.81 

increSMOTE1 73.85 61.98 67.65 70.39 57.96 63.87 55.70 68.05 61.55 

increSMOTE2 73.17 62.71 67.74 58.03 69.37 63.43 63.96 63.42 63.68 

Blood 

increSMOTE3 73.43 62.54 67.76 61.49 65.69 63.54 58.37 66.00 62.06 

No over-sampling 10.11 99.47 31.36 20.85 87.88 42.69 19.68 98.54 43.87 

SMOTE 53.30 73.81 62.68 59.47 57.58 58.45 43.30 83.68 60.16 

Safelevel-SMOTE 52.98 74.93 62.98 61.17 56.62 58.80 41.91 84.54 59.45 

Borderline-SMOTE1 48.40 79.74 62.09 63.94 54.07 58.75 40.11 83.64 57.87 

Borderline-SMOTE2 50.64 73.64 61.00 68.40 50.63 58.81 50.43 70.13 59.38 

increSMOTE1 57.98 71.49 64.35 68.30 53.84 60.59 46.70 82.12 61.86 

increSMOTE2 59.89 69.27 64.39 68.72 53.44 60.58 48.72 81.66 63.05 

Breast-p 

increSMOTE3 56.17 73.41 64.19 66.91 55.63 60.95 47.13 81.59 62.00 
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Continued 

No over-sampling 3.73 100.00 17.93 10.10 99.26 31.55 13.43 99.70 36.52 

SMOTE 48.82 97.01 68.81 57.35 94.88 73.74 36.18 98.33 59.59 

Safelevel-SMOTE 48.14 96.92 68.28 57.16 94.57 73.49 31.96 98.64 56.07 

Borderline-SMOTE1 42.45 97.60 64.31 47.94 94.96 67.42 24.41 99.06 49.10 

Borderline-SMOTE2 48.53 96.37 68.35 51.37 94.02 69.45 31.37 98.60 55.49 

increSMOTE1 50.59 96.82 69.97 59.22 94.61 74.81 38.14 98.30 61.16 

increSMOTE2 63.14 92.46 76.39 76.67 89.59 82.85 57.94 95.25 74.27 

Yeast 

increSMOTE3 61.27 91.98 75.04 71.47 91.28 80.73 48.04 96.77 68.12 

No over-sampling 89.96 97.00 93.41 59.64 97.78 76.36 87.50 96.58 91.93 

SMOTE 94.52 93.87 94.19 82.62 97.13 89.58 90.28 94.80 92.51 

Safelevel-SMOTE 93.02 95.93 94.46 84.60 95.40 89.84 94.64 91.33 92.97 

Borderline-SMOTE1 92.34 96.64 94.47 82.54 95.80 88.91 91.23 93.82 92.51 

Borderline-SMOTE2 92.42 96.18 94.28 85.60 94.80 90.08 93.02 93.16 93.08 

increSMOTE1 93.61 96.24 94.92 86.39 96.16 91.14 94.52 93.18 93.84 

increSMOTE2 93.97 95.22 94.59 90.08 95.87 92.93 93.29 93.24 93.27 

Iono-
sphere 

increSMOTE3 93.89 95.33 94.61 91.19 93.36 92.26 92.74 94.02 93.38 

No over-sampling 72.24 100.00 84.99 75.86 97.86 86.16 81.72 99.05 89.96 

SMOTE 75.52 99.03 86.47 84.83 96.57 90.50 88.28 98.05 93.03 

Safelevel-SMOTE 72.41 99.92 85.06 84.83 95.05 89.78 87.41 98.24 92.66 

Borderline-SMOTE1 72.76 99.62 85.13 83.79 96.78 90.04 87.93 98.16 92.90 

Borderline-SMOTE2 73.62 98.70 85.24 87.07 94.86 90.87 88.28 98.32 93.16 

increSMOTE1 76.72 99.38 87.31 87.24 96.35 91.68 89.31 98.41 93.75 

increSMOTE2 83.45 94.81 88.92 91.03 95.19 93.08 89.66 98.35 93.90 

Glass 

increSMOTE3 76.03 99.78 87.10 91.03 95.14 93.05 89.66 98.38 93.92 

No over-sampling 51.26 97.99 70.88 67.16 97.15 80.78 52.88 98.94 72.33 

SMOTE 85.30 92.62 88.88 89.83 91.01 90.42 68.20 96.85 81.27 

Safelevel-SMOTE 86.53 92.20 89.32 91.65 89.32 90.48 67.71 97.09 81.08 

Borderline-SMOTE1 84.44 92.04 88.16 89.07 90.50 89.78 66.55 97.46 80.53 

Borderline-SMOTE2 87.71 91.13 89.40 91.08 89.14 90.10 69.67 96.95 82.18 

increSMOTE1 87.58 91.94 89.73 92.35 89.21 90.76 68.45 96.83 81.41 

increSMOTE2 90.51 91.88 91.19 93.33 88.20 90.73 76.49 94.70 85.11 

Satimage 

increSMOTE3 89.67 92.00 90.83 93.08 88.15 90.58 71.48 95.82 82.76 

 
method for the classification of human pre-miRNA hair- 
pins from both pseudo hairpins and other ncRNAs; and it 
also was known as imbalanced class distribution problem. 
Then, we proposed a novel minority over-sampling 
method to deal with this imbalanced dataset problem. 
The novel method, incremental- SMOTE, was improved 
from SMOTE method, in which generated synthetic mi- 

nority class samples are utilized for further generation. 
In order to compare the novel method with the control, 

SMOTE, and several successors of modified SMOTE, 
such as safe-level-SMOTE and borderline-SMOTE 
methods, we executed an experiment by 20 independent 
runs of 10-fold cross-validation and t-test was also con- 
ducted to assess the statistical significance. The experi- 
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Table 5. The assessment by two-sample t-test with equal variance. 

  RF 

  RF SMOTE SLa BL1b BL2c 

SMOTE 8.5E−09 x 6.3E−01 2.2E−02 1.0E+00 

safe-level 7.9E−09 3.6E−01 x 1.1E−02 1.0E+00 

borderline1 4.2E−07 9.7E−01  x 1.0E+00 

borderline2 2.2E−16 1.6E−09 1.9E−08 7.5E−15 x 

increSMOTE1 9.8E−13 1.0E−02 3.0E−02 9.1E−06 1.0E+00 

increSMOTE2 4.9E−14 3.0E−03 1.1E−02 5.3E−07 1.0E+00 

microPred 

increSMOTE3 2.6E−14 3.0E−03 1.1E−02 2.7E−07 1.0E+00 

SMOTE 2.2E−16 x 1.7E−01 1.9E−03 4.6E−04 

safe−level 2.2E−16 8.2E−01 x 2.0E−02 3.6E−04 

borderline1 2.2E−16 9.9E−01  x 1.2E−01 

borderline2 3.8E−12 9.9E−01   x 

increSMOTE1 2.2E−16 2.6E−02 6.2E−03 2.7E−05 1.8E−05 

increSMOTE2 2.2E−16 4.0E−01 1.5E−01 2.3E−03 4.5E−04 

miRNA-network 

increSMOTE3 2.2E−16 5.1E−01 2.0E−01 3.3E−03 6.4E−04 

SMOTE 5.1E−02 x 2.2E−01 9.0E−02 1.6E−01 

Safe-level 1.9E−01 7.7E−01 x 2.9E−01 4.1E−01 

borderline1 3.6E−01 9.0E−01  x 6.1E−01 

borderline2 2.6E−01 8.3E−01   x 

increSMOTE1 1.3E−03 4.0E−02 1.0E−02 3.0E−03 7.0E−03 

increSMOTE2 1.5E−03 4.0E−02 1.0E−02 3.0E−03 8.0E−03 

Breast-w 

increSMOTE3 2.2E−03 5.8E−02 1.0E−02 5.0E−03 1.0E−02 

SMOTE 2.2E−16 x 9.9E−01 9.1E−03 3.0E−02 

safe-level 2.2E−16 6.0E−03 x 4.2E−08 5.3E−06 

borderline1 2.2E−16 9.9E−01  x 6.7E−01 

borderline2 2.2E−16 9.6E−01   x 

increSMOTE1 2.2E−16 2.4E−05 3.1E−03 1.2E−09 2.5E−08 

increSMOTE2 2.2E−16 3.1E−10 8.5E−10 2.8E−16 1.1E−13 

Haberman 

increSMOTE3 2.2E−16 7.5E−07 7.1E−05 1.6E−11 5.4E−10 

SMOTE 2.2E−16 x  6.7E−08 7.1E−02 

Safe-level 2.2E−16 1.1E−05 x 2.7E−12 2.3E−06 

borderline1 2.6E−14 1.0E+00  x 9.9E−01 

borderline2 2.2E−16 9.2E−01  4.0E−04 x 

increSMOTE1 2.2E−16 1.0E−03 8.5E−01 1.3E−09 1.5E−04 

increSMOTE2 2.2E−16 1.5E−12 3.5E−05 2.2E−16 4.6E−12 

Blood 

increSMOTE3 2.2E−16 1.5E−06 4.3E−01 1.3E−13 6.5E−07 
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SMOTE 2.6E−16 x    

Safe-level 2.2E−16 8.2E−01 x 3.0E−02 4.6E−01 

borderline1 2.6E−15 9.9E−01  x 9.6E−01 

borderline2 2.2E−16 8.5E−01  3.0E−02 x 

increSMOTE1 2.2E−16 1.0E−02 5.0E−03 1.4E−05 3.0E−03 

increSMOTE2 2.2E−16 2.8E−05 3.9E−05 1.4E−08 2.1E−05 

Breast-p 

increSMOTE3 2.2E−16 2.0E−03 1.0E−03 6.9E−07 7.0E−04 

SMOTE 2.2E−16 x 1.5E−04 1.5E−15 1.4E−04 

Safe-level 2.2E−16 9.9E−01 x 2.5E−09 3.0E−01 

borderline1 2.2E−16 1.0E+00  x 1.0E+00 

borderline2 2.2E−16 9.9E−01   x 

increSMOTE1 2.2E−16 3.0E−02 1.9E−06 2.2E−16 2.8E−06 

increSMOTE2 2.2E−16 2.2E−16 2.2E−16 2.2E−16 2.2E−16 

Yeast 

increSMOTE3 2.2E−16 6.2E−12 3.2E−15 2.2E−16 4.3E−14 

SMOTE 1.3E−04 x    

Safe-level 3.4E−05 2.0E−02 x 4.0E−02 6.5E−01 

borderline1 9.0E−04 4.0E−01  x 9.8E−01 

borderline2 3.6E−06 7.0E−03   x 

increSMOTE1 1.6E−13 4.1E−09 5.5E−04 5.9E−08 1.2E−03 

increSMOTE2 1.2E−09 9.3E−05 1.1E−01 3.0E−04 2.2E−01 

Ionosphere 

increSMOTE3 2.5E−07 3.9E−04 8.1E−02 7.0E−04 1.4E−01 

SMOTE 7.1E−08 x 1.5E−01 3.7E−01 6.2E−01 

Safe-level 6.1E−07 8.4E−01 x 7.1E−01 9.0E−01 

borderline1 3.9E−07 6.2E−01  x 7.3E−01 

borderline2 4.1E−08 3.7E−01   x 

increSMOTE1 1.1E−09 1.1E−02 2.9E−04 9.6E−03 3.0E−02 

increSMOTE2 1.4E−09 1.7E−03 3.5E−05 2.2E−03 7.0E−03 

Glass 

increSMOTE3 1.3E−09 1.5E−03 3.1E−05 2.0E−03 6.0E−03 

SMOTE 2.2E−16 x 6.4E−02 7.1E−08 1.0E+00 

Safe-level 2.2E−16 9.3E−01 x 3.0E−05 1.0E+00 

borderline1 2.2E−16 1.0E+00  x 1.0E+00 

borderline2 2.2E−16 3.2E−08 7.6E−10 5.7E−15 x 

increSMOTE1 2.2E−16 1.0E−01 2.7E−03 6.9E−11 1.0E+00 

increSMOTE2 2.2E−16 2.2E−16 2.2E−16 2.2E−16 2.2E−16 

Satimage 

increSMOTE3 2.2E−16 3.3E−16 2.2E−16 2.2E−16 2.2E−05 
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Table 6. The correlation between degree of imbalance and im- 
provement by the methods each with different classifiers. 

 SVM k-NN RF 

SMOTE 0.70 0.42 0.94 

Safelevel-SMOTE −0.59 −0.31 −0.72 

Borderline-SMOTE1 −0.54 −0.49 −0.65 

Borderline-SMOTE2 0.01 −0.39 −0.35 

increSMOTE1 −0.66 −0.50 −0.48 

increSMOTE2 0.66 0.23 0.83 

increSMOTE3 0.36 0.21 0.59 

 OPEN ACCESS 

 
mental results showed that our method achieved better 
G-mean and Sensitivity than both of the control, SMOTE, 
safe-level-SMOTE, and borderline-SMOTE methods 
with the p-value less than 0.05 in most cases. These re- 
sults suggest that our method outperforms SMOTE and 
several successors of modified SMOTE in various bio- 
medical classification problems, including human miRNA 
gene prediction. 

Although incremental-SMOTE achieved better per- 
formances in various biomedical classification problems, 
the advantages and disadvantages of three variations of 
incremental-SMOTE are still unclear in real applications. 
Moreover, there are still several topics left to be consid- 
ered further such as: the combination of our novel me- 
thod with feature selection methods, application of other 
novel under-sampling methods, extraction of a new and 
appropriate set of features from pre-miRNA hairpins 
dataset, and so on. In future work, we will find the solu- 
tion to these problems. 
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