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ABSTRACT 

Gene networks in biological systems are highly com- 
plicated because of their nonlinear and stochastic 
features. Network dynamics typically involve cross- 
talk mechanism and they may suffer from corruption 
due to intrinsic and extrinsic stochastic molecular 
noises. Filtering noises in gene networks using bio- 
logical techniques accompanied with a systematic 
strategy is thus an attractive topic. However, most 
states of biological systems are not directly accessible. 
In practice, these immeasurable states can only be 
predicted based on the measurement output. In the 
lab experiment, green fluorescent protein (GFP) is 
commonly adopted as the reporter protein since it is 
able to reflect intensity of the gene expression. On this 
basis, this study considers a nonlinear stochastic 
model to describe the stochastic gene networks and 
shows that robust state estimation using Kalman fil- 
tering techniques is possible. Stability of the robust 
estimation scheme is analyzed based on the Ito’s 
theorem and Lyapunov stability theory. Numerical 
examples in silico are illustrated to confirm perfor- 
mance of the proposed design. 
 

Keywords: Biological System; Stochastic Model; 
Stability; Estimation 

1. INTRODUCTION 

The gene network in biological systems plays an impor- 
tant role in recent diagnoses of diseases such as cancer 
and autoimmune diseases. Because this network is highly 
complicated and extremely nonlinear, investigating re- 
lated problems using a systematic strategy is highly de- 
sirable. 

Systems biology aims to understand the internal be- 
haviors of biological systems from a system level view. It 
is different from traditional biology, which focuses on 
individual cellular components [1-3]. Researchers have 
recently designed and constructed biological models us- 
ing molecular biology techniques and engineering ap- 

proaches. For example, microarray technology uses high- 
throughput methods to measure a large amount of gene 
expression states, and is a useful tool in biotechnology. 
Measured data makes it possible to reconstruct the struc- 
tures of gene networks, perform qualitative and quantita- 
tive analyses, systematically control biological states and 
design desired biological process, and ultimately exam- 
ine dynamic behavior using computational simulations. 

Biological models describing the behavior of biologi- 
cal systems can be classified into a logical model in the 
discrete-time domain and a differential equation set in 
the continuous-time domain [4-6]. Unlike the determi- 
nistic case, the gene networks of real biological systems 
are generally non-ideal and invariably noisy. These mo- 
lecular noises generally involve the intrinsic noises re- 
sulting from molecular birth and death, and extrinsic 
noises caused by environmental influences such as 
changes in temperature, PH, or nutrient levels and may 
affect the quantitative and qualitative characteristics of 
biological systems [7-9]. To ensure modeling accuracy, 
the influence of noise contamination should not be ig- 
nored. The parameters of gene network are estimated to 
reconstruct its model form noisy measured data [10].  

The robustness of biological systems is defined as the 
capability of the system to resist noise corruption while 
ensuring satisfactory performance or stability [11]. Dis- 
ease and malfunction represent a decay in robustness and 
the noise filtering ability of the corresponding biological 
networks. Drug design is an effective way to improve the 
robustness and filtering ability of biological networks to 
resist fluctuation and noise, much like the robust control 
design in engineering problems. Nonlinear feedback 
control methods have also been used to regulate the 
steady state of biological systems [12]. Other issues that 
have directed greater attention to stochastic biological 
systems include the development of control strategies 
when ensuring robust stability and filtering ability. Chen 
and Wu proposed a robust filtering circuit design based 
on H -control theory by regulating kinetic parameters 
[13]. 

Before performing any feedback control designs, all 
biological state information should be available. How- 
ever, most of the internal states of these systems can only *Corresponding author. 
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be observed partially. In this situation, a state estimator is 
appropriate to reconstruct full states, especially in noisy 
environments. The Kalman filter (KF) has been adopted 
to estimate full states in engineering for decades [14,15]. 
Liang and Lam designed a linear state estimator to esti- 
mate the concentrations of mRNA and protein for sto- 
chastic gene regulatory networks by considering pa- 
rameter uncertainties [16]. However, there are relatively 
few applications of the extended KF (EKF) in state esti- 
mation for nonlinear biochemical networks [17,18]. 
Moreover, a state estimator was implemented based on 
the fluorescence probe, a dynamic state model of the 
plant cell bioreactor and online GFP fluorescence meas- 
urement [19]. 

Although a few papers discuss state estimation for 
biological networks, most approaches are based on the 
traditional Kalman filtering theory. This theory assumes 
that noise covariances, including process noise and 
measurement noise, are known a priori. The KF can 
identify optimal state estimation against noise using 
Gaussian distributions. However, noise distribution may 
not be Gaussian in biological systems; its autocorrelation 
may not be known exactly, or may be difficult to model 
precisely [7-9]. Chuang and Lin proposed a robust EKF 
to handle gene network systems with uncertain process 
noises [20]. 

This paper extends the design to a more general class 
of perturbative gene networks with uncertain extrinsic 
noise, process noise, and multiple intrinsic noise sources. 
A state estimator for this class of gene networks is de- 
signed based on a generalized robust EKF. This study 
also presents quantitative error analysis for the robust 
EKF based on Ito derivatives and Lyapunov stability 
theory. After this analysis is completed, establishing the 
convergence condition for estimation error, which is ex- 
pressed in terms of the linearization error of the given 
gene network and the amplification factors of intrinsic 
noises, is then possible. Numerical experiments for an in 
silico example verify the theoretical results obtained. 

2. PRELIMINARIES 

To clarify the notation in the derivations, let the vector 
norm of , denoted by nx x , be defined as 

Tx x x . Some preliminary lemmas are introduced a 
priori. 

The following lemma provides the covariance propa- 
gation equation for stochastic linear systems. 

Lemma 1 [21]. For the following linear stochastic sys- 
tem: 
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where  x t  is state,  E   denotes expectation, and 
 W t  is the zero mean Gaussian white noise. The co-

variance propagation for  x t  is governed by 

      T 2
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where the state covariance is       TX t E x t x t . 
The following lemma is known as the Ito Lemma for 

the differential of the given stochastic process. 
Lemma 2 [22]. For the following nonlinear time- 

varying stochastic system: 
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where   ,f x t t  and  are time-varying 
nonlinear function vectors, and  is a Brownian 
motion. 

  ,h x t t
dW

 t

2.1. Problem Description 

To explain this problem, consider a stochastic nonlinear 
synthetic gene network of a cascade loop of transcrip-
tional inhibitions built in E. coli with 4 genes 
( , and ), 3 repressor proteins (TetR, 
LacI, and CI), and the fluorescent protein EYFP as the 
output (shown in Figure 1). The fluorescence of the sys-
tem resulting from EYFP is the only measured output, 
and other gene products 

,  ,  tetR lacI cI eyfp

 ,  ,  tetR lacI cI  are not acces-
sible. By considering the disturbance effect, the dynamic 
response of the system can be described by the following 
equations [23]: 
 

tetR lacI cI eyfp

TetR LacI CI EYFP

tetR
eyfp

lacl cllaclk eyfpkclktetRk

 

Figure 1. Example of a synthetic gene network. The dashed 
line and the solid line represent, respectively, the repression 
effect and the activation effect. 
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(1) 

where the initial state is  

        T

0 0 0 0 0tetR lacI cI eyfpx E x x x x   , 

the production rate parameters of the corresponding pro- 
teins is i , , the decay rate pa- 
rameters of the corresponding proteins is  

 , , ,i tetR lacI cI eypf

, , , ,i i tetR lacI cI eypf 



,  represent the 
intrinsic parameter fluctuations with uncertain magni- 
tudes i  and i

,  1, , 4in i  

 , ,0i  and ,0i  are the basal pro- 
duction and decay rates, and  reflect the 
effect of environmental noises. The stochastic molecular 
noises in the host cells are assumed uncertain but 
bounded. The Hill function for the repressors is 

, 1,iw i  , 4

  ,  , , ,

1

r
k n

r

r x k tetR lacI cI eyfp
x

K


 

 
  
 

 

with r  being the maximal expression level of the 
promoter and rK  the repression coefficient. The EYFP 
protein, a green fluorescent protein (GFP), is a useful 
reporter protein consisting of several amino acid residues. 
The EYFP protein exhibits bright green fluorescence 
when exposed to blue light. Based on this feature, it is 
possible to obtain information about the concentration 
variations of other proteins and mRNAs by measuring 
the fluorescent intensity generated by GFP. According to 
the Beer-Lambert law [19], the measurement model can 
be expressed as follows: 

     0 1 e eyfpl x
eyfpy t F v t

            (2) 

where  eyfpy t  denotes the measurement output of GFP, 
 is the measurement noise, 0 v t F  is the basal light 

intensity,  is path length of light, and absorption coef-
ficient 

l
  with 0.05eyfpl x  . 

This study discusses an approach for estimating the 
gene concentration of a class of stochastic gene networks 
in the form of (1)-(2) with multiple intrinsic noises when 
their states are not directly accessible. In this situation, 
estimating state information based on measurement out-
put is a key issue. 

Mathematical models provide a platform for the sys-
tematic analysis of various gene networks. One type of 
ordinary differential equation (ODEs) is the stoichiomet-
ric model, which is known for representing biochemical 
reactions. Gene networks often suffer from intrinsic 
noises resulting from molecular birth and death, but also 
from extrinsic noises caused by environmental perturba-
tions. The dynamical variation of concentrations for bio-
logical systems shown in (1)-(2) can be applied to a more 
general perturbative gene network using the following 
nonlinear stochastic differential equation, which incor-
porates intrinsic and extrinsic noises: 

           
1

M

i i
i

x t f x t g x t n t w t


      (3) 

where M  represents the number of intrinsic noise 
sources,  

       
0

T

0 00 ,  0 0 ,xx E x P E x x x x0
         

 

and the measurement model is given by 

      y t h x t v t              (4) 

where   nx t R  denotes a concentration vector that 
indicates the concentration of mRNA and protein. 
 y t  r  denotes the measurement output. The terms 
  ,f     , 1i , 2, ,g i M   and  are nonlinear 

functions that respectively denote the interactions of 
gene networks, coupling vectors of intrinsic noises, and 
the function of sensors. The intrinsic noises  

 h 

 n t , 1, 2, ,i  i , the extrinsic noise , and the 
measurement noise 

M  w t
 v t  are uncorrelated and assumed 

to be zero-mean Gaussian white noise processes: 

      0,  iE w t E v t E n t t             
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  (6) 

The noise uncertainties satisfy 

0 1 0 2 0,  ,  i i 3Q Q R R i        
T

    (7) 

where T 0,  0Q Q R R     and  are 
positive definite matrices,  and 

2 0,  i i  
0 ,  i i0 0,Q R    are 

their corresponding nominal parts, and 1 2,   and 

3 ,  i i   are positive constants. 
Remark 1. Equations (3) and (4) can be rewritten as 

the following Ito stochastic equations: 

           
1

M

i i
i

dx t f x t dt g x t dN t dW t
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and 

      dz t h x t dt dV t   

where     ,y t z t     ,  iN t W t  and  are stan-
dard Wiener processes or Brownian motions with  

 V t

       ,  i idN t n t dt dW t w t dt    

and . This formulation is widely appli-
cable to general nonlinear gene networks with 

   v t dt dV t
M  in-

trinsic noise sources. 

2.2. Estimator Design 

Biological processes for gene networks include DNA to 
mRNA transcription and mRNA to protein translation, 
and generated protein regulates other genes. However, 
the internal states of most biological systems are not di-
rectly accessible. 

As described, gene networks in the real world are al-
ways noisy. The corresponding dynamic model is thus 
stochastic. To tackle the situation, this study presents a 
design approach for robust estimation with the estimator 
given in the following form: 

             
    

0ˆ ˆ ˆ ˆ,  0

ˆ ˆ

x t f x t K t y t y t x x

y t h x t

  



 
  (8) 

where  ˆ nx t R
rR

 is the estimated state vector,  
 ŷ t   is the estimated output, and   n rK t R  is 

the estimator gain. The computational algorithm (8) is 
implemented in a computer to conduct state integration 
with  y t

 

 obtained from the GFP expression while 
filtering measurement noises. Figure 2 shows the system 
configuration. The sensor measures GFP fluorescence 
intensity and converts it into electrical signals for further 
processing on the computer. The green fluorescence in- 
tensity per cell can be measured using a flow cytometer. 
The computer computes an appropriate estimation gain 
K t  using the measured data. The process of propagat- 
ing the estimation error to further determine  K t  is 
independent of the gene network. The following deriva-  
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Figure 2. System structure for realization of the state estimator. 

tions are given to determine the estimation gain so that 
the estimated states will track the noise-free states. 

Let the estimation error state be      ˆx t x t x t   
then 
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The augmented system can then be constructed as 
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The partial derivative matrices evaluated at the esti-
mated state are given by 
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errors. The errors are assumed to be bounded as follows: 
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where 1 2,  , and i  are finite constants. 
For the EKF design, consider the nominal case with 

the linearization error ignored. In this case, the aug-
mented system becomes 

             
1

M

i i
i

t A t t B t n t L t t  


       (12) 

First consider a case in which all noise covariances are 
exactly measured so that 1 2 3 0,  i i      . By de-
fining the augmented covariance matrix  

     Tt E t t       

and applying Lemma 1, the error propagation equation 
with the Kalman gain 1

22     TK t t H  R  can be 
determined by solving the stochastic Riccati equation: 
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Next, consider the case with noise uncertainties pre-
sented in (7). Based on results obtained by [24], and tak-
ing the least favorable noise covariances of  

0 1 0 2,Q I R    and 0 3 , 1, 2, ,i i i M   
 

 into 
consideration, the robust Kalman gain K  can be de-
termined by solving the following Riccati equation: 
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where  0 1 0 2diag ,Q Q I R I   


 and 

     1

22 0 2 TK t t H R I           (15) 

Equation (15) indicates that  K t  is closely related 
to the amount of measurement noise reflected by the 
magnitude of 0  and the extent of the uncertain noise 
covariance specified by 

R

2 . 
When F  is time-invariant, it is easy to verify the 

stability of the linearized system (12) with the Kalman 
gain 0 2 1T 22K H R I   . Stability can be analyzed 
by observing that the Riccati matrix equation (14) is re-
duced to the algebraic Riccati equation 
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for all , and ,Q R i  satisfying (7). Based on the result 

given in [13], the above inequality represents a Lyapunov 
inequality guaranteeing the stability of the system (12). 

However, if one considers a system disturbed not only 
by noises with uncertain covariances, but also by lin-
earization errors, the KF presented in this study is possi-
bly not robust. To make the estimation scheme robust 
and stable, more constraints must be imposed on lineari-
zation errors and intrinsic noises. Thus, advanced analy-
sis of the augmented system (10) with linearization er-
rors is required. 

3. STABILITY ANALYSIS 

This section analyzes stability of the stochastic gene sys-
tem based on the Ito Lemma and Lyapunov stability the-
ory. Stability condition derivation is developed on the 
basis of the following definition. 

Definition 1 [15]. Given a stochastic process denoted 
by  t , assume that there is a stochastic process 

  tV  and real numbers min max,  ,  , 0V V     such 
that 
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are fulfilled. In this case,  t  is exponentially 
bounded in mean square with   determining its decay-
ing rate. 

To proceed the stability analysis, we choose a Lya- 
punov candidate function as [15] 
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Then, using (5) and (6) yields 
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Substituting (14) into (16) gives  

              
           

           
          

       
        

      

T T

2 T T
0 3

1

T T

T

2 T T
0 3

1

T

T

,

ˆ2 ,

trace

M

i i i i
i

M

i i i i
i

i i

E V t t t t A t t t A t

B t B L t QL t t t

t A t t t A t t

E t t L t A x t x t

t B t B t

E B x t t B x t

L t QL t t

 

  

 



   





       
      

    
    

  

     

 











 

or 

          

       
          

       
        

      

2 T
0 3

1

T

T

2 T T
0 3

1

T

T

,

ˆ2 ,

trace

M
T

i i i
i

M

i i i i
i

i i

E V t t t t B t B

L t QL t t t

E t t L t A x t x t

t B t B t

E B x t t B x t

L t QL t t

   





   





          
 

    

  

     

 











 

It is easy to see that 
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According to (17) and (18), and by using the 
Lyapunov stability theory, it is possible to obtain 
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Equation (19) was obtained by applying the Rayleigh 
principle and algebraic manipulations, where   de-
notes the eigenvalue. 

According to Definition 1, the stochastic gene network 
becomes exponentially more stable with the exponen-
tially decaying rate  . This means that the estimation 
error never diverges if noises do not force the gene net-
work to diverge when the stability condition is satisfied. 
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4. DEMONSTRATIVE EXPERIMENTS 

Consider the nonlinear stochastic gene network illus- 
trated in Figure 1. The system model can be mathemati- 
cally described by (1), and the values of the parameters 
are taken from [23]: 
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The initial state is assumed to be  
 and the Hill function 

takes the Hill coefficient 
 T0 200 40000 200 20000x 

2n  , the repression coeffi-
cient , and the maximal expression level of 
the promoter 
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. The extrinsic noise, intrinsic noise, 
and measurement noise are zero-mean white Gaussian 
noises with the standard deviations of , , and 1, 
respectively. For the measurement model in (2), the basal 
light intensity , and . 
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Figure 3 shows the dynamic simulation of the noisy 
states. For this synthetic gene network, the protein CI 
inhibits gene  and gene te , the protein TetR in- 
hibits gene , and the protein LacI inhibits gene . 
However, one only possesses the measurement output 
response depicted in Figure 4. 

eyfp
lacI

tR
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These linearized matrices can obtain the following 
bounds on linearization errors using the remainder for-
mula of the Taylor approximation [25]: 
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Figure 3. Dynamic simulation of the noisy states. 
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Figure 4. Dynamic simulation of the measurement output. 
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These linearized matrices reveal that the bounds on the 
linearization errors are as follows: 
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Suppose that the nominal covariance matrices are 

 and 2
0 4 00.5 ,  1Q I R  2

0 0.1 ,  i i  
300 20000
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, and the initial 
state of the estimator is . 
For the initial covariance of 8

 T0ˆ 100 40000x
00I  , Figure 5 

shows the simulation results of the noise-free state re-
sponse and the case of state estimation using the pro-
posed method for the stochastic gene network without 
noise uncertainties. The steady-state KF gain is  

   T0.0536 0.142 0.0929 1.1602K      

It’s seen that the estimator tracked the noise-free state 
well when there were intrinsic, extrinsic, and measure-
ment noises. 

Next, consider the existence of uncertainty regarding 
extrinsic noise, measurement noise, and intrinsic noise 
with 1 20.05,  0.1   , and 3 0.01,  i i   . Figure 6 
shows the results of dynamic simulation of the noise-free 
state response and the case of state estimation using the 
proposed method for the stochastic gene network with 
noise uncertainties. For the case, the steady-state KF gain 
is obtained as  

   T0.0536 0.1422 0.0929 1.1616K      
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Figure 5. Dynamic simulation of the noise-free state response 
and the cases of state estimation using the proposed method for 
the stochastic gene network without noise uncertainties. 
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Figure 6. Dynamic simulation of the noise-free state response 
and the case of state estimation using the proposed method for
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the stochastic gene network with noise uncertainties. 
 

For comparison, we define the estimation erro
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where  fx t  is the state of the noise-free system, and  

ft  is th l time. Table 1 has compared the error per-

vi

Previous literature indicates that the state variables of  

e fina
 of thcentage e estimation error under the noise-free en-

ronment and the estimated states of the system with 
and without noise uncertainties via the traditional EKF 
design and our proposed method. Under the same initial 
conditions and settings, the dynamic simulation of the 
noise-free state response and the case of state estimation 
using the traditional EKF for the stochastic gene network 
with noise uncertainties yield larger estimation error. 

5. DISCUSSION 
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Table 1. Comparison of the estimation error for the stochastic 
gene network. 

state 
estimation error 

tetRx  laclx  clx  eyfpx

system without n
under the proposed

oise uncertainties 
 EKF design 

0.0918 0.1784 0.8145 0.0372

system with noise uncertainties 
under the proposed EKF design 

0.0918 0.1784 0.8143 0.0373

system with noise uncertainties by 
the traditional EKF design 

0.0981 0.1780 0.8466 0.0453

 

orks cannot be fully acquired [23]. For the steady ge

This paper proposes a robust estimation scheme to ac-
or a class of gene networks that

This research was sponsored by National Science Council, Taiwan, 

-1664. doi:10.1126/science.1069492

experimental systems in the field of biological frame-
w ne 
concentration tracking problem, fluorescent proteins 
(with red, green, and cyan color) can be used to observe 
gene expressions. This experimental design makes it 
possible to determine whether all state variables can ap-
proach desired states. However, this approach does not 
solve the problem of noise corruption because the ob-
served state variables can still be noisy and seriously 
deteriorate the accuracy of state information. Neverthe-
less, a robust state estimator based on the EKF is a useful 
design for predicting network states when there are vari-
ous noise sources. The resulting state information can 
next be used to analyze and track gene concentration. 

6. CONCLUSION 

quire state information f  
are suffered from uncertain extrinsic and intrinsic noise 
corruption. Quantitative performance and stability analy-
ses based on the Ito Theorem and Lyapunov stability 
theory for state estimation are presented. In silico ex-
periments confirm the proposed method for designing the 
estimator. Simulation results demonstrate the potential of 
the presented design method in bridging engineering 
approaches and specific biological problems. 
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