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ABSTRACT 

The defect structures of s = ±1/2 twist disclinations in twisted nematic and twisted chiral liquid crystals have been in- 
vestigated within the Landau-de Gennes theory numerically. Our results show that there exists eigenvalue exchange 
across the defect core of both the two models. The defect core is essentially biaxial and never isotropic. The defect cen- 
tre is uniaxial and is surrounded by a strong biaxial region. 
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1. Introduction 

Topological defects arise as a result of broken continuous 
symmetry and are ubiquitous in nature, from microscopic 
condensed matter systems governed by quantum me- 
chanics to a universe in which gravity plays a decisive 
role [1-3]. Defects in liquid crystals (LCs) have been the 
subject of much interest, still offering unsolved problems. 
Commonly observed defects in the uniaxial nematic 
phase are typically point defects with topological charge 
s = 1 and line defects with topological charge s = ±1/2 
[4]. There are two types of s = ±1/2 disclination lines [5]. 
The first type is wedge disclination with the rotation vec- 
tor parallel to the disclination line, while the second is 
twist disclination with the rotation vector perpendicular 
to the disclination line. The region where the presence of 
a defect causes apparent deviations from bulk ordering is 
referred to as the defect core [6]. Eigenvalue exchange 
(also called order reconstruction) was first shown by Scho- 
pohl and Sluckin within the core of s = ±1/2 wedge dis- 
clinations [7], and has aroused numerous subsequent stu- 
dies on the detailed core structure in nematic LCs for 
various boundary conditions [8-12]. This mechanism has 
confirmed that biaxial, rather than isotropic, core struc- 
tures of both line and point defects are more likely to 
occur.  

The structures of s = ±1/2 twist disclination have been 
observed in a twisted nematic (TN) cell with planar ori- 
entations on both plates with the easy axes perpendicular 
to each other (called 90˚ twisted structure). These defects 

essentially involve two symmetric twist distortions, re- 
spectively left-handed and right-handed with degenerate 
energy, corresponding to ±π/2 twists over the cell thick- 
ness [13]. These twist disclinations can be stable under 
particular anchoring conditions on to the plates [14].  

The helical structure of twisted chiral nematic (TCN) 
cells with planar anchoring have been studied [15]. It is 
shown that a mismatch between the equilibrium pitch p0 
and the twist imposed by the boundary conditions may 
produce two stable helical configurations that are degen- 
erate in energy and can be switched to each other. In Ap- 
pendix A, we give that a TCN cell of thickness d = p0/2 
with 90˚ twisted structure has bistable states, being re- 
spectively π/2 and 3π/2 twists over the cell thickness.  

Dislocations also appear in chiral LCs as a result of 
temperature quenching from the isotropic phase, applied 
fields, and surface boundary conditions [4]. The struc- 
tures of defects in chiral LCs have been studied in the 
so-called Grandjean-Cano wedges both analytically [16, 
17] and experimentally [18-21]. De Gennes [16] and 
Scheffer [17] have given the analytical solution of the 
director orientation for the Grandjean-Cano disclination, 
based on the Frank elastic theory, using the method of 
images and conformal mapping, respectively. These de- 
fects correspond to the disclinations of Burgers vector b 
= p0/2 introduced in References [18,19], which can be 
splits into a pair of τ−1/2 and τ+1/2 disclinations. 

In this study, we will investigate the defect structure of 
a TN cell and a TCN cell of thickness p0/2, both of which 
have 90˚ twisted structure. Our study is based on the  
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Landau-de Gennes theory describing the orientational or- 
der of a LC in terms of a second-rank tensor Q, which en- 
compasses both uniaxial and biaxial state.   

2. Theoretical Basis 

2.1. Landau-de Gennes Theory 

Our theoretical argument is based on the Landau-de 
Gennes theory [14], in which the orientational order of a 
LC is described by a second-rank symmetric and trace- 
less tensor [22]  
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Here λi and ei are the ith eigenvalue and the ith eigen- 
vector of Q, respectively. In isotropic phase, Q vanishes. 
In the uniaxial ordering, Q has two degenerate eigenval- 
ues and can be represented by  
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where S is the uniaxial scalar parameter, and the unit 
vector n is the nematic director pointing along the local 
uniaxial ordering direction. In Equation (2), S can have 
either sign: when it is positive the ensemble of molecules 
represented by Q tends to be aligned along n, whereas 
when S is negative it tends to lie in the plane orthogonal 
to n.  

Finally, when all eigenvalues of Q are distinct, the LC 
is in a biaxial state. The degree of biaxiality is measured 
by the biaxiality parameter β2, defined as [23]  
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which ranges in the interval [0, 1]. In all uniaxial states 
with two degenerate eigenvalues, β2 = 0, while states 
with maximal biaxiality correspond to β2 = 1. Since  

, the states with maximal biaxiality are 
precisely those where detQ = 0, which further implies 
that at least one eigenvalue of Q vanishes in the biaxial 
states.  

tr

Following the notation in Reference [24], the free en- 
ergy density of a chiral LC is given by  
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is the local free energy in the Landau-de Gennes expan- 
sion, 
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is the free energy due to the inhomogeneity of LC order. 
In fbulk, a and b are positive constants and c is assumed to 
vary with temperature. In Equation (5), summations over 
repeated indices are implied,      , 
and 

 ▽ ▽
  ,Q Q 

 with εαγβ being the Levi-Civita 
symbol. The variables K1 and K0 are the elastic constants, 
and 

 ▽ ▽

0 02πq p  characterizes the strength and sign of 
the chirality (hereafter, we consider the case with q0 > 0). 
We also note that following the spirit of the Landau ex- 
pansion, we assume that the temperature dependence 
appears only in the parameter c and neglect the tempera- 
ture dependence of the other material parameters. More- 
over, the bulk equilibrium value of the uniaxial scalar 
order parameter in Equation (2):  
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ture. 
When q0 = 0, the condition reduces to the ordinary 

nematic limit with infinite pitch, and Equation (5) re- 
duces to  
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After an appropriate rescaling of the variables, we can 
reduce the number of relevant parameters. Here we fol- 
low the rescaling of Wright and Mermin [24] and the 
rescaled free-energy density  3 4a b f   is written, 
in terms of a rescaled tensor order parameter  

 a b Q  , the rescaled form of Equations (4)-(6) 
can be written as  
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where the rescaled parameters  
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denote temperature, strength of chirality, and the anisot- 
ropy of elasticity, respectively, where  1 22aK b 

  1
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

1  
is the coherence length, the rescaled spatial derivative is 

   in Equation (8) and      in Equation 

Copyright © 2013 SciRes.                                                                                 JMP 



X. ZHOU  ET  AL. 274 

(9). We notice that the isotropic-nematic transition takes 
place at c 1 4  , while the isotropic-cholesteric transi- 
tion takes place at  

 3 22 24 3 8  
1 4 1c   

, 

which depends on the chirality [24].  
In the scaling employed above, the rescaled uniaxial 

ordering has the form  
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  is the rescaled uniaxial sca- 

lar parameter at equilibrium. 

2.2. Geometry of the Problem 

We choose a TN cell of thickness d = 15ξ and a TCN cell 
of thickness d = p0/2 with 90˚ twisted structure. Both of 
the two models have two stable degenerate configurations 
with a twist difference of π. The plates are placed at z = 
±d/2 of a Cartesian coordinate system. The lengths dx and 
dy of the cell along the x and the y axes are much larger 
than . x y

We study the structure of s = ±1/2 twist disclinations. 
The disclination line is parallel to the y axis of the simu- 
lation cells, and we seek solutions independent of y. At 
the two plates z = ±d/2, we enforce the fixed uniaxial 
anchoring represented by 
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On the lateral walls at x = dx/2, we also prescribe fixed 
boundary conditions with uniaxial ordering. For the TN 
cell, the total twist at x = dx/2 are ±π/2 respectively, while 
for the TCN cell, the total twist at x = dx/2 are π/2 and 
3π/2 respectively. These boundary conditions are com- 
patible with the generation of line defects with topologi- 
cal charge s = 1/2, with which we shall deal also apply to 
line defects with topological charge s = −1/2, with the 
conditions at the lateral walls exchanged. 

2.3. Numerical Methods 

In the rescaled space, the length is rescaled so that the 
cell thickness d = 15ξ is rescaled to d = 15 for the TN 
cell and d = p0/2 is rescaled to d = 2π for the TCN cell, 
respectively. The numerical calculations are to be in- 
tended with respect to the scaled variables.  

We let the system relax from an initial condition under 
the fixed boundary conditions given above. In our simu- 
lation, we have identified that the value of dx = 3d is 
enough to exhibit the behavior of the equilibrium con- 
figuration in the limit as dx  ∞; there is no visual dif- 
ference as the value of dx continues to increase. 

We employ 
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as the relaxation equation to iterate the order parameter 
χαβ, where  is the total rescaled free energy of the sys- 
tem,  
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and λ0 is the Lagrange multiplier ensuring Trχ ≡ 0 which 
can be eliminated in the numerical procedure [7]. To 
discretize Equation (13), we replace the derivatives with 
the two-dimensional finite-difference method employed 
in our previous studies in [25]. In our numerical calcula- 
tions, we have found that a discretization with time step 
given by 10−5 is sufficient to guarantee the stability of the 
numerical procedure. In addition, our equilibration runs 
take 105, which have been confirmed sufficient for the 
system to reach equilibrium state.  

We have calculated the tensor Q after the system to 
reach equilibrium state, and then the current tensor is 
diagonalized. Accordingly, the director is identified by 
the eigenvector possessing the largest eigenvalue, and the 
eigenvalues are scaled to the largest eigenvalue at the 
boundary. Then the degree of biaxiality is measured by 
the biaxiality parameter β2 given by Equation (3).  

3. Results 

In this section, we present our numerical results. In our 
simulations, we set η = 1 (one-constant approximation) 
just for simplicity, and the scaled temperature is set equal  

to τ = −1, corresponding to  1
3 41

8
S   . 

3.1. s = 1/2 Disclination in TN Cell 

Figure 1 shows the director orientation diagram of s = 
1/2 disclinations in the cross section through the defect 
line, i.e., x-z plane. The lines are “equiorientational” 
contours. Note that the position of the defect center (xdef,  
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Figure 1. Director orientation contours of s = 1/2 disclina- 
tion in the x-z plane of a TN cell. 
 
zdef) is located at the center of x-z plane, i.e., (0, 0), and 
the major disturbances of the defect structure in x-z space 
take place within a nearly-circular region around the de- 
fect center. 

In Figure 2 we plot the three eigenvalues of the matrix 
Q along the two lines across the defect center in both x 
and z directions, that is z = 0 (Figure 2(a)) and x = 0 
(Figure 2(b)), respectively. Outside about 0.2d from the 
defect line, the tensor order parameter essentially takes 
the form of Equation (2). Inside this region, the order 
parameter becomes increasingly biaxial, in that the de- 
generacy between two of the eigenvalues is broken. On a 
ring around the defect center, of radius ρ ≈ 0.02d, the LC 
is maximally biaxial; one of the eigenvalues is now zero. 
At the defect center, the order parameter once again ap- 
proximately takes the form of Equation (2). However, 
now the symmetry axis is the defect axis itself, and as 
compared with the bulk, the order parameter has changed 
its sign. 

A more detailed analysis of the defect core, directly 
showing the degree of biaxiality, is given in Figure 3. 
There, we plot β2 across the defect center along z = 0 
(Figures 3(a) and (b)) and x = 0 (Figures 3(c) and (d)). 
Figures 3(b) and (d) are the partial enlarged detail. At 
the defect center, β2 = 0. On increasing the distance ρ 
from the defect, the degree of biaxiality β2 at first gradu- 
ally increases; it reaches its maximum value β2 = 1 at ρ ≈ 
0.02d. Upon further increasing ρ, the uniaxial ordering 
with β2 = 0 is asymptotically approached, and the ne- 
matic can be described by the director field. 

All of the above analysis indicates that there exists ei- 
genvalue exchange across the defect core, where two 
uniaxial states with orthogonal directors are changed into 
each other through a transformation that does not involve 
any director rotation, but instead implies a wealth of bi- 
axial configurations bridging the uniaxial limits. 
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Figure 2. Eigenvalues of Q along z = 0 (a) and x = 0 (b) 
across the s = 1/2 disclination in TN cell. The eigenvalues 
are scaled to the largest eigenvalue at the boundary.  

3.2. s = 1/2 Disclination in TCN Cell 

In the simulation of the s = 1/2 disclination in TCN, we 
choose κ = 0.4 that amount to the cholesteric pitch p0 ≌ 
280 nm, corresponding to relatively strong chirality. Ac- 
cording to [26,27], and the isotropic-cholesteric transition 
temperature given above, the most stable phases at τ = −1 
is a nematic helical phase. 

Figures 4-6 give the corresponding diagrams of direc- 
tor orientation “equiorientational” contours, eigenvalues 
of Q and biaxiality β2, respectively, which show the si- 
milar features as in TN cell. However, there are also sub- 
tle differences. Figure 4 shows that the position of the 
defect centre (xdef, zdef) is located at (−0.04167d, 0), 
rather than (0, 0), which results from the asymmetry dis- 
tribution of the director at the system. 

We should notice that Figure 4 gives the similar di- 
rector orientation contours as that given by Scheffer 
based on the Frank theory [17], which confirms the cor- 
rectness and rationality of our method. 

4. Conclusions and Discussions 

We carried out a numerical study on the structure of s =   
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Figure 3. Plot of β2 along z = 0 (a) and (b) and x = 0 (c) and (d) revealing the core structure of s = 1/2 disclinations in TN cell. 
(b) and (d) are the partial enlarged detail of (a) and (b) respectively.  
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Figure 4. Director orientation contours of s = 1/2 disclina-
tion in the x-z plane of TCN cell. 
 
±1/2 twist disclinations in TN and TCN cells with 90˚ 
twisted structure, based on the Landau-de Gennes ap- 
proach, in which the orientational order of the LC is 
taken into account by introducing a second-rank tensor 

order parameter. In numerical calculations, we chose a 
relatively low temterature τ = −1, where the nematic LCs 
are in deep nematic phase and respond to distortions by 
entering biaxial states, rather than melting [9]; while the 
most stable phase for chiral LC at τ = −1 is a helical 
phase, avoiding the emergence of blue phase [26,27].  

We have confirmed that two symmetric twist distor- 
tions with equal elastic energy in the TN cell may give 
rise to steady twist disclinations with topological charge 
s = ±1/2; in the chiral LC model we proposed, the frus- 
trations between the helical structure and the confining 
surfaces induce s = ±1/2 disclinations, which also ap- 
pears in the Grandjean-Cano wedges [18-21].  

The detailed analysis of the defect structures indicates 
that the defect core is essentially biaxial and never iso- 
tropic. In the very central core region, the nematic is 
uniaxial and constrained to lie in the direction of the dis- 
clination line; however, away from it, the texture is al- 
most uniaxial and can approximately be described by the 
director field. Moreover, we can conclude that there ex- 
ists eigenvalue exchange across the defect core of both 
TN and TCN cells, which confirms that eigenvalue  
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Figure 5. Eigenvalues of Q along z = 0 (a) and x = −0.04167d 
(b) across the s = 1/2 disclination in TCN cell. The eigen- 
values are scaled to the largest eigenvalue at the boundary.  
 
exchange is a generally existent phenomenon in defects.  

A natural question is whether our simulation describes 
a realistic scenario within a nematic cell. When the LC is 
cooled down from the isotropic to the nematic phase 
within the cell, by symmetry breaking, line defects is 
formed and dominates the Scene [9,28]. Individual de- 
fects that are not too close to one another tend to strai- 
ghten up to equalize the elastic distortions in their vicin- 
ity. By topological and energetic reasons, the most prob- 
able scenario is that a sequence of line defects in a given 
direction with alternating charges s = ±1/2 form disclina- 
tion loops or terminate on the surface of the sample be- 
cause of the prohibitive energy cost of the free line end 
[29,30]. However, the details of loop are well beyond the 
scope of our study. Our simulation describes reasonably 
well such an isolated and stabilized defect, where the y 
axis is set along the average local line defect (on a scale 
comparable to the cell thickness).  

The defects we studied can be used to the operation of 
bistable LC devices (so-called bistable twisted nematics) 
that have attracted considerable attention over past few 
decades [31-34], and can be used for a better understand- 
ing of the defect structure in Grandjean-Cano wedges  


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(a)

 d

(a) 
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0.6

0.8

1.0 (b)



z/d  
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Figure 6. Plot of β2 along z = 0 (a) and x = −0.04167d (b) 
revealing the core structure of s = 1/2 disclinations in TCN 
cell.  
 
[18-21]. We should note that most of previous study on 
defects in Grandjean-Cano wedges have focused on the 
case in which the confining surfaces imposes parallel an- 
choring of the same direction, while our study provided 
the similar defect structures in the particular 90˚ twist 
cell.  

It can be predicted that for the two models we pro- 
posed, the core size should be affected by the cell thick- 
ness of the TN cell, the chirality of chiral LC, as well as 
the temperature, the detailed results is the task for the 
future. 
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Appendix A: The Helical Structures of 
Chiral LCs with 90˚ Twist Structure 

The Euler-Lagrange equation is 

The Frank elastic energy density of Chiral LCs can be 
described in terms of n as  
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where Ks is the surface-like elastic constant. The director 
 of chiral LCs is written as  

           (A.2) 

with by . Equation (A.2) gives  z 
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Substituting Equations (A.3-A.6) into (A.1) leads to 
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The general solution of Equation (A.8) is 

               (A.9)   

with boundary conditions 
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4 4
d d        (A.10)    

Through simple calculation we can get  
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When 0 2d p , the Frank elastic energy density is  
2

22

1 π1
π .

22
f K m d
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Apparently, m = 1 and m = 0 have the same and the 
lowest energy,  2

π 2 2f K d 22 , i.e., for the condi- 
tion we considered, the two helical structures  

 π 2d z   and 3π 2d z   have the same and 
lowest energy. 
 

 


