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ABSTRACT 

In this study, the EEG signals were processed. Thir-
teen ICA algorithms were tested to verify the per-
formance efficiency. The EEG signals were recorder 
using 10/20 international system, based on a 20 min-
ute sleep recording of a severe Obstructive Sleep Ap-
nea Syndrome (OSAS) during NREM and REM sleep. 
Seven channels were used to record the EEG signals 
which are sampled at 100 Hz. The performance analy-
sis of the algorithms were investigated to eliminate 
the loss of the informative EEG signal during the data 
processing. The denoising results were magnified with 
the purpose of evaluating the robustness of the de-
noising algorithms. From the result we obtained, we 
are able to understand the denoising algorithm is 
more suitable to process the EEG signal with lower 
amplitude. 
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(OSAS); Independent Component Analysis (ICA); 
Wavelets Analysis 

1. INTRODUCTION 

Brain acts as the central of control and data processing 
unit for the biological medium in a human. In order for 
the brain cells to communicate to each other, the brain 
uses action potential for the neural activity. With the 
generation of action potentials by the brain cells, we are 
able to record this minute activity by means of electrodes, 
as in electroencephalogram (EEG). 

With the advancement of technology, the ability to 
measure the electrical activity using EEG has been im-
proved. Nowadays EEG technology is an inexpensive 
and yet accurately measurement of brain wave activity at 
the outer layer of the brain. Sensitive electrodes are at-
tached to the skull of the human and the signals are re-
corded in either unipolar or bipolar fashion. 

The depolarization signals from the brain cells are at-
tenuated while passing through the connective tissues in 
the brain structures, the brain fluid and the scalp, which 
have complex impedances. In order to prevent collecting 
noisy signal from the scalp, the skull need to be prepared 

for a quality contact with the reason of overcoming the 
impedance mismatch created by the hair and dead skin 
on the head [1]. 

In EEG recording, the positioning of the electrodes is 
according to the International 10/20 system, shown in 
Figure 1, which is an internationally recognized method 
to describe and apply the location of scalp electrodes in 
the context of an EEG test or experiment. Therefore, the 
electrodes record overlapped brain activity transmitted 
by volume conduction from different dynamic neocorti-
cal processes. 

An example of normal EEG is shown in Figure 2 
whereby the brain activities are recorded by a normal 
adult male with his eyes closed during the EEG re-
cording. The EEG result shows a good alpha activity at 
P3/P4, O1/O2. 

While the EEG is able to record useful brainwave, it 
can also record other signals such as noise or artifacts 
which supposed to be independent from the brain activi-
ties. The noise or artifacts will overlap with neural brain 
activities and it increases the difficulty in the EEG inter-
pretation. One current hypothesis which we usually re-
ferred to is that the artifacts are independent from brain 
activity, either in normal or pathologic condition. With 
this hypothesis and considering the signals are non- 
Gaussian, a frequent method used to remove the noise is 

 

 

Figure 1. 10/20 System EEG. 
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Figure 2. Normal adult male of EEG, eyes closed, showing good alpha activity at P3/P4, O1/O2. 

 
the blind source separation. However, Independent Com-
ponent Analysis (ICA), which is a class of blind source 
separation, has proven capable of separating the artifacts 
from the brain sources. Of the variety of ICA algorithms 
available, which is more efficient in processing the EEG 
data [2,3]. 

Independent Component Analysis (ICA) is a popular 
technique that used widely for separating the noise or 
artifacts from the EEG signals. ICA technique not only 
able to separate the brain activities from non-brain ac-
tivities, it is also used to study the brain activities by an 
EEG analyst in order to determine the brain disorders. 
By using ICA as a tool to blindly separate overlapping 
EEG signals and artifacts into independent sources, one’s 
is able to perform elimination on the unwanted signal 
such as noise or artifacts and reconstruct the noiseless 
EEG recording which is then used for diagnosing the 
brain disorder [2]. 

2. METHODODOLOGY 

A great challenge in biomedical engineering is to provide 
a non-invasive method to assess the physiological changes 
occurring in different organs of the human body. With  

the recorded variation as the biomedical source signals, 
the function or malfunction of various physiological sys-
tems are able to model and measure. As the biomedical 
source signals are usually weak, nonstationary and dis-
torted by artifacts, signal processing techniques have 
become an important role for analyzing the recorded 
signals. 

Besides the classical signal analysis tools (e.g. adap-
tive supervised filtering) are used to process the super-
imposed biomedical source signals, Intelligent Blind Sig-
nal Processing (IBSP) techniques such as blind source 
separation is used with the aim of recovering independ-
ent sources given only sensor observations (linear mix-
ture of independent source signals). Roughly speaking, 
the blind source separation can be formulated as the 
problems of separating or estimating the waveform of the 
original sources without knowing the parameters of mix-
ing [4]. 

Independent Component Analysis (ICA) is very closely 
to the blind source separation (BSS) or blind signal sepa-
ration. ICA is one method, perhaps the most widely used 
in signal processing, for performing the blind source 
separation. It is a way to obtain a linear transformation of 
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the measured signals such that the resulting source sig-
nals are statistically independent from each other. 

To generally define ICA, statistical “latent variables” 
model is used for the definition. Assuming the observed 
linear mixtures 1, , nx x  of n independent components: 

1 1 2 2 , for all .j j j jn nX a s a s a s j        (1) 

By leaving the time index t in the ICA model, each 
mixture xj as well as each independent component sk is 
assumed to be a random variable instead of a proper time 
signal. The observed values xj(t) are then a sample of this 
random variable. Without the loss of generality, both the 
mixture variables and the independent components are 
assumed to be zero mean. 

For the convenient purpose, vector-matrix notation is 
used instead of the sum like in the Equation (1). The 
random vector of x is denoted by the mixtures 1, , nx x  
and the random vector of s is denoted by the elements 

1, , ns s . Let us then denote A matrix with the elements 
of aij whereby the bold lower case letter indicates vector 
and bold upper case letter denote matrices. By using the 
vector-matrix notation, the above mixing model is writ-
ten as 

x As                 (2) 

The statistical model in Equation (2) is known as in-
dependent component analysis or ICA model. The ICA 
model is a generative model whereby it describes how 
the observed data are generated by a process of mixing 
the components si. In this ICA model, the independents 
are latent variables, meaning they cannot be observed 
and the mixing matrix is assumed to be unknown. Ran-
dom vector x is observable and this is done under general 
assumptions. 

For a random noisy vector x(k), the mixing ICA model 
can be represented as: 

     k k v x Hs k             (3) 

where H is an (m x n) mixing matrix, 

        T

1 2, , , ns k s k s k s k   



 is a source vector of  

statistically independent signals (unknown nonsingular  

mixing matrix),  is a          T

1 2, , , mv k v k v k v k  
vector of uncorrelated noise (addictive noise). 

The purpose of the ICA is to formulate a linear trans-
formation W of the dependent sensor signals x that make 
the output as independent as possible, 

      y k Wx k WAs k          (4) 

where y is an estimate of the sources (independent com-
ponents) and the sources are exactly recovered when the 
W is the inverse of the A. 

From Equation (2), there is an ambiguities present in 
the ICA model. The ambiguity that present in the Equa- 

tion (2) is that we cannot determine the variances (ener-
gies) of the independent components. The reason for the 
ambiguity is that both s and A being unknown. Any sca-
lar multiplier in one of the sources si could always be 
cancelled by dividing the corresponding column ai of A 
by the same scalar. However, this ambiguity is, fortu-
nately, insignificant in most application. Besides that, 
obtaining an exact inverse of the A matrix in most cases 
is impossible. Thus, the source separation algorithms aim 
to find a W matrix such as the product of WA in order to 
permute the diagonal and scalar matrix [4-8]. 

In the last 20 years, different types of algorithms were 
proposed and most of the algorithms proposed that the 
sources are stationary and are based implicitly on high 
order statistic (HOS) algorithms. With the application of 
HOS algorithms, Gaussian sources cannot be separated 
as they do not have higher than two statistic moments 
while the second order statistic do not have such con-
straint. On the other hands, Second Order Statistics (SOS) 
algorithm uses non stationary structure of the signals 
(time or frequency structure) for the separation purpose. 

Temporal, spatial and spatio-temporal decorrelations 
play important roles in the EEG signal analysis and these 
techniques are based on the SOS algorithm. Furthermore, 
they are the basis for the modern subspace methods of 
array processing and frequently used to eliminate redun-
dancy or to reduce noise. In the spatial decorrelation 
(pre-whitening) technique, the ICA tasks will usually 
become easier and well-posed (less ill-conditioned) as 
the unmixing system is described by an orthogonal ma-
trix for real-valued signals and a unitary matrix for com-
plex-valued signals and weights. With the same SOS, 
one’s can compute different whitening transformation for 
nonstationary signals. Moreover, the spatio-temporal and 
time delayed decorrelation can be used to identify the 
mixing matrix and to perform blind source separation 
which mainly on coloured source [2]. In contrast to the 
correlation-based transformation such as principal com-
ponent analysis (PCA), ICA not only be able to decorre-
late the signals (second order statistic), but it can also 
reduce higher order statistical dependencies in order to 
generate signals as independent as possible [3,4,9]. 

2.1. SOBI Algorithm 

One of the well-known second order based technique 
that used to compute the separating matrix is called Sec-
ond Order Blind Identification (SOBI) algorithms. In the 
SOBI algorithm, the separation of the matrix is achieved 
in two steps. First step is the whitening the observed 
signal vector by linear transformation, which is also 
known as whitening matrix. Second step is applied the 
Joint Approximate Diagonalization (JAD) on a set of 
different time-delay correlation matrices of the whitened 
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signal vector. Since the whitening matrix is estimated 
based on the noisy observed data, it highly suffers from 
bias if the SNR is relatively low, especially if the noise 
correlation matrix is unknown. Besides that, the Joint 
Approximate Diagonalization (JAD) also suffers from 
highly time correlated noise. In such cases, the correla-
tion matrices of the observed signals at nonzero time- 
delay are still biased by unknown noise correlation ma-
trices. In order to overcome the bias of the whitening 
matrix in white noise cases, robust SOBI algorithm has 
been developed to overcome the weakness of SOBI al-
gorithm [10,11]. 

2.2. Robust SOBI Algorithm 

The robust SOBI (SOBI-RO) algorithm formulates a new 
correlation matrix as a weighted linear combination of a 
set of time-delayed correlation matrices of the observed 
signal vector. The weight linear combination is com-
puted in an iterative procedure that makes the formulated 
correlation matrix in positive define. The positive define 
correlation matrix is used for computing the whitening 
matrix and thereby whitening the observed signal vector. 
In the robust SOBI algorithm, it combines robust whit-
ening and time-delayed decorrelation with the purpose of 
improving the classical SOBI algorithm. By integration 
the robust whitening instead of simple whitening, the 
main objective of using robust whitening is to eliminate 
the influence of white noise [11]. 

Recall the equation introduced in (3), the source sig-
nals s are assumed to be mutually uncorrelated and tem-
porally correlated (instead of independents) in a second 
order statistic framework. Computation on this model 
can be difficult as the presence of noise will influence 
the correlation between signals. Hence its covariance  

matrix at lag 0,  can be a full        
T

0nR E n k n k 


 

0s n

s n

T
c

matrix which is unknown and the time-delayed correla- 

tion matrix  will become        
T

nR i E n k n k i

null. With the above assumption, the correlation matrices 
of the observation have: 

          
T T0xR E x k x k AR A R    (5) 

           
T T

xR i E x k x k i AR i A R   (6) 

The first step (robust whitening) consists of finding a 
matrix Q that correlates the signals in x for small time 
lags. With the helping of ICALAB implementation, 
which exploits Equation (6) for a single time lag i =1. 
The matrix Rx(1) is then diagonalized by an eigen-de- 
composition: 

  diag    2 2
1 N1x cR U λ λ U       (7) 

The whitening matrix Q is then obtained from eigen-
vectors matrix Uc and forming a diagonal eigen-valeus 
matrix 

 diag    T
1 nQ λ λ Uc            (8) 

With the formation of Q matrix, the whitened signal z 
     k i Qx k i  for different time lags can be calcu-
lated. (The default option in ICALAB is 100 time lags). 

The second step of robust SOBI is the same as the 
classical SOBI, namely approximate joint diagonaliza-
tion of different Rz(i) matrices, computed with the Equa-
tion (6). Finally, the separation matrix W is given by 

 TW A Q                  (9) 

where the matrix Q has been computed in the previous 
whitening or orthogonalization step. Based on the fact 
that A is an orthogonal matrix and the sources are spa-
tially uncorrelated [4,10-12]. 

2.3. Wavelet Denoising 

In a real EEG recording, the recorded signals not only 
contaminated with ocular or muscular artifacts, it is also 
contaminated with noises that come from different sources. 
Currently, in order to remove the noise from the non- 
stationary signals, Wavelet Denoising (WD) is usually 
applied for improving the separation result. In WD, the 
recorded signals are decomposed on wavelet basis. After 
that, we are able to obtain a representation of the signal 
that concentrate most of its energy in few wavelet coeffi-
cients which having large absolute values. In the wavelet 
denoising process, the noise energy distribution does not 
change, which mean that its energy will not be hold by 
large value of coefficients. By using large coefficients 
for denoising, it will lead to an almost noise-free signal. 
The main problem is the computation of the threshold, 
which mean responding to where to fix the boundary 
between the small and large wavelet coefficient? 

There are a few algorithms have been proposed in the 
past years and the most well known algorithm is known 
as Donoho’s universal thresholding. The Donoho’s uni-
versal thresholding will compute a threshold level whereby 
no Gaussian noise will be left in the denoised signal. 
However, Donoho’s universal thresholding is able to 
provide us an almost noise-free signal, but the important 
drawback of using this thresholding algorithm is the 
elimination of possibly informative parts of the signal. 

In the EEG signal analysis, it is important that not to 
lose potentially useful information during the diagnosis. 
Moreover, EEG informative signals often have small am-
plitude. Therefore, high thresholding algorithm is not ap-
propriate for denoising the EEG signal. 

On the other hands, SURE denoising (Stein Unbiased 
Risk Estimator) and Minimax methods seem adapted to 
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the EEG signal denoising. This is due to two of the algo-
rithms offering low threshold and thus preserving most 
of the informative signal while eliminating less noise. 

For the SURE denoising method, the value of the 
threshold is computed considering a Gaussian noise hy-
pothesis for which a robust estimation of variance is 
made. Besides that, SURE denoising method has an im-
portant property whereby it can adapt itself to the signal. 
In simple words, the SURE denoising method threshold 
is depending on the signal but not only depend on the 
estimated noise. 

For the Minimax denoising algorithm, it is used a 
fixed threshold chosen to yield minimax performance for 
mean square error against an ideal procedure. The mini-
max principle is used in statistics in order to design an 
estimator. Since the denoised signal can be assimilated to 
the estimator of the unknown regression function, the 
minimax estimator is the one that realizes the minimum 
of the maximum mean square error. 

3. THE EVALUATION CRITERIA 

In order to validate the ICA separation methods [12], the 
Index of Separability (IS) is chosen to validate the ICA 
separation methods. The index of separability is calcu-
lated from the N × N transfer matrix G between the origi-
nal sources and the estimated sources after the ICA 
separation. 

G WA                 (10) 

In order to obtain the Index of Separability (IS), it is 
required to take the absolute value of elements G and 
normalize the lines gi by dividing each element with the 
maximum absolute value of the line. As the result, the 
lines of the resulting matrix G’ will be 

max
i

i
i

g
g

g
                 (11) 

The index of separability is obtained by 

  
 

'

1 1
, 1

IS
1

N N

j i
G i j

N N

 



  

 
        (12) 

For the perfect source separation, the index of separa-
bility is equal zero. (IS = 0) [12]. 

Besides using the Index of Separability (IS) to validate 
the proper ICA algorithms for processing the EEG sig-
nals, performance index of Signal to Interference Ratio 
(SIR) for the mixing matrix A and the signal S is chosen 
to be our evaluation criteria as well. 

For the performance index of SIR for the mixing ma-
trix A, a problem of one component estimation can be 
viewed as the following: 

    T T
i i i i ij

where yi and sj are estimated component and the j-th 
source respectively,  is represent a row vector of 
demixing matrix and the gi is a normalized row vector [0 
0 gij 0 0]. As the yi is the estimation of sj, the ideal nor-
malized vector gi is the unit vector of 

T
iw

 0 0 1 0jU    . 
Therefore, one analysis is successful if and only if its 
vector gi is similar to unit vector uj. 

For the performance index of SIR for the signal S, 
each pair of signal (yi, sj) is then defined as [12] 

2

2
2

2

10log10
i j

ij

j

SIRS
    
 

y s

s


          (14) 

4. EXPERIMENTAL RESULTS 

To select the most appropriate ICA algorithms for proc-
essing the EEG signal, the simulated signals are gener-
ated for testing the ICA algorithms and compared the 
result with known reference sources. Five simulated 
sources are created which having frequencies closing to 
the real brain signals (sampling frequency = 256 Hz). 
The simulated sources are then mixed using random 
mixing type in order to create a real-like human EEG 
signal as shown in the Figure 3. 

To select the appropriate ICA algorithms for separat-
ing the EEG signals, three types of tests have been car-
ried out. 

1) The five simulated EEG signals (Figure 1) were 
processed directly without additional noise to the mixture. 
The purpose of this step was to decide a source separa-
tion algorithm in an ideal condition. Thirteen of ICA 
algorithms were tested under no noise condition and the 
results are shown in Table 1. 

From the result in Table 1, Index of Separability (IS) 
versus ICA algorithms was plotted in Figure 4. From the 
Table 1 and Figure 4, the robust SOBI (SOBI-RO) al-
gorithm will be selected to separate the EEG signal with 
the index of separability 0.0700. When the IS approach-
ing to zero, the separation of the signal into independent 
components will be better. Besides that, the results also 
convince that the second order statistic ICA algorithm 
perform well on non-stationary EEG signals. 

2) To better approximate the real EEG signals, differ-
ent types of noise (Gaussian and Uniform noise) were 
added to the mixtures. As we all know that, the EEG 
signal not only consist of brain activities, but it also con-
tains non-brain activities as well. Therefore, by adding in 
different types of noise which range from 20 dB to 0 dB, 
the approximation on the ICA algorithms can then be 
improved. Thirteen ICA algorithms were tested with 
different types of noise (Gaussian and Uniform noise), 
the result for the additional Gaussian noise and Uniform 
noise is shown in Tables 2 and 3 respectively. jy w X w A S g S g S       (13) 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



R. S. Tung, W. Y. Leong / J. Biomedical Science and Engineering 6 (2013) 152-164 

Copyright © 2013 SciRes.                                                                      

157

 

 

 

Figure 3. Simulated sources, simulated EEG (mixed signals). 
 

Using the results in Tables 2 and 3, the graph of ISavg 
versus ICA algorithms in the presence of Gaussian and 
Uniform noise is plotted in Figures 5 and 6 respectively. 
From the plotted graph of ISavg versus ICA algorithms in 
the presence of noise (Gaussian or Uniform), the robust 
SOBI (SOBI-RO) algorithm appears to be a better algo-
rithm in separating the simulated EEG signals. 

3) Finally, Monte Carlo Analysis is used to evaluate 
the selected ICA algorithms in order to verify the ro-
bustness of the robust-SOBI (SOBI-RO) algorithm. By 

running the ICA algorithms under the Monte Carlo 
Analysis, the mean value of Signal to Interference ratio 
(SIR) for the mixing matrix, A = H and Source signal, S 
can be calculated. The main purpose of using Monte 
Carlo Analysis is to compare the performance, robust-
ness and consistency of different ICA algorithms for the 
same mixing conditions. 

For the evaluation of ICA algorithms under Monte 
Carlo Analysis, four ICA algorithms have been selected 
which are AMUSE, SOBI, SOBI-RO and EFICA. The  
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Table 1. Comparison of ICA algorithms in simulated EEG. 

Algorithm IS IO 

AMUSE 0.0739 0.3126 

Evd 2 0.0850 0.2985 

SOBI 0.0900 0.2973 

SOBI-RO 0.0700 0.1924 

SOBI-BPF 0.0904 0.2817 

SONS 0.1768 0.5328 

FJADE 0.2585 0.4612 

JADE TD 0.1950 0.3149 

FPICA 0.1226 0.2642 

EFICA 0.1099 0.2463 

SANG 0.0787 0.3890 

ThinICA 0.1199 0.2661 

ERICA 0.1742 0.3063 

 

 

Figure 4. Graph of IS versus ICA algorithms. 

result for mean values of Signal to Interference ratio 
(SIR) for mixing matrix A = H and mean values for 
Source signal, S are shown in Figures 7 and 8 respec-
tively. 

From the results (Figures 7 and 8), we can clearly ob-
serve that in each row of ICA algorithms (AMUSE, 
SOBI, SOBI-RO and EFICA), it separate the signals 
successfully with prior knowledge that no additional 
noise is added to the mixtures. For a successful separa-
tion of the signals, the Signal to Interference ratio (SIR) 
for matrix of A and S must be greater than 16 dB. The 
tested algorithms are able to fulfil the criteria for suc-
cessfully separation of signal (>16 dB). 

In order to compare the robustness of different ICA 
algorithms, Gaussian noise of 20 dB is added into the 
mixture and run with the Monte Carlo Analysis. Figure 
9 show the comparison result of mean SIR for the Source 
signal, S. In the noiseless data which is at the left column 
of Figure 9, each row of the algorithms is successfully 
and consistently separates the signals. On the right col-
umn of the Figure 9, the data is added with Gaussian 
noise of 20 dB and from the histogram generated, we 
observe that the SOBI-RO and SOBI algorithms are per-
forming better in separating the noisy signal if compare 
to the other two algorithms. 

 
Table 2. Separation of noisy signals (Gaussian noise). 

Noise Algorithm  20  15  10  5  0  Average of IS 

Amuse  0.1620  0.2557  0.2698  0.3255  0.3194  0.2665 
Evd 2  0.1567  0.2321  0.2883  0.3515  0.3360  0.2729 
SOBI  0.1340  0.2432  0.3090  0.2923  0.4543  0.2866 

SOBI-RO  0.1428  0.1293  0.1731  0.1243  0.1961  0.1531 
SOBI-BPF  0.0963  0.1507  0.2421  0.2136  0.2810  0.1967 

SONS  0.1588  0.1252  0.1629  0.2822  0.2655  0.1989 
FJADE  0.3071  0.2766  0.2813  0.2328  0.3401  0.2876 

JEDE TD  0.1972  0.2544  0.3291  0.2473  0.3051  0.2666 
FPICA  0.2592  0.2904  0.3160  0.4301  0.3125  0.3216 
EFICA  0.2263  0.2021  0.2649  0.3406  0.2829  0.2633 
SANG  0.1762  0.2342  0.2623  0.3589  0.3909  0.2845 

ThinICA  0.2559  0.2520  0.2989  0.3411  0.3835  0.3063 
ERICA  0.2956  0.1801  0.2231  0.3223  0.3332  0.2709 

 
Table 3. Separation of noisy signals (Uniform noise). 

Noise Algorithm  20  15  10  5  0  Average of IS 

Amuse  0.1660  0.2582  0.2669  0.3199  0.3366  0.2695 
Evd 2  0.1561  0.2609  0.2797  0.2870  0.3538  0.2675 
SOBI  0.1359  0.2400  0.2679  0.2860  0.3617  0.2583 

SOBI-RO  0.1414  0.1465  0.1349  0.1470  0.1739  0.1487 
SOBI-BPF  0.1363  0.1588  0.1410  0.2076  0.2355  0.1759 

SONS  0.1180  0.2016  0.1401  0.1823  0.2715  0.1827 
FJADE  0.2159  0.1883  0.2576  0.3198  0.3426  0.2648 

JEDE TD  0.2405  0.2192  0.2523  0.3520  0.3943  0.2916 
FPICA  0.2237  0.2140  0.2780  0.3316  0.3130  0.2721 
EFICA  0.2534  0.2480  0.3017  0.3641  0.3544  0.3043 
SANG  0.1936  0.2474  0.3146  0.3563  0.3576  0.2939 

ThinICA  0.2074  0.2556  0.2432  0.2765  0.3023  0.2570 
ERICA  0.3071  0.2333  0.2399  0.3969  0.3801  0.3114 
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Figure 5. Graph of ISavg versus ICA algorithms in the 
present of noise (Gaussian noise). 

 

Figure 6. Graph of ISavg versus ICA algorithms 
in the present of noise (Uniform noise). 

 

 

Figure 7. Histogram of SIR for S (sources). 
 

 

Figure 8. Histogram of SIR for A (mixing signals). 
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Figure 9. Comparison of noiseless and noise (20 dB) histogram for S. 
 

Instead of using the histogram of SIR for S (source), 
histogram of SIR for A (mixing matrix), shown in Figure 
10, give reliable measurement especially in the presence 
of additional noise in the signal. In the noiseless data 
which is at the left column of Figure 10, the result in the 
noiseless signal gives a successful separation of signal in 
each row of the algorithms. However, in the right column 
of the Figure 10, the additional noise (20 dB) showed 
the robustness in respect to noise for the selected algo-
rithm. 

As shown the Figure 11, in the presence of the noise 
or artifacts, the mean value for SIR will decrease in re- 

spect to the additional noise. This prove that noisy signal 
always pose a problem for the ICA algorithm in separat-
ing and reconstruct the signal. 

5. APPLICATION ON REAL EEG 

In order to apply the selected ICA algorithms and the 
wavelet denoising algorithms, a real EEG signals were 
recorder using 10/20 international system. It is a 20 min-
ute sleep recording of a severe Obstructive Sleep Apnea 
Syndrome (OSAS) during NREM and REM sleep. Seven 
channels were used to record the EEG signals which are 
sampled at 100 Hz. The SOBI-RO algorithm was per-
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formed on four channels (C3, O1, C4 and O2), Figure 12. 
The four channels were selected due to the position of 
the electrode at the location whereby the onset of the 
sleeping happens inside a human brain. 

From denoising results obtained, we are able to see 
that the wavelet denoising method of Heuristic SURE is 

performing better than the Minimax denoising algorithm, 
Figures 13-16. This is due to Minimax denoising algo-
rithm tends to eliminate the informative EEG signal 
which will cause the loss of EEG signal during the proc-
essing of the signal. The denoising results were magni-
fied with the purpose of evaluating the robustness of the  

 

 

 

Figure 10. Comparison of noiseless and noise (20 dB) histogram for A. 
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Figure 11. Histogram of SIRs for A (mean value). Top: clean; Bottom: noise (20 dB). 
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Figure 12. Independent component without denoising (y1 = C3, y2 = O1, y3 = C4 and y4 = O2) running with 
SOBI-RO algorithms. 

 

  

Figure 13. Wavelet denoising with heuristic SURE and minimax on y1 = C3 channel (Top = heuristic SURE, Bottom = minimax). 
 

  

Figure 14. Wavelet denoising with heuristic SURE and minimax on y2 = O1 channel (Top = heuristic SURE, Bottom = minimax). 
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Figure 15. Wavelet denoising with heuristic SURE and minimax on y3 = C4 channel (Top = heuristic SURE, Bottom = minimax). 
 

  

Figure 16. Wavelet denoising with heuristic SURE and minimax on y4 = O2 channel (Top = heuristic SURE, Bottom = minimax). 
 

denoising algorithms and from the result we obtained, we 
are able to understand the denoising algorithm is more 
suitable to process the EEG signal with lower amplitude. 
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