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ABSTRACT 

A variable step-size parameter is usually used to accelerate the convergence speed of a blind adaptive equalizer with N1 
+ N2 − 1 coefficients where N1 and N2 are odd values. In this paper we show that improved equalization performance is 
achieved when using two blind adaptive equalizers connected in series where the first and second blind adaptive equal-
izer have N1 and N2 coefficients respectively compared with the case where a single blind adaptive equalizer is applied 
with N1 + N2 − 1 coefficients. It should be pointed out that the same algorithm (cost function) is used for updating the 
filter taps for the different equalizers and that a fixed step-size parameter is used. Simulation results show that for the 
low signal to noise ratio (SNR) environment and for the case where the convergence speed is slow due to the channel 
characteristics, the new method has a faster convergence speed with a factor of approximately two while leaving the 
system with approximately the same or lower residual intersymbol interference (ISI). 
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1. Introduction 

We consider a blind deconvolution problem in which we 
observe the output of an unknown, possibly nonmini- 
mum phase, linear system (SISO-FIR system) from 
which we want to recover its input (source) using an ad- 
justable linear filter (equalizer). The problem of blind 
deconvolution arises comprehensively in various appli- 
cations such as digital communications, seismic signal 
processing, speech modeling and synthesis, ultrasonic 
nondestructive evaluation and image restoration [1]. 
Blind deconvolution algorithms are essentially adaptive 
filtering algorithms designed such that they do not re- 
quire the external supply (training sequence) of a desired 
response to generate the error signal in the output of the 
adaptive equalization filter [2,3]. The algorithm itself 
generates an estimate of the desired response by applying 
a nonlinear transformation to sequences involved in the 
adaptation process [2,3]. Let us consider for a moment 
the digital communication case. During transmission, a 
source signal undergoes a convolutive distortion between 
its symbols and the channel impulse response. This dis- 
tortion is referred to as ISI. Thus, a blind adaptive equal- 
izer is used to remove the convolutive effect of the sys- 
tem to produce the source signal. 

In this paper, we consider a blind adaptive equalizer 
based on a predefined cost function that characterizes the 
convolutive distortion. Minimizing this cost function  

with respect to the equalizer parameters will reduce the 
convolutional error. Minimization is performed with the 
gradient descent algorithm that searches for an optimal 
filter tap setting [2]. The equalization performance of 
such an equalizer depends on the nature of the equalizer 
(on the predefined cost function), on the system’s filter 
characteristics, on the added noise, on the step-size pa- 
rameter used in the adaptation process, on the equalizers 
tap length (number of coefficients) and on the input sig- 
nal statistics. Fast convergence speed and reaching a re- 
sidual ISI where the eye diagram is considered as open 
(communication case), are the main requirements from a 
blind adaptive equalizer. Fast convergence speed may be 
obtained by increasing the step-size parameter. But, in- 
creasing the step-size parameter will lead to a higher re- 
sidual ISI which might not answer anymore on the sys-
tem’s requirements. In the literature, we may find the 
variable step-size parameter approach for accelerating 
the convergence speed, where the step-size parameter is 
changed during the deconvolution process according to a 
function involving the equalized output data. The con- 
stant modulus algorithm (CMA) or Godard’s algorithm 
[4] is one of the most widely studied blind equalization 
algorithm in the literature. Thus, we may find in the lit- 
erature many variable step-size parameter algorithms 
([5-8] to name only few) for the CMA and its variant 
(Modified Constant Modulus Algorithm (MCMA)).  
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In this paper, we show another approach for accelerat- 
ing the convergence speed of a blind adaptive equalizer 
without using the variable step-size parameter approach 
and that is applicable not only for the CMA or MCMA 
algorithm. It should be pointed out, that in the literature 
we may find other blind adaptive methods such as the 
WNEW algorithm (derived in [2]) with improved equali- 
zation performance compared with the CMA algorithm 
while having approximately the same computational 
burden. We show in this paper via simulation results, that 
two blind adaptive equalizers connected in series where 
the first and second blind adaptive equalizer have N1 and 
N2 coefficients respectively and N2 > N1 is much more 
attractive from the convergence speed point of view than 
using a single blind adaptive equalizer with N1 + N2 − 1 
filter taps. As a matter of fact, simulation results show 
that the convergence speed of our new proposed system 
is approximately twice faster compared to a system with 
a single blind adaptive equalizer while leaving the sys- 
tem with approximately the same residual convolutive 
distortion level or even with a lower one. 

The paper is organized as follows: In Section 2, we 
describe the system under consideration and present all 
the relevant details and explanations how to build up 
efficiently the blind adaptive equalizer with two blind 
adaptive equalizers connected in series where the first 
and second blind adaptive equalizer have N1 and N2 coef- 
ficients respectively. In Section 3, simulation results are 
presented and the conclusion is given in Section 4.  

2. System Description and Two Blind  
Adaptive Equalizer Connected in Series 

The system under consideration is illustrated in Figure 1, 
where we make the following assumptions: 

1) The input sequence  x n  belongs to a constella- 
tion input with zero mean. 

2) The unknown SISO system defined as  h n  is a 
possibly nonminimum phase linear time-invariant filter 
in which the transfer function has no zeros on the unit  

circle. 
3) The equalizer  c n  is a tap-delay line. 
4) The noise  w n  is an additive Gaussian white 

noise with zero mean and variance    2
w E w n w n      

where    and  E   denote the conjugate and expec-
tation operator on    and on    respectively. 

Comments: 
1) In the communication field, the popular constella- 

tion inputs, have the property of zero mean. Therefore, 
many cost functions (and those that are used in this paper) 
are based on the assumption having a source with zero 
mean.  

2) An adaptive FIR equalizer can be used only if the 
transfer function of the channel (modeled with a FIR 
filter) has no zeros on the unit circle.  

3) The zeros of the channels' transfer function may be 
outside the unit circle (nonminimum phase case). Thus, a 
cost function based on higher order statistics (HOS) is 
necessary for the equalization process. Second order sta- 
tistics (SOS) (auto-correlations or power spectra) based 
methods cannot be used if the channel is nonminimum 
phase since these methods are blind of the channel, 
whereas phase information is preserved in statistics of 
order higher than two. In this paper, we use HOS based 
cost functions.  

4) There are many cases such as the wired case in 
which the channel is static, namely, does not change in 
time or almost does not change in time. Thus, the chan- 
nel may be described as a time-invariant filter. Since we 
model the channel as a time-invariant FIR filter, the 
channel coefficients will not vary with time. 

5) Assumptions 1 - 4 were also made in many other 
papers dealing with the blind adaptive equalization prob- 
lem ([2,9,10] to name a few of them). 

The sequence  x n  is sent through the system  h n  
and is corrupted with noise  w n . Therefore, the equal- 
izer’s input sequence  y n  may be written as:  

       y n x n h n w n               (1) 

where “*” denotes the convolution operation. The equal-  
 

h[n] c[n]

w[n]

x[n] y[n] z[n]

Adaptive Equalizer

Adaptive 
Control 

Mechanism

C[n+1]

 

Figure 1. Block diagram of a SISO FIR system with a blind adaptive equalizer.  
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ized output signal can be written as:  

       e jz n x n D p n w n             (2) 

where D is a constant delay,   is a constant phase shift, 
 p n  is the convolutional noise, namely, the residual 

convolutive distortion arising from the difference be- 
tween the ideal equalizer’s coefficients and those chosen 
in the system and      w n c n



w n . Next we turn to 
the adaptation mechanism of the equalizer which is based 
on a predefined cost function F z n   that character- 
izes the convolutive distortion, see [4,9-12]. Minimizing 
this  F z n   with respect to the equalizer parameters 
will reduce the convolutional error. Minimization is per- 
formed with the gradient descent algorithm that searches 
for an optimal filter tap setting by moving in the direc- 
tion of the negative gradient-  cF z n     over the sur- 
face of the cost function in the equalizer filter tap space 
[13]. Thus the updated equation is given by [13]:  

      

   
   

1 cc n c n F z n

F z n
c n y n

z n



 

       

    


         (3) 

where   is the step-size parameter,  c n  is the 
equalizer vector where the input vector is  

    T
[ ] 1y n y n y n N      and N is the equal-

izer's tap length. The operator  denotes for trans-
pose of the function 

 T

  . 
Next, we turn to describe our new proposed system 

(Figure 2) with two blind adaptive equalizers connected 
in series where the first and second blind adaptive equal-
izer have N1 and N2 coefficients respectively. The input 
signal to the first blind adaptive equalizer is  y n  (1). 
The equalized output from this equalizer, given by 
     1z n y n c n  1 , is then sent to the input of the sec- 

ond blind adaptive equalizer. Thus, the total equalized 
output signal may be written as: 

           2 1 2 1 2z n z n c n y n c n c n         (4) 

The update equations for the first and second blind 
adaptive equalizer are given by: 

      

   
   

11 1 1 1

1
1 1

1

1 cc n c n F z n

F z n
c n y n

z n



 

       

    


      (5) 

      

   
   

22 2 2 2

2
12 2

2

1 cc n c n F z n

F z n
c n z n

z n



 

       

    


     (6) 

where 1  and 2  are the step-size parameters. Ac- 
cording to [14], the more coefficients in the equalizer, the 
more “noise” is introduced into the adaptation of each 
coefficient by the simultaneous adaptation of the other 
coefficients. Thus, this might be the reason why having a 
larger convergence speed for higher numbers of coeffi- 
cients in the equalizer. It should be pointed out, that this 
was also observed in [15] where higher numbers of coef- 
ficients in the equalizer have lead to a longer conver- 
gence speed. Obviously, choosing a higher step-size pa- 
rameter may increase the convergence speed but on the 
same time it increases also the residual ISI which might 
not meet any more the system’s requirements. In order to 
get improved convergence speed, two blind adaptive 
equalizers connected in series,  1c n  and  2c n , are 
used where  1  is responsible for getting fast con- 
vergence speed (achieved with N1 < N2 < N and 1

c n
  ) 

and  2  compensates the high residual ISI left at the 
output from 

c n
 1  (accomplished by setting 2c n   ). 

We may express the two blind adaptive equalizers con- 
nected in series as an equivalent filter defined by 
     1 2  with N1 + N2 − 1 filter taps. In our 

proposed system, N = N1 + N2 − 1 where N, N1 and N2 
have odd values. In all our cases we have chosen N1 to be  

c n c n c  n

approximately half of N, 1   and 2 2

  .  
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Figure 2. Block diagram of a SISO FIR system with two serial connected blind adaptive equalizers. 
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3. Simulation 

In this section we compare the equalization performance 
of our new proposed system with two blind adaptive 
equalizers connected in series with a system using only a 
single blind adaptive equalizer. For simplicity we used 
the digital communication case where the the source sig- 
nal belongs to a 16 QAM (Quadrature Amplitude Modu- 
lation-QAM) constellation (a modulation using ±{1, 3} 
levels for in-phase and quadrature components) and to a 
32QAM input (Figure 3). But, in order to show that the 
new proposed method also works well for other source 
inputs and not only for those belonging to the digital 
communication case, we used a third source signal  x n  
where the real and imaginary parts of  x n


 were inde- 

pendently uniformly distributed within 4, 4 . The ISI 
is often used as a measure of performance in equalizer’s 
applications, defined by  

  2 2

max

2

max

m

s m s
ISI

s





  


            (7) 

where 
max

s  is the component of s , given in (8), 
having the maximal absolute value.  

   
     1 2

for system 1

for system 2

s c n h n

s c n c n h n

 
  




     (8) 

where system 1 and system 2 are defined as the system 
with a single blind adaptive equalizer and the system 
with two blind adaptive equalizers connected in series 
respectively. In the following we define  h n  as a 
channel. Two different channels were considered. 

Channel 1 (initial ISI = 0.88): The channel parameters 
were determined according to: 

0.4851, 0.72765, 0.4851nh    



. 

Channel 2 (initial ISI = 1.402): The channel parame- 
ters were determined according to [11]: 

0.2258,0.5161,0.6452,0.5161nh  . 
 

-5 -4 -3 -2 -1 0 1 2 3 4 5
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Figure 3. 32QAM constellation. 

As it can be seen, the ISI caused by the chosen chan- 
nels is very high which means that the initial convolutive 
distortion level is very high. In our simulation, we used 
two different predefined cost functions  kF z n    
(where 0,1,2k   and    0z n z n ) in order to show 
that the new proposed system is not a special case for a 
specific predefined cost function. Thus, for Godard’s 
method [4] we have:  

 
   

 

 
 

4

2

2

k
k k

k

E x nF z n
z n z n

z n E x n

                 

     (9) 

while for the WNEW algorithm [2] the function  

 
 
k

k

F z n

z n

   


 is defined by:  

 
 

   
   

   
   

 

3

2

3

2

Re

Re

Im

Im

kk

k

k

k

z nF z n

z n E x n

z n
j z

E x n

 
             

 
 

       

n

   (10) 

where  Re   and  Im   are the real and imaginary 
parts of    respectively. In our simulation, the equaliz- 
ers were initialized by setting the center tap equal to one 
and all others to zero. The step-size parameters were 
chosen for fast convergence with low steady state ISI. 
The step-size parameters for channel 2 were chosen from 
[2]. Figures 4-8 show the equalization performance of 
our new proposed system ( system 2), namely the ISI as a 
function of iteration number for two different source 
signals (16QAM and uniformly distributed source) and 
channels and SNR values of 10 [dB] and 30 [dB], com- 
pared with system 1. According to Figures 4 and 8, both 
obtained with SNR = 10 [dB], the equalization perform- 
ance improvement is seen in the residual ISI (improve- 
ment of approximately 2 [dB]) as well as in the conver- 
gence speed (the convergence speed is faster than a fac- 
tor of two). According to Figures 6 and 7, both obtained 
with SNR = 30 [dB], the equalization performance im- 
provement is seen in the convergence speed (the conver- 
gence speed is approximately faster by a factor of two) 
while the residual ISI is approximately the same. Please 
note that the two curves for the ISI as a function of itera- 
tion number obtained in Figures 6 and 7 intersect in the 
long term. This means that in long term, a slightly better 
residual ISI is obtained with system I over system 2. But, 
this is of no significance since the main purpose of a 
blind adaptive equalizer is to reach as fast as possible a 
residual ISI where the eye diagram is considered as open.  
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Figure 4. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a 16QAM source input going 
through channel 1 and the WNEW algorithm. The averaged 
results were obtained in 100 Monte Carlo trials for SNR = 
10 dB. We set N = 11, N1 = 5, N2 = 7, μ = μ1 = 0.001 and μ2 = 
0.0005. 
 

 

Figure 5. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a 16QAM source input going 
through channel 1 and the WNEW algorithm. The averaged 
results were obtained in 100 Monte Carlo trials for SNR = 
30 dB. We set N = 11, N1 = 5, N2 = 7, μ = μ1 = 0.001 and μ2 = 
0.0005. 
 
When this occurs, the equalized output is driven to a 
DFE (decision feedback equalizer) for further equaliza- 
tion improvement. In our case (Figures 6 and 7), the eye 
diagram is considered as already open when the residual 
ISI is less than –15 [dB]. According to Figures 6 7 the 
residual ISI for both systems (1 and 2) is much lower 

 

Figure 6. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a 16QAM source input going 
through channel 2 and the WNEW algorithm. The averaged 
results were obtained in 100 Monte Carlo trials for SNR = 
30 dB. We set N = 21, N1 = 9, N2 = 13, μ = μ1 = 0.0002 andμ2 
= 0.0001. 
 

 

Figure 7. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a 16QAM source input going 
through channel 2 and the Godard algorithm. The averaged 
results were obtained in 100 Monte Carlo trials for SNR = 
30 dB. We set N = 21, N1 = 9, N2 = 13, μ = μ1 = 0.00001 and 
μ2 = 0.000005. 
 
than –15 [dB] when the equalizer has converged. Ac-
cording to Figure 5, obtained with SNR = 30 [dB], the 
equalization performance improvement is seen only 
slightly in the residual ISI. Up to now, we have used a 
source signal where the x and y-axis of the signal are 
independent. Next we turn to a source signal (the 32QAM  
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Figure 8. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a source signal x[n] where the 
real and imaginary parts of x[n] were independently uni-
formly distributed within [−4, +4]. For both cases, the 
source input was sent through channel 1 and the WNEW 
algorithm was used. The averaged results were obtained in 
200 Monte Carlo trials for SNR = 10 dB. We set N = 11, N1 
= 5, N2 = 7, μ = μ1 = 0.001 and μ2 = 0.0005. 
 
case) where the x and y-axis of the signal are dependent. 
Figure 9 shows the equalization performance of our new 
proposed system (system 2), namely the ISI as a function 
of iteration number for the 32QAM input case, channel 1 
and SNR = 10 [dB], compared with system 1. According 
to Figure 9, the equalization performance improvement 
is seen in the residual ISI as well as in the convergence 
speed. According to simulation results we may say that 
the equalization performance improvement is obtained in 
the low SNR environment as well as in the case where 
the convergence speed of the deconvolution process of a 
single blind adaptive equalizer is very long.  

The simulation results for the two serial cascaded 
adaptive equalizers made us wonder whether it is possi- 
ble to get further equalization performance improvement 
by using three serial cascaded adaptive equalizers. Fig- 
ure 10 shows the equalization performance comparison, 
namely, the ISI as a function of iteration number between 
a system with two serial cascaded blind adaptive equal- 
izers and a system with three blind adaptive equalizers 
connected in series for the 16QAM source input, channel 
2 and SNR = 30 [dB]. According to Figure 10, improved 
equalization performance is obtained from the conver- 
gence speed point of view with the three serial cascaded 
blind adaptive equalizers compared with the system with 
two blind adaptive equalizers connected in series. Next, 
we compare a system using two serial cascaded blind 
adaptive equalizers with a system using three blind adap-  

 

Figure 9. Equalization performance comparison between 
the system with a single blind adaptive equalizer and the 
system with two blind adaptive equalizers connected in se-
ries. In both cases we used a 32QAM source input going 
through channel 1 and the Godard algorithm. The averaged 
results were obtained in 100 Monte Carlo trials for SNR = 
10 dB. We set N = 11, N1 = 5, N2 = 7, μ = μ1 = 0.00002 and μ2 
= 0.00001. 
 

 

Figure 10. Equalization performance comparison between 
the system with two serial cascaded blind adaptive equal-
izer and the system with three blind adaptive equalizers 
connected in series. In both cases we used a 16QAM source 
input going through channel 2 and the WNEW algorithm. 
The averaged results were obtained in 50 Monte Carlo tri-
als for SNR = 30 dB. We set N1 = 9, N2 = 13, μ1 = 0.0002 and 
μ2 = 0.0001 for the two serial cascaded equalizer, N1 = 3, N2 

= 7, N3 = 13, μ1 = 0.0002, 
 
 
 

2

0.0002
2 0.0001333 


μ  and 

3

0.0002
0.0000666 


μ  for the three serial cascaded eq- 

ualizer. 
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tive equalizers connected in series for the 16QAM source 
input, channel1 and SNR = 10 [dB]. Let us denote 6 
cases: 

Case1: A system with three serial cascaded adaptive 
equalizers with , 1 3N  2 5N  , , 3 5N  1 0.001  ,  

2

0.001
4.3

3
  

 

  and 2

0.001
0.5

3
    

 
. 

Case 2: A system with three serial cascaded adaptive 
equalizers with , 1 3N  2 3N  , , 3 7N  1 0.001  ,  

2

0.001
0.5

3
  

 

  and 2

0.001
2.5

3
    

 
. 

Case 3: A system with three serial cascaded adaptive 
equalizers with , 1 3N  2 3N  , , 3 7N  1 0.001  ,  

2

0.001
2

3
  

 

  and 2

0.001

3
    

 
. 

Case 4: A system with three serial cascaded adaptive 
equalizers with , 1 5N  2 3N  , , 3 5N  1 0.001  ,  

2

0.001
2

3
  

 

  and 2

0.001

3
    

 
. 

Case 5: A system with three serial cascaded adaptive 
equalizers with , 1 5N  2 5N  , , 3 5N  1 0.001  ,  

2

0.001
0.4

3
  

 

  and 2

0.001
0.2

3
    

 
. 

Case 6: A system with two serial cascaded adaptive 
equalizers with , 1 5N  2 7N  , 1 0.001   and  

2 0.0005  . 
Figure 11 shows the equalization performance com- 

parison, namely, the ISI as a function of iteration number 
between the system with two serial cascaded blind adap-  
 

 

Figure 11. Equalization performance comparison between 
the system with two serial cascaded blind adaptive equal-
izer and several systems with three blind adaptive equaliz-
ers connected in series. In all cases we used a 16QAM 
source input going through channel 1 and the WNEW algo-
rithm. The averaged results were obtained in 100 Monte 
Carlo trials for SNR = 10 dB. 

tive equalizers named as Case 6 and a system with three 
blind adaptive equalizers connected in series (with five 
different cases named as Cases 1-5) for the 16QAM 
source input, channel 1 and SNR = 10 [dB]. According to 
Figure 11, the best equalization performance is obtained 
for Case 6. In other words, for channel 1, SNR = 10 [dB] 
and 16QAM source input, the best equalization perfor- 
mance is obtained with two serial cascaded blind adap- 
tive equalizers and not with a system using three blind 
adaptive equalizers connected in series. 

4. Conclusion 

In this paper, we have shown another promising ap- 
proach for accelerating the convergence speed of a blind 
adaptive equalizer with N1 + N2 − 1 coefficients (where 
N1 and N2 are odd values) that does not use the variable 
step-size parameter approach and that is applicable not 
only for the CMA or MCMA algorithm. We have shown 
that a system with two blind adaptive equalizers con- 
nected in series where the first and second blind adaptive 
equalizer have N1 and N2 (N1 < N2) coefficients respec- 
tively achieves improved equalization performance 
compared with the case where a single blind adaptive 
equalizer is applied with N1 + N2 − 1 coefficients. It 
should be pointed out that the same algorithm (cost func- 
tion) was used for updating the filter taps for the different 
equalizers. Thus, the equalization performance im- 
provement of the blind adaptive equalizer was not 
achieved due to a better cost function. The equalization 
performance improvement was mainly seen in the con- 
vergence speed which was found to be approximately 
faster by a factor of two for the low SNR environment as 
well as in the case where the convergence speed of the 
deconvolution process of a single blind adaptive equal- 
izer is very long. Since the new approach used fixed 
step-size parameters, it might be possible that further 
equalization performance improvement may be obtained 
if instead for the fixed step-size parameter we use the 
variable step-size parameter approach. But, this is be- 
yond this paper. 
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