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ABSTRACT 

In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be 
analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation 
of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In lite- 
rature there are many cases when to these materials the classical statistics is applied. It is well known that the electron 
heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving 
electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below 
the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground 
of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take 
general expressions for various kinetic parameters which are applicable for materials both without and with degenerated 
electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, 
can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient 
and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main 
kinetic parameter values for different metals. 
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1. Introduction 

In this review it is an attempt to call somebody’s atten- 
tion to some problems of conductivity interpretation of 
metals, normal superconductors and semiconductors with 
degenerated electron gas. Every experimenter knows that 
conductivity of homogeneous materials can be defined 
by free randomly moving charge carrier (electron) den- 
sity and by their drift mobility. They also know that elec- 
trons obey the Pauli principle and that electrons are de- 
scribed by the Fermi-Dirac statistics. The latter principles 
let to ones explain the experimental results of the heat 
capacity of electrons in metals [1-8]. The main conclu- 
sions of these investigations were that randomly move 
only the small part of electrons, which energy is close to 
the Fermi level, and that electrons, which energy is well 
below the Fermi level, can not be scattered and change 
their energy E because the Fermi distribution function 
f(E) = 1. It is very strange that till now (during about 80 
years) in many books [1-8] for solid state physics in ex- 
pression for conductivity of metals and for superconduc- 

tors in the normal state [9-13] the total density of free 
electrons is included. On the other hand, it is well also 
known that the thermal noise due to random moving of 
electrons is completely described by the real part of 
conductance (Nyquist formula) [14,15]. Thus, electron 
heat capacity and thermal noise of metals unambiguously 
show that in all kinetic phenomena take place only that 
part of free electrons, which energy is close to the Fermi 
level, because only these electrons can change their en-
ergy under influence of external fields. There are many 
questions: how from measurement of the Hall effect of 
metals we can get the total density of free electrons, how 
find the density neff of randomly moving electrons, their 
diffusion coefficient D and drift mobility drift, the Fermi 
energy EF, velocity of electrons vF at the Fermi level, the 
length of the free pass? These problems are very impor-
tant for every researcher of solid state materials, espe-
cially of superconductors in the normal state and semi-
conductors with very high doping level. In this work, we 
try to present the answers to these questions and other 
related problems. 
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2. Presentation Details and Analysis 

2.1. The Diffusion Coefficient of Randomly  
Moving Charge Carriers and the Einstein 
Relation 

It is well known that Fermi distribution function for elec- 
trons reads as 

   
1

1 exp
f E

E k


  T
,        (1) 

where E is the electron energy,  is the chemical poten-
tial, k is the Boltzmann’s constant, and T is the absolute 
temperature. This function means the probability that 
energy E level is occupied by electron. 

The total density of valence (free) electrons n in con- 
duction band is 

   
0

d ,n g E f E E


             (2) 

where g(E) is the density of states in the conduction 
band. 

The conductivity and the diffusion coefficient D of 
charge carriers are related by the following expression 
[16] 
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By simple calculation of the derivative n on parameter 
(chemical potential) μ we have 
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On the other hand, it can be shown that the expression 
in the angle brackets can be replaced by 
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Thus, the Equation (4), accounting Equation (5), can 
be presented in the following form 
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where 
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This expression in comparison to Equation (2) can be 
named as effective density of randomly moving charge 
carriers. The Equation (6) unambiguously shows that 
conductivity in all cases is determined by the effective 
density of randomly moving charge carriers (Equation 
(7)), but not by the total free electron density in the con-
duction band (Equation (2)). The total free electron den-
sity for determination of conductivity can be used only 
for materials with non-degenerated electron gas. 

Thus, the conductivity (Equation (6)) can also be pre- 
sented as 

2

eff drift eff

e D
en n

kT
   ,          (8) 

where drift is the drift mobility of randomly moving 
charge carriers in homogeneous materials with one type 
of charge carriers (electrons or holes). From this general 
relationship (Equation (8)) we get the Einstein’s relation 

drift

D kT

e
 .               (9) 

This expression is true for both degenerated and non- 
degenerated homogeneous materials with one type of 
free randomly moving charge carriers (for electrons or 
for holes). The same conclusion also follows from the 
thermal noise investigations. The spectral density of the 
current fluctuations of the thermal noise at low frequen- 
cies  1 2πf � , here τ is the relaxation time of charge 
carriers) can be presented as [14,17,18] 
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where R is the resistance of the sample of the test mate- 
rial; A and L are respectively the cross-section and the 
length of the sample. This relation is right for all homo- 
geneous materials at equilibrium state. The equalities of 
Equation (10) also can be obtained from the general 
Kubo formula for conductivity [2,15] 

   
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1
0 dx x xj t j t

kT
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  ,       (11) 

i.e. in general the conductivity is defined by the correla- 
tion function on time    0x xj t j  of the current den- 
sity fluctuation due to random motion of charge carriers. 
Considering the Wiener-Khintchine theorem and the dis- 
placement  x t  of charge carriers due to Brownian 
motion during time t, it is possible to obtain both expres- 
sions of Equation (10) (See Appendix). 
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2.2. Effective Density of Randomly Moving 
Charge Carriers 

From Equation (7) directly follows that effective density 
of randomly moving electrons neff and which causes the 
conductivity depends not only on the density of states 
and Fermi function  f E



 that the energy level E is 
occupied by electron, but it also depends on the probabi- 
lity 1   1f E   f E  that any of such electron can 
leave the occupied energy level at a given temperature. 

Usually for calculation different kinetic processes in 
materials instead of probability function  
       1 1f E f E f E f E      ones use the deriva- 

tive of the Fermi distribution function   f     
(here E kT  ) [2-6], but 
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The probability function   is more 
understandable in the case of the interpretation of the 
effective density of randomly moving charge carriers 
(Equation (7)). Function 

   1f E f E

 f    means that only 
such electrons can be scattered and change its energy for 
which  0f    . 

Illustrations of Equations (1), (2) and (7) are presented 
in Figure 1. From this figure it is clearly seen that the 
effective density of randomly moving electrons neff (7) is 
many times smaller than the total density of free elec- 
trons n. 

Now let ones to evaluate the Equation (7). For 
non-degenerated materials the probability 

, because , and, there-
fore, all electrons in the conduction band n participate in 
the random motion and in the conduction process 
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This is the case where the classical statistics is appli-
cable. 

In the case of high degeneracy and considering that 
Equation (12) has a sharp maximum at the energy E 
equal to the chemical potential , the Equation (7) can be 
written as 

   eff Fn g kT g E kT  � ,     (14) 

where   Fg E g E  at FE E . 
The chemical potential  and the Fermi energy EF are 

related by the following relation [5] 
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and the difference between these quantities is only about  

 
(a) 

 
(b) 

Figure 1. Illustration of density of states g(E) and functions 

   g E f E  and         g E f E f E1  dependency on 

energy for (a) metals with spherical Fermi surfaces 

  1 2g E AE ; (b) for metals and normal state supercon- 

ductors with composite density of states dependency on 
energy. The light grey area represents the total density of 
electrons n (Equation (2)) and the dark grey area represents 
the effective density of randomly moving electrons neff 
(Equation (7)). Additionally there are represented the 

Fermi functions f(E) and    f E1  dependency on energy 

(dashed curves, right scale). 
 

0.01% even at room temperature. So, in many cases for 
calculation of different quantities ones use the Fermi 
distribution function in the following form 

    1
1 exp Ff E E E kT


     .       (16) 

The density of states at Fermi energy  Fg E  can be 
determined from of the experimental results of the elec-
tron heat capacity [5,6] 

 
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2
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π π

3 3V Fc T g E k T k n   ,     (17) 

where 
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and Thus, on the ground of experimental results of the 
conductivity and the electron heat capacity we can evalu- 
ate the diffusion coefficient D (from Equation (21)) and 
drift mobility drift  (from Equation (8) or (9)) for ran- 
domly moving charge carriers in materials with highly 
degenerated electron gas. The calculated results for dif- 
ferent metals at T = 295 K are presented in Table 2. 

  2 2

3

πFg E
k


 .             (19) 

Thus, for metals and other materials with high degen-
erated electron gas 

 eff 2 2
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   ,         (20) The diffusion coefficient usually also is determined by 

the average of square velocity of charge carriers and by 
their average relaxation time (for metals free pass time) i.e. neff is proportional to temperature. Experimental re- 

sults of conductivity and electron heat capacity and cal- 
culated effective density neff of randomly moving elec- 
trons from the Equation (20) at T = 295 K for different 
metals are presented in Table 1. The ratio effn n  obvi- 
ously shows that neff amount in the total free electron 
density n is about a few percents and smaller. From 
Equation (20) it is seen that the effective density of ran- 
domly moving charge carriers neff is completely defined 
quantity for materials with high degeneracy of electron 
gas and can be simply obtained from electron heat capa- 
city measurements. 
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For highly degenerated electron gas 
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i.e. the diffusion coefficient is determined by the square 
velocity and free pass time of randomly moving charge 
carriers at the Fermi level. From the Equations (21) and 
(23) follows that conductivity 

From Equations (8) and (20) for highly degenerated 
materials we obtain that diffusion coefficient of ran- 
domly moving electrons 

 2
F

D
e g E


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Table 1. Conductivity and heat capacity parameters of different metals. 

Element 
Number 

of valency electrons 

Total density 
n of valency  

electrons, 1022 cm−3 

Conductivity , 105 
−1·cm−1 

, 10−6 
J/(K2·cm3)

g(EF), 1022 
eV−1·cm−3 

neff, 1022 
cm−3 

Ratio 
neff/n 

Li 1 4.70 1.07 125 3.21 0.0814 0.0173

Na 1 2.65 2.11 58.4 1.49 0.0379 0.0143

K 1 1.40 1.39 45.9 1.17 0.0298 0.0213

Rb 1 1.15 0.80 43.2 1.10 0.0280 0.0244

Cs 1 0.91 0.50 45.7 1.17 0.0297 0.0326

Cu 1 8.47 5.88 98.0 2.51 0.0636 0.00751

Ag 1 5.86 6.21 62.9 1.61 0.0408 0.00697

Au 1 5.90 4.55 71.4 1.83 0.0464 0.00786

Be 2 24.7 3.08 34.9 0.89 0.0226 0.00092

Mg 2 8.61 2.33 93.0 2.38 0.0604 0.00701

Ca 2 4.61 2.78 111 2.85 0.0724 0.0157
Sr 2 3.55 0.47 108 2.76 0.0702 0.0198
Ba 2 3.15 0.26 71.7 1.83 0.0466 0.0148

Zn 2 13.2 1.69 69.8 1.78 0.0453 0.00343

Cd 2 9.27 1.38 52.9 1.35 0.0344 0.00371

Al 3 18.1 3.65 135 3.45 0.0877 0.00485

Ga 3 15.4 0.67 50.5 1.29 0.0328 0.00213

In 3 11.5 1.14 108 2.75 0.0699 0.00607

Tl 3 10.5 0.61 85.2 2.18 0.0553 0.00527

Sn 4 14.8 0.91 109 2.79 0.0710 0.00480

Pb 4 13.2 0.48 163 4.17 0.106 0.00802

Conductivity and electron heat capacity data are taken from books [5,6,7,19]. Conductivity and neff are presented for T = 295˚ K. 
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Table 2. Kinetic parameters of different metals. 

Element 
Diffusion 
coefficient 
D, cm2·s 

Drift mobility 
drift, cm2/Vs

Electron 
velocity 

vF, 107 cm/s 

Fermi energy
EF, eV 

Ratio EF/kT
Wave vector kF, 

108 cm−1 
Free pass length 

lF = vFF Å 
1

,H

H

n
eR

 1022 cm−3

Li 20.9 820 4.9 0.68 26.9 0.42 128 3.68 

Na 88.4 3470 10.1 2.90 114 0.87 263 2.98 

K 74.1 2910 9.3 2.43 95.7 0.80 240 1.49 

Rb 45.3 1780 7.2 1.49 58.5 0.63 188 1.49 

Cs 26.7 1050 5.6 0.88 34.5 0.48 144 0.80 

Cu 147 5770 13.0 4.81 189 1.12 338 11.6 

Ag 241 9490 16.7 7.92 312 1.44 434 6.94 

Au 156 6120 13.4 5.11 201 1.16 349 8.56 

Be 216 8480 15.8 7.08 279 1.36 410 2.57 

Mg 61.2 2410 8.4 2.01 79.1 0.73 219 7.53 

Ca 61.0 2400 8.4 2.00 78.8 0.73 218 16.0 

Sr 10.6 418 3.5 0.35 13.7 0.30 91  

Ba 8.86 348 3.2 0.29 11.4 0.28 83  

Zn 59.2 2330 8.3 1.94 76.5 0.71 215 6.01 

Cd 63.7 2510 8.6 2.09 82.3 0.74 223 11.8 

Al 66.1 2600 8.7 2.17 85.3 0.76 227 18.9 

Ga 32.4 1270 6.1 1.06 41.9 0.53 159 9.92 

In 25.9 1020 5.5 0.85 33.5 0.47 142 89.3 

Tl 17.5 688 4.5 0.57 22.6 0.39 117  

Sn 20.4 800 4.9 0.67 26.3 0.42 126 313 

Pb 7.20 283 2.9 0.24 9.30 0.25 75 104 

The data for calculation at T = 295 K were used from Table 1. The data of Tables 1 and 2 give the very clear view, why some of metal conductivity is larger 
than other one. For example, the effective density of randomly moving charge carriers neff of Pb is about two times larger than one of Au, but the conductivity 
of Au is about ten times larger than that of Pb. It is because the Fermi energy of Au is about twenty times larger than that of Pb, and, as a consequence, the drift 
mobility of randomly moving charge carriers in Au is about twenty times higher than one in Pb. 

 
This expression is well known for metals and is ob-

tained by solving the kinetic equation [2,3]. 
The correctness of presented diffusion coefficient and 

drift mobility values in Table 2 also follows from the 
electron heat conductivity  for randomly moving elec-
trons in metals [1-6] 
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From Equations (24) and (25) one obtains the well 
known Wiedemann-Franz law 

22π
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The diffusion coefficient calculated from Equation (25) 
gives the same results as from Equation (21). In behalf 
that Einstein relation also is valid for metals shows this 
fact that Einstein relation for metals can be obtained from 
the Wiedemann-Franz law 
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and now 

drift

D kT

e
 . 

2.3. Drift Mobility of Randomly Moving Charge 
Carriers and Conductivity of Homogeneous 
Materials with Highly Degenerated Electron 
Gas 

From Equations (9) and (22) follows that drift mobility 
2

drift 3

e v

kT


  .              (28) 

Including into this relation the effective mass m* of 
charge carriers the drift mobility can be presented in the 
following form 

 
 

2

drift

1 2

3 2

m ve

kTm





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or 

 drift 3 2

e W e

kTm m

 
      ;        (30) 

where   21 2W m v  is the average kinetic energy 
of randomly moving charge carriers. Thus, the Equation 
(29) is the general relation for drift mobility of randomly 
moving charge carriers in homogeneous materials with 
one type of charge carriers (electrons or holes). This rela- 
tion is true for degenerated and for non-degenerated ma- 
terials, including metals. The Equation (28) shows that 
drift mobility of randomly moving electrons in materials 
is proportional to the square of the electron random ve- 
locity, i.e. the electrons with high random velocity con- 
tribution into conductivity is larger than that of slow 
electrons. The factor 

 3 2

W

kT                 (31) 

shows, how many times the mean kinetic energy W  
of randomly moving charge carriers is larger than 
 3 2 kT . For non-degenerated material 1   and 

drift

e

m


  ,               (32) 

but for highly degenerated semiconductors, metals and 
superconductors in the normal state 

2
1

3
FE

kT  � ,            (33) 

i.e. the drift mobility (Equation (30)) of random moving 
charge carriers in metals at room temperature in many 
cases is about a hundred times larger (see the ratio 

FE kT  values in Table 2) than it follows from the clas-
sical Equation (32). 

From the Equation (29) follows that the drift velocity 

drift  of electrons in the electric field E can be presented 
as 
v
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A very important behavior of electrons in materials 
follows from this expression: the drift velocity of elec-
trons in the electric field E is proportional to the square 
velocity of randomly moving electrons. This result in 
principle can not be explained by application of New-
ton’s law for calculation of acceleration of electrons in 
the electric field E in materials. 

From the Equations (8) and (30) follows that the gen-
eral expression for conductivity 
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For non-degenerated material ( 1   and ffen n ) 
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2.4. Hall Mobility and Its Comparison with the 
Drift Mobility 

Now compare the obtained drift mobility results with that 
from the Hall effect measurements. On the ground of the 
Hall effect for highly degenerated materials the Hall mo-
bility [20] 

2

2
,yH F

H H

Ε e e e
r

Ε B m m

 
m




      
x

     (38) 

where HyE  is the Hall electric field strength in y direc-
tion perpendicular to the current flow direction; xE  is 
the applied external electric field strength in x direction; 

 is the Hall factor, which depends on charge car-
rier scattering mechanism, but for high degenerated 
charge carriers 

1Hr 

1Hr  . From Equation (37) it is seen that 
Hall mobility is determined by average relaxation time of 
electrons at Fermi level. 

According to investigations in the work [21], for all 
homogeneous metals and highly degenerated semicon-
ductors the charge carrier relaxation time at Fermi level 
at room temperature is general and equal 

 F kT   ;              (39) 

where 2πh  is the Plank constant. At T = 295 K 
. So, at T = 295 K for m* = m0 

142.6 10 sF
 
2

H 46cm Vs  , while the drift mobility depends also 
on the kinetic energy of the random moving charge car-
riers. Now from Equation (23) or from Equation (24) it is 
possible to find the electron velocity vF at the Fermi level 
and the Fermi energy EF considering that the effective 
mass m* of electron is equal to the free electron mass m0, 
i.e. 2

0 2F FE m v . The calculation results for different 
metals are presented in Table 2. In this table for different 
metals there also are presented the free pass length of 
electron F F Fl v  , the latter obtained values are close 
to experimental data [22]. 

Usually for evaluation of the Fermi energy it is con-
sidered that Fermi surface is spherical, i.e. [5,15] 

    3 2π 2g E m m  E           (40) 

and 
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   2 32 22 3πFE m n  .          (41) 

But for many metals and superconductors in normal 
state the density of states has composite view (Figure 
1(b)), and there is no definite relation between the total 
density of charge carriers n and the Fermi energy EF. So, 
as it was mentioned above in order to evaluate the Fermi 
energy the sure way is from Equation (24) to find the 
electron velocity at the Fermi level vF and than the Fermi 
energy EF. 

The obtained mobility results clearly show that for 
high degenerated materials the drift mobility can tens or 
hundred times be larger than the Hall mobility. 

From Equations (37) and (38) the conductivity and 
Hall mobility for metals are related with the following 
expression 

eff

2

3
F

H

E
en

kT
   .           (42) 

Thus, the charge carrier density in highly degenerated 
materials, determined by using the Hall mobility 

eff eff

2

3
F

H
H

E
n n n

e kT 
 


    n .      (43) 

The charge carrier density nH obtained from Hall effect 
measurements only in particular cases is equal to the total 
free charge density for metals with spherical Fermi sur-
faces, but even in these cases the factor   character-
izes not the charge density, but the drift mobility. For 
multivalent metals and superconductors in the normal 
state with composite density of states dependency on 
energy there is no definite relation between n and nH. 

Equation (14) shows that the randomly moving charge 
carrier density eff  in high degenerated materials is not 
constant but is proportional to the temperature and the 
relaxation time close to room temperature 

n

~ 1F T , so 
in this temperature range the Hall mobility ~ 1H T , 
while the drift mobility 2

drift ~ 1 T . Hence, one can be 
very careful in the interpretation of the Hall effect and 
conductivity measurement results. For example, there are 
many strange interpretations of charge carrier density and 
drift mobility of superconductors in the normal state 
from Hall effect and conductivity temperature measure-
ments [9-13]. 

Considering that Pauli principle and Fermi distribution 
is known over 80 years, and knowing that only the elec-
trons, which energy is close to the Fermi energy, can be 
scattered and can change their energy and take part in 
random moving and in kinetic processes, it is strange that 
till now in many books of solid state physics the conduc-
tivity of metals and superconductors in the normal state 
is presented in the form of classical expression (Equation 
(36)? As it is presented in Tables 1 and 2 sometimes the  

charge carrier density of metals obtained from Hall 
measurement nH is close to the total density of electrons 
n, and the conductivity is near to experimental results, 
but for multivalent metal there is no such coincidence. 
This conductivity expression gives the increased values 
of randomly moving charge carriers and decreased values 
of their drift mobility. Sometimes these two errors com-
pensate one other. In spite of these coincidences the ex-
pression (Equation (36)) for metals from the view of the 
Pauli principle and the Fermi statistics is completely 
wrong, because the electrical field has no effect to elec-
trons, which are well below the Fermi level. 

3. Conclusion 

In this review it is tried to call somebody’s attention to 
problems of conductivity interpretation of metals, normal 
superconductors and degenerated semiconductors. It is 
shown that application of classical statistics for these 
materials in many cases gives the colossal errors in de-
termination of their parameters. On the ground of the 
Fermi distribution and on the random motion of charge 
carriers there are presented the general expressions for 
effective density of randomly moving charge carriers, 
their diffusion coefficient and drift mobility, and conduc-
tivity which are correct for materials without degenerated 
electron gas, and materials with any degree of degener-
acy of electron gas. There also it is presented the ap-
proximations of these expressions for materials without 
degenerated electron gas (classical case), and for materi-
als with high degeneration of electron gas (metals, nor-
mal superconductors, highly degenerated semiconduc-
tors). The real values of effective density of randomly 
moving electrons, their diffusion coefficient and drift 
mobility there are presented for different metals at first 
time. These parameters were obtained by using the well 
known conductivity, electron heat conductivity and ther-
mal noise measurement results. There also it is presented 
the comparison between the Hall and the drift mobility of 
randomly moving charge carriers, and explained their 
differences in the case of high degeneration of electron 
gas. There also is evaluated the Fermi level energy and 
velocity of electrons at the Fermi energy level for differ-
ent of metals. 
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Appendix 

The Kubo formula for conductivity in x direction reads as 
[2,15] 

   1
0

1
dx x xj t j t

kT 1 


    .      (A1) 

i.e. the conductivity is defined by the correlation function 
on time      1 1jx x xk j t j    t  of the current den-
sity fluctuations due to random motion of charge carriers. 
For stationary processes the correlation function depends 
only on time difference 1  Equation (A1) can be pre-
sented in the form of Nyquist formula (Equation (10)) 

   1
0

4 4 4xkT A L kT R A L k 1djx 


   



.  (A2) 

The right side of this expression according to Wie-
ner-Khintchine theorem is the spectral density of the cur-
rent fluctuations at low frequencies 1 2π kf � , be-
cause cos 1k   (here k  is the correlation time). 

In Equation (A1), the current density fluctuations can 
be replaced by the independent charge carrier velocity 
fluctuations 

     

   

eff2
1 11

0

2
eff 1 1

0

d

d

n

x ll

v

e kT v t v t

e n kT k

l  

 







  






   (A3) 

Considering Wiener-Khintchine theorem at low fre-
quencies  1 2π kf �  the Equation (A2) can be pre-
sented as: 

  2
eff 04 x ve n kT S            (A4) 

where 0v  is the spectral density of charge carrier ve-
locity fluctuations at low frequencies 

S
 1 2π kf � . 

The particle random (Brownian) motion (the variance 
of the displacement) during time t can be described by 
Einstein’s relation: 

 2 2x t  Dt ,          (A5) 

where D is the diffusion coefficient of the particles. If the 
charge carrier random velocity is v(t), then the displace-
ment 

   
0

d
t

x t v t  t             (A6) 

and 

     2

0 0

d d
t t

x t v t v t t     t .     (A7) 

Now one can transform the variables: 0t t  and 

1 t t     

   
0

0

2
0 1

0

d
t tt

v
t

x t t k 1d 




   ,       (A8) 

where  1vk   is the autocorrelation function of the 
charge carrier velocity fluctuations. If the observation 
time is much longer than the correlation time k , i.e. 

0 kt �  and 0 kt t  � , then 

     2
0

0 0

d d 2
t

v vx t t k t k d  
 



     .   (A9) 

Considering the Wiener-Khintchine theorem the spec-
tral density of charge carrier velocity fluctuations can be 
expressed as 

   
0

4 cos 2π dv vS f k f  


  .        (A10) 

At low frequencies  2π 1kf �  

 0
0

4v vS k d  


.              (A11) 

From (A5), (A9) and (A11) follows that 

0 4vS D ,                 (A12) 

and from (A4) and (A12) 

 2
eff eff driftx e n D kT en   .       (A13) 

and 

driftD kT e  . 

This derivation once more confirms that Einstein rela-
tion (9) is correct for all homogeneous materials with 
nondegenerated and degenerated electron gas.
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