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ABSTRACT 

This paper proposes a Full Range Gaussian Markov Random Field (FRGMRF) model for monochrome image compres-
sion, where images are assumed to be Gaussian Markov Random Field. The parameters of the model are estimated 
based on Bayesian approach. The advantage of the proposed model is that it adapts itself according to the nature of the 
data (image) because it has infinite structure with a finite number of parameters, and so completely avoids the problem 
of order determination. The proposed model is fitted to reconstruct the image with the use of estimated parameters and 
seed values. The residual image is computed from the original and the reconstructed images. The proposed FRGMRF 
model is redefined as an error model to compress the residual image to obtain better quality of the reconstructed image. 
The parameters of the error model are estimated by employing the Metropolis-Hastings (M-H) algorithm. Then, the 
error model is fitted to reconstruct the compressed residual image. The Arithmetic coding is employed on seed values, 
average of the residuals and the model coefficients of both the input and residual images to achieve higher compression 
ratio. Different types of textured and structured images are considered for experiment to illustrate the efficiency of the 
proposed model. The results obtained by the FRGMRF model are compared to the JPEG2000. The proposed approach 
yields higher compression ratio than the JPEG whereas it produces Peak Signal to Noise Ratio (PSNR) with little higher 
than the JPEG, which is negligible.  
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1. Introduction 

Image content analysis is an important research issue in 
computer vision because applications such as multimedia, 
image retrieval through Internet, TV broadcast, and stor- 
age management etc. require high speed transmission of 
data and higher compression ratio with high quality. To 
fulfil these requirements, the size of the data needs to be 
compressed. Usually, image compression techniques are 
categorized into lossy and lossless. The lossy compres- 
sion techniques concentrate on high compression ratio 
whereas the lossless compression techniques concentrate 
on high quality. Both the techniques have disadvantage: 
The lossy does not maintain high quality while the loss- 
less does not maintain high compression ratio. Most of 
the image compression techniques come under either 
dictionary-based schemes or statistical-based approaches. 
The former is computational and time consuming when 
compared to the latter. The lossy compression technique 
is developed based on Discrete Cosine Transform (DCT)  

and on entropy coding while the lossless compression 
technique uses predictive coding technique, which also 
follows entropy coding. The lossless JPEG2000 or 
JPEG-LS is the current standard for lossless image com- 
pression [1-3]. The JPEG2000 is developed based on 
wavelet transform, scalar or trellis coded quantizer, and 
arithmetic coder. In JPEG2000, the input image is trans- 
formed by wavelet transform and the transform coeffi- 
cients are put into two groups. Each group consists of 
blocks in the wavelet domain. The transform coefficients 
are quantized with the help of scalar or trellis coded 
quantizer, and then the arithmetic coder is applied to 
code the coefficients.  

Hewlett-Packard developed a coding scheme LOCO-I 
[4] during the standardization process, which is the base 
for the current standard of the lossless compression. 
LOCO-I utilises the features of simple fixed context 
model and complex context model for capturing higher- 
order dependencies, which attains compression ratios 
similar or superior to that of state-of-the-art schemes 
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based on arithmetic coding. Memon and Wu [5] pro- 
posed a scheme, CALIC, which is presented as a com- 
petitor for the standard; it gives similar or better per- 
formance at the increased computational complexity 
when compared to that of LOCO-I. These schemes are 
based on the same idea of predicting a pixel value on the 
basis of the values of adjacent pixels. The simplicity- 
driven schemes like JPEG standard have some limita-
tions in their compression performance by the first order 
entropy of the prediction residuals, which do not achieve 
the total decorrelation of the data [6]. In complexity- 
driven schemes like LOCO-I [4], CALIC [5], and TMW 
[7], the compression gains are obtained by adjusting the 
model carefully to the image compression application. 
The literature reveals the significance of the gap between 
the complexity-driven schemes and simplicity-driven 
schemes. The gap between the two schemes is dimin- 
ished by FELICS algorithm [8]. FELICS maintains the 
performance with moderate compression ratio at the ex- 
pense of low computational complexity.  

Most of the compression community people, including 
those in the medical image processing, feel that instead 
of approaching in terms of the dichotomy between loss- 
less and lossy, it is better to establish an algorithm, which 
consists of features of both techniques and also it can be 
a trade-off between them. It establishes a method to de- 
velop near-lossless compression algorithm. Near-lossless 
means no pixel is changed in magnitude by more than 
error tolerance gray levels compared to the original pixel 
[9]. Error tolerance means that the quantity of the differ- 
ence between the original image and decompressed im- 
age is negligible. Though many researchers [9-11] have 
developed near-lossless compression algorithm based on 
differential pulse code modulation (DPCM) for continu- 
ous-tone images, there is a lack of decreasing the com- 
putational time as well as increasing the compression 
ratio. Chen and Ramabadran [10] proposed a scheme 
based on DPCM coding and two types of uniform scalar 
quantizers with less distortion rate. Ke and Marcellin [11] 
have extended the concept by generalising and incorpo- 
rating entropy-minimization of the quantized predictor 
error. It is observed from the literature that most of the 
algorithms demand more computational effort to attain 
moderate compression ratio. This motivated us to devel-
opment the proposed algorithm. 

The proposed technique uses the predictive coding 
based statistical approach. In this approach, after esti- 
mating the parameters, the model generates the pixel 
values within negligible time period. Also there is no 
dictionary-based data storage overhead. In the proposed 
technique, very sharp edges are slightly smoothed. But 
this problem is overcome by estimating the parameters 
precisely with the help of M-H algorithm as discussed in 

Sections 4 and 5. 
In order to analyse image content, stochastic models 

like Random Field (RF) [12], Markov Random Field 
(MRF) [13-16], and Gibbs field (GF) [17,18] are inves- 
tigated. Moreover, the degree of accuracy of parameter 
estimation plays a significant role in obtaining satisfac- 
tory results in low-level image processing. In earlier 
works, classical approaches such as Least Square (LS) 
[13,19] and Maximum Likelihood Estimation (MLE) 
[15,20] methods were used to estimate the parameters, 
which were found to be unsatisfactory for reconstructing 
the images after compression [13,16] or they require 
some post processing [16,21,22] or iterative procedures 
[23-25]. Later the Bayesian approach was studied by 
[26-29] for parameter estimation that could give higher 
precision. It is also observed from the literature that the 
emphasis is on parameter estimation, not on identifica- 
tion of the order of the model [30]. The reason for not 
concentrating on the order determination or model iden- 
tification is that computational complexity arises as the 
order increases. Selecting the most suitable model for 
describing individual time series can improve the per- 
formance of the prediction process.  

Collopy and Armstrong [31] suggest that there is no 
single model that performs better than the others in all 
types of data (images). In [32], the authors emphasize the 
need for incorporating knowledge into the model selec- 
tion process by associating image characteristics with the 
model performance. Later, Arinze [32] proposed the use 
of learning algorithm for model selection and is adopted 
in other works [33-35]. The approaches treat the model 
selection as a classification problem in which a learning 
algorithm is used as the classifier. This adds more to 
computational complexity. 

In the proposed method, there is no question of model 
selection and order determination, for it has infinite 
structure with a finite number of parameters and so com- 
pletely avoids the problem of order determination [28, 
29]. The advantage of the present approach is that the 
number of parameters fixed is only four and the order 
does not increase the computational complexity, since 
the estimation of these parameters is the same irrespec- 
tive of the order of the model, and hence it increases the 
efficiency of the model. So, the proposed model is more 
a generalized one for most images. 

The rest of the paper is organized as follows: The 
overview of the proposed work is presented in Section 2. 
Section 3 discusses the proposed model and its features. 
In Section 4, the parameter estimation is discussed. The 
error model and its parameter estimation technique are 
discussed in Section 5. The measure of performance is 
presented in Section 6 and the results of the experiments 
are demonstrated in Section 7. The conclusion is drawn 
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in Section 8. 

2. Overview of the Proposed Work 

In this paper, a Full Range Guassian Markov Random 
Field (FRGMRF) model is proposed for image compres- 
sion. The proposed compression method performs the 
compression process at two stages: first, the actual input 
image is performed using FRGMRF model; second, the 
residual image is performed based on the error model 
discussed in Section 5. The proposed family of FRGMRF 
model is completely free from order determination as 
discussed in the previous Section. An input image  if  
of size L  L is assumed to be a Gaussian Markov Ran- 
dom Field (GMRF), which is segregated into various 
non-overlapping subimages of equal fixed sizes of M  
M where M < L. Using the Bayesian methodology, the 
parameters of the model are estimated for each subimage 
as discussed in Section 4. Using the estimated parameters 
K, α, θ and  , the coefficients ra  of the model are 
computed. Based on the model coefficients and seed 
values, the subimage is generated. This process is re-
peated for the entire image. The reconstructed subimages 
are synthesised to form the entire image, which is de-
noted as  i rf . The residual image ef  is computed from 
the actual input image if  and the reconstructed image 

 i rf . With the assumption that the residual image does 
not have the spatial direction, the proposed FRGMRF 
model is redefined as an error model as discussed in Sec- 
tion 5. The error model is employed to reconstruct the 
residual image to maintain good quality. The parameters 
of the error model are estimated by employing the Me- 
tropolis-Hastings (M-H) algorithm. Many iterative algo- 
rithms, including Gibbs sampler and Expectation Maxi- 
mization (EM) algorithm are shown to be special cases of 
the M-H algorithm. The M-H algorithm needs less than 
half of the time taken by other iterative techniques [36]. 
Based on the estimated parameters of the error model and 
seed values, the compressed image is decompressed. The 
residual image is computed from the actual residual im- 
age and its reconstructed image. The average value of the 
residual is calculated. Now, the parameters, seed values 
and the average are stored for each subimage. The arith-
metic coding [37,38] is used on the images compressed 
by the FRGMRF model and the error model to obtain 
furthermore compression. The stored pixel values, aver- 
age of the residuals and the coefficients of the error 
model are utilised to reconstruct the subimages. The re- 
constructed subimages are grouped together to form the 
entire image, which is denoted as erf . Again, error im- 
age eef  is computed from erf  and ef . The average is 
computed on eef  and it is stored together with parame-
ters values and seed values. Based on the stored values, 
the error image is reconstructed. Now, the reconstructed 

image of actual input and the residual image are added 
together, which results in the final reconstructed image. 
The final reconstructed image is almost error free. Vari- 
ous steps involved in the proposed work are demon- 
strated with a block diagram in Figure 1. 

3. Proposed Model 

Generally, the pixels in a small image region are linearly 
dependent. The linear dependency among the pixels is 
extracted to predict the missing pixels in that region. As 
illustrated in Figure 2(a), the center pixel X(s) linearly 
depends on its neighbouring pixels. The properties of the 
FRGMRF model allow us to define the likelihood func- 
tion  l f . This facilitates the statistical estimation of 
the unknown pixel values. As mentioned in Section 1, the 
LSE and MLE methods are not satisfactory. Hence, in 
this article, the Bayesian approach is adopted to predict 
the unknown pixels in the small image region by consid- 
ering the likelihood function aforesaid, which gives the 
conditional distribution of the neighbourhood pixels 
given the original,  p g f  and the prior information 
obtained from the domain block,  π f , where g repre- 
sents the neighbourhood pixels. The joint posterior dis-
tribution      ππ f g p g f f  is obtained by using 
these two components and the Bayes’s theorem. By 
keeping all these points, a model is proposed as in Equa- 
tion (1). Let X be a random variable that represents the 
intensity value of a pixel at location (k, l) in an image of 
size M  M. The random variable X is assumed to be in- 
dependent and identically distributed (i.i.d.) Gaussian 
random variables in discrete state space with mean zero 
and variance σ2, because the noise is independent and 
identically distributed Gaussian random variable which is 
incorporated with X. The noise is denoted with the sym- 
bol  ,k l  and it follows the normal distribution, i.e. 
   20,,k l N  .  
Since   ;  X s s S  is a stochastic process, where 

  S s M: , ;  1 ,k l k l   ,  X s  can be considered 
as a Markov process because it has the conditional prob- 
ability: 

    
    1 1

;  0,1, 2, 1n n k k

n n n n

P X s i X s i k n

P X s i X s i 

   

  


 

for all ik, 0,1, 2, , 1k n   and sk belonging to the state 
space S and 0 1 ns s s   .  

Thus, we propose a model in Equation (1), Full Range 
Gaussian Markov Random Field (FRGMRF) model, 

    
0

, ,   
M M

r
p M q M

p q

,X k l a X k p l q k l
 

 

         (1) 

w  here 
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Figure 1. Block diagram of the proposed work. 
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(a)                           (b) 

Figure 2. (a) Relationship among neighbour sets; (b) 
Neighbour sets for different FRGMRF model with orders. 
 

   sin cos
,    

rr

K r r
r p qa

 


         (1a) 

and K, α, θ, and  are real parameters. The r , model 
coefficients, which are computed by substituting the 
model parameters K, α, θ, and  in Equation (1a). The 

model parameters are interrelated. 

a s

The proposed model is employed to analyse a two di-
mensional discrete gray-scale image. The image is parti-
tioned into various subimages of size M  M, to locally 
characterize the nature of the image. With the Markovian 
assumption, the conditional probability of X(s) given all 
other values only depends upon the nearest neighbour- 
hood values. 

The initial assumptions about the parameters are K  
R: real value, α > 1, and ,  0,2π  . Some of the 
models used in the previous workswhite noise, Markov 
model with finite order and infinite order can be regarded 
as special cases of the proposed model. Thus, 

1) if we set  = 0, then the FRGMRF model reduces to 
the white noise process; 

2) when α is large, the coefficients ars become negli-
gible as “r” increases. So the FRGMRF model reduces to 
a Gaussian Markov Random model with order r ap-
proximately, for a suitable value of r, where r is the order 
of the model; 

3) when α is chosen to be less than one, then the 
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FRGMRF model becomes an explosive infinite order 
Gaussian Markov Random model. 

The fact that  X s  has regression on its neighbour- 
hood pixels gives rise to the terminology of dependency 
process. However, in this case the dependence of  X s  
on neighbourhood values may be true to some extent. In 
fact, the process is Gaussian under the assumption that 
the  are Gaussian and in this case its probabil- 
istic structure is completely determined by its second 
order properties. The second order properties meant for 
the proposed FRGMRF model is asymptotically station- 
ary up to order two, provided 1 – α < K < α – 1. Finally 
the range of the parameters of the model is set as with the 
constraints K  R, α  1, 0    , 0    /2.  

 , sk l

The non-causal model proposed in Equation (1) repre- 
sents the pixel  X s  as a linear combination of nearest 
neighbourhood values on each side as shown in Figure 
2(a), and the influence of the horizontal and vertical pix- 
els on the centre is higher than that of the diagonal pixels. 
The order of influence of neighbourhood pixels on its 
centre is illustrated in Figure 2(b). 

While reconstructing the compressed image, only the 
previous values viz. upper triangular elements are known 
and are represented by one, and all the other elements are 
zero as depicted in Figure 3(b). Hence, the pixel  X s  
is predicted by using the upper triangular elements only, 
which are categorized into two sets according to the or- 
der of neighbourhood pixels as shown in Figure 3(a). 

Hence, the non-causal model given in Equation (1) is 
redefined as a causal model, with the combination of two 
sets of elements as described in Figure 3(a): 

1   2                   (2) 

where, 

 1 , : 0 , 1;p q p q p q              (2a) 

 2 , : 1 1; 1; 0 , ,p q p q p k l            (2b) 

By using the above constraints in Equations (2a) and  
 

2 1

1 s ×

2 ×

×

×

Set - 2 Set - 1

1 1 0

1 s 0

1 0 0

 
(a)                           (b) 

Figure 3. (a) Order (priority) of the neighbour sets; (b) 1 
represents availability of the pixels; 0 represents non- 
availability of the pixels. 

(2b), the causal model given in Equation (3) is obtained 
from Equation (1) 

   

  

1 1

0 0

1

1
0

, ,

, 1 ,

r
p q

p q

r
p
p

X k l a X k p l q

a X k p l k l

 





  

   



 
    (3) 

where, 

   sin cos
r r

K r r
a

 


 , and r p q  .   (3a) 

The model given in Equation (3) is used to reconstruct 
the compressed image data at stage one. 

4. Parameter Estimation 

In order to implement the proposed FRGMRF model, the 
parameters are to be estimated. The parameters K, α, θ 
and  are estimated, by taking the suitable prior informa- 
tion for the hyper parameters , , and , based on 
Bayesian methodology [28,29]. The hyper parameters are 
meant for the parameters of the prior distribution of the 
actual model parameters K, α, θ and . The hyper pa- 
rameters, approximately estimated by using the mean and 
standard deviation of the pixel values of the subimage are 
to be estimated. Just for the computational purpose, the 
pixel values of each subimage are arranged as one-di- 
mensional vectors  X t ,  (M  M = M2 
= N). Since the error term  in Equation (3) is 
independent and identically distributed Gaussian random 
variable, the joint probability density function of the sto- 
chastic process 

1, 2,3, ,t  
 ,k l

N

  X t  is given by 

   
2

22
2

1 1

1
exp

2

NN

t r t r
t r

P X X K S X





 

       
   

 

 (4) 

where,  1 2, , , NX X X X  ;  2, , , ,K      , and  
   sin cosr r

r r
S

 
. 




When the real data are analyzed with finite number of 
N observations, the range for the index “r” viz., 1 to , 
reduces to 1 to N and so the joint probability density 
function of the observations given in Equation (4); the  

summation 
1r




 can be replaced by  which gives  

1

N

t


   
2

22
2

1 1

1
exp

2

N NN

t r t r
t t

P X X K S X





 

       
   

 

(5) 

By expanding the square in the exponent, we get 
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    22 2
002

1

2
0

, 1 1

1
exp

2

2 2  

NN

r rr
t

N N

r S rs r r
r s t
r s

P X T K S T

K S S T K S T








 


 
   
 

  




 

2

N

 (6) 

where . 
1

, , 0,1,2, ,
N

rs t r t s
t

T X X r s 


  

The above joint probability density function can be 
written as 

    22
2

exp
2

N Q
P X 


    


         (7) 

where,  

2 2 2
00 0

1 , 1 1

2 2
N N N

r rr r S rs r r
t r s t

r s

Q T K S T K S S T K S T
  



       

K R , 1  , 0 π  , 0 π 2   and σ2 > 0. 
The prior distribution of the parameters is assigned as 

follows: 
1) α is distributed as the displaced exponential distri- 

bution with parameter β, i.e. 

    exp 1 ;   1; 0P               (8) 

2) σ2 has the inverted gamma distribution with pa- 
rameter   and δ, i.e.  

       12 2 2 2exp ; 0; , 0P


     
 

      (9) 

3) K,  and  are Uniformly distributed over their do- 
main, i.e. , a constant;  , ,P K C   K R , 0 π  , 
0 π 2  . 

So, the joint prior density function of  is given by 

        12 2

2

exp 1 ;

0,  1,  0 π,  0 π 2.

P


     

   

 
    

     
 (10) 

where, P is used as a general notation for the probability 
density function of the random variables given within the 
parentheses following P. 

Using (7), (10) and Bayes theorem, the joint posterior 
density of K, α, θ,  and σ2 is obtained as  

 

       12 2 2

2

exp 1 exp 1 2 2

,  1,  0 π,  0 π 2  and  0.

N

P X

Q

K R


    

   

    
 



    

      

;  

(11) 

Integrating (11) with respect to σ2, the posterior den- 
sity of K, α, θ and  is obtained as 

      2, , , exp 1 2

,  1,  0 π,  0 π 2

N

P K X Q

K R

     

  

   
   

     



T

; (12) 

where 

  2 2 2

1 , 1

0 00
1

2 2

2 2

N N

r rr r S rs
t r s

r s

N

r r
t

Q K S T K S S

K S T T





 





  


     

 



    (13) 

That is, 

 

 

2
00

2

1 1

2 2

1

Q aK Kb T

C a K b

2     

    
        (14) 

where 
2

00

2

1 , 1

2

2
N N

r rr r S rs
t r s

r s

b
C T

a

a S T S S T



 


  

  
 

0
1

N

r r
r

b S T


  ; 1

a
a

C
 ; 1

b
b

a
  

Thus, the above joint posterior density of K, ,  and  
can be rewritten as 

 

     2

1 1

, , ,

exp  1 1

,  1,  0 π,  0 π 2

d

P K X

C a K b

K R

  

 

  


       

     

   (15) 

where, 
2

N
d   . 

This shows that, given α, θ and , the conditional dis-
tribution of K is “t” distribution located at b1 with (2d – 1) 
degrees of freedom (d.f.). 

The proper Bayesian inference on K, α, θ and  can be 
obtained from their respective posterior densities. The 
joint posterior density of α, θ and , namely,  , ,P X   , 
can be obtained by integrating (15) with respect to K.  

Thus, 

 

    2

1 1
-

, , 

exp 1 1 d
d

d

P X

C a K b

  

 
 





       K
  (16) 

 

  
 

1

2

2
- 1 1

, , 

1
exp 1 d

1

n

d

P X

C K
a K b

  

 








 
    

   


  (17) 
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where, n = (2d −1) d.f. 
Thus, the joint posterior density of α, θ and  is ob- 

tained as 

     1 2
1, , exp 1

1,  0 π,  0 π 2

dP X C a    

  

   

    
   (18) 

The derivation of Equation (18) from Equation (17) is 
discussed in APPENDIX. 

The marginal posterior density of α, θ and  in (18) is 
a complicated function and is analytically not solvable. 
Therefore, we can find the original posterior density of α, 
θ and  numerically from the joint density (18). 

That is, 

   , , d dP P X        

Similarly, 

   
   

, , d d and

, , d d

P P X

P P X

     

     








     (19) 

The point estimates of the parameters α, θ and  may 
be taken as the means of the respective marginal poste- 
rior distribution i.e. posterior means. With a view to 
minimize the computations, we first obtain the posterior 
mean of α numerically. Then fix α at its posterior mean 
and evaluate the conditional means of θ and  fixing α at 
its mean. We fix α, θ and  at their posterior means re- 
spectively and then evaluate the conditional mean of K. 

Thus, the estimates are 

 

   

 

ˆ

ˆ ˆ ˆ, ,

ˆ ˆˆ ˆ , ,

E

 E

K E K

 

     

    

 
  

   .

        (20) 

The estimated parameters K, α, θ and  are used in 
Equation (3a) to compute the coefficients ra s  of the 
model presented in Equation (3) and then the model co- 
efficients are applied in Equation (3) to reconstruct the 
compressed image. 

5. Error Model 

The residual image ef  is computed from the actual in- 
put image if  and the reconstructed image irf . Since 
the residual image ef  has no spatial direction among 
the pixels, the angle θ is set to zero in the proposed 
model in Equation (1). Now, the proposed FRGMRF 
model becomes white noise model as in Equation (21), 
because the first term in Equation (1) becomes zero and 
the error term, that is, second term only remains. 

     
0

, ,   
M M

e r e
p M q M

p q

where r p q  ,  ,e k l represents error term, which 
follows the Markov process [39] and r s  are the 
Markov coefficients. 

By applying the constraints used in Equations (2a) and 
(2b), the model in Equation (21) is reconstructed as sta- 
tionary second-order MR(2) model as follows: 

      
      

1

2

, , 1 1,

1, 1 1, 1 ,

e e e

e e

f k l f k l f k l

f k l f k l e k l

    

      
  (22) 

where 1 1 2   and 2 2 2  . 
The Metropolis-Hastings (M-H) algorithm is em- 

ployed to estimate the coefficients 1  and 2  of the 
error model for each subimage. The set of coefficients 

 1 2,    lying in the region  is calculated 
and that satisfies the following stationarity conditions.  

2RS 

1 2 1 2 21; 1; 1           . 

The computed coefficient values 1  and 2  are sub- 
stituted in Equation (22) to obtain the decompressed im-
age.  

The following algorithm is employed to estimate the 
coefficients 1  and 2 . 

M-H Algorithm 
Step 1: Check the stationarity conditions for the set of 

coefficient values  1 2,   . 

1 2 1 2 21; 1; 1            

Step 2: A sample of draws from the posterior distribu-
tion of the parameters  2π , nX   can be obtained by 
successively sampling from  2π ,nX   , where 

 1 2, ,n nX x x x   . 
Step 3: Simulate 2 from  2 ,nX    using  . 
Step 4: Generate candidates from the density function 

   2 1ˆ ,norf G I S      

where norf  is the normal density function,  


3

n

t t
t

G w w


   and .  1 2,t t tw x x 

Step 5: At jth iteration (the current value 2(j)) draws a 
candidate  1ja   from a normal density with mean ̂  
and covariance  2 1 1j G   . 

1) If it satisfies stationarity conditions given in Step 1, 
then move to this point with probability 

    
    

1 2

2

,
min ,1

,

j j

j j

  

  

 
 
 
  

 

,f k l f k p l q e k l
 

 

        (21) 

    1 1 22 2 1 1
2 22

1
, exp

2
V X V  


   

.X     
 

2) Otherwise set    1j j   . 
Step 6: Repeat Step: 2 to Step: 5 until it satisfies the 
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condition 1) of Step: 5. 
After estimating the parameters 1  and 2 , the 

model expressed in Equation (22) is employed to recon- 
struct the compressed subimage. 

6. Measures of Performance 

The performance of the proposed FRGMRF model is 
evaluated by means of Root Mean-Squared Error (RMSE) 
and Peak Signal to Noise Ratio (PSNR) 

   
1 1 2

0 0

1
RMSE , ,

N N

i r
i j

f i j f i j
N N

 

 

      

structed subimages are grouped together to form the en- 
tire image. The reconstructed images by the proposed 
method, corresponding to the original images shown in 
Figures 4(a)-(c), are presented in Figures 4(d)-(f) re- 
spectively. The proposed image compression scheme is 
also compared to JPEG2000. The compressed version of 
the original images for JPEG2000 is obtained with a 
quality factor 60, by conducting the experiment with 
Advanced JPEG Compressor V4.8 [41] software, and the 
outputs corresponding to the images shown in Figures 
4(a)-(c) are presented in Figures 4(g)-(i). The compres- 
sion ratios along with RMSE and PSNR values by the 
proposed method and the JPEG2000 are presented in 
Table 1. where if  and rf  are actual input image and final re- 

constructed image of size 256  256 respectively. Based on the actual input image if  and the recon- 
structed image irf , the residual image ef  is computed. 
The residual images of D9-Grass, D29-Beach-Sand and 
Barb images are presented in Figures 5(a)-(c) respec- 
tively. As discussed in Section 1, the sharp edges are 
smoothed while reconstructing the compressed images 
by the FRGMRF model. Smoothed means the loss of 
information. The information lost (residual image) is 
extracted by differentiating the images if  and irf . The 
error model discussed in Section 5 is employed on the 
residual image to obtain furthermore quality. For more 
precise estimation of the parameters of the error model, 
the M-H algorithm discussed in Section 5 is used for 
accurate prediction of the pixels in the residual image. 
The procedure used for the actual input image (FRGMRF 
model) is adopted for the residual image (error model). 
The arithmetic coding is used on image data compressed 
by the FRGMRF model and the error model to achieve 
higher compression ratio. The output of the experiment is 
presented in Figures 6(d)-(f) and the results obtained are 
given in Table 2. The outputs are obtained by adding the 
images generated by the FRGMRF model and error 
model. The final outputs are compared with the outputs 
obtained by JPEG2000 with the quality factor 95 and 
presented in Figures 6(g)-(i). Conducting the experiment 
at various levels of quality factors and bpp, the final 
outputs are obtained. From the experiment, it is observed 
that the quality factor 95 yields good reconstruction qual- 
ity at different bit rates. The optimum bpp is fixed at  

10

255
PSNR 20log

RMSE
   
 

 

The compression ratio (CR) is calculated in percentage 
as follows: 

No.of bits required to store compressed image
CR 1

No.of bits required to store original image

100

 
  
 


 

7. Experiments and Results 

The proposed FRGMRF model and the error model dis- 
cussed in Section 4 and Section 5 are experimented on 
different types of monochrome images for compression 
and decompression. For sample, two standard textured 
images D9 (Grass) and D29 (Beach-Sand) and a struc- 
tured image viz. the Barb image, each of size 256  256 
with pixel values in the range 0 to 255 are given in Fig- 
ures 4(a)-(c) respectively. The textured images are taken 
from standard Brodatz album [40]. The input image is 
divided into various non-overlapping subimages of equal 
size of 8  8. The parameters of the proposed FRGMRF 
model are estimated for each subimage as discussed in 
Section 4. Using the estimated parameters, the coeffi- 
cients of the model are computed. The coefficients and a 
few pixel values are stored. Based on the model coeffi- 
cients and pixel values, the subimage is generated. This 
process is repeated for the entire image. All the recon-  
 

Table 1. Compression results of FRGMRF model and the results obtained by JPEG2000 with quality factor 60. 

Proposed method JPEG 
Images 

CR in % RMSE PSNR CR in % PSNR 

D9 (grass) 97.89 12.0653 26.50 96.01 30.91 

D29 (beach sand) 97.91 13.5233 25.51 96.15 30.36 

Barb 96.78 16.8223 23.61 95.16 29.59 
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(a)                                   (d)                                    (g) 

     
(b)                                   (e)                                    (h) 

     
(c)                                   (f)                                    (i) 

Figure 4. (a), (b) and (c) are original images; (d), (e) and (f) are reconstructed images by the proposed model; (g), (h) and (i) 
are reconstructed images by JPEG with quality factor 60. 
 

     
(a)                                   (b)                                    (c) 

Figure 5. Residual image: (a): D9-grass; (b): D29-beach sand; (c): Barb. 
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Table 2. Final compression results of combined FRGMRF and ERROR model, and the results obtained by JPEG2000 with 
quality factor 95. 

Proposed method JPEG 
Images 

CR in % RMSE PSNR CR in % PSNR 

D9 (grass) 88.69 0.9184 50.92 84.01 50.01 

D29 (beach sand) 89.56 0.8324 51.28 85.15 49.92 

Barb 87.96 1.4446 49.35 83.36 47.28 

 

     
(a)                                   (d)                                    (g) 

     
(b)                                   (e)                                    (h) 

     
(c)                                   (f)                                    (i) 

Figure 6. (a), (b) and (c) are original images; (d), (e) and (f) are reconstructed images by the proposed model; (g), (h) and (i) 
are reconstructed images by JPEG with quality factor 95.    
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pixel values of each subimage and the coefficients of the 
model are stored. Using these values, the image is recon- 
structed and the residual image is computed from the 
actual input image and the reconstructed image. The er- 
ror model is fitted on residual image to compress and 
decompress. The procedure used to compress the actual 
input image is used on residual image. The arithmetic 
coding is subjected to store some pixel values, average 
values and the coefficients of the model computed on 
actual input image and the residual image to obtain fur- 
thermore compression. The performance of the proposed 
model is measured with standard measures such as 
PSNR and RMSE, and the outputs are compared with the 
outputs obtained by JPEG2000 at different quality fac- 
tors. The results obtained are comparable with the exist- 
ing methods. 

0.231 for D9-Grass, 0.232 for D29-Beach-Sand and 
0.235 for Barb images. The graphical representations of 
the outputs obtained by the experiments conducted on 
D9-Grass, D29-Beach-Sand and Barb images at various 
PSNR vs. bpp are presented in Figures 7(a)-(c). Next, a 
comparative study is carried out at different PSNR vs. 
Quality Factor on the same images. But, due to the space 
constraint, it is not possible to present all the outputs of 
the experiment here. The obtained results show that the 
proposed method requires more or less the same bpp for 
textured type (Grass and Beach-Sand) images while it 
produces less PSNR with high bpp for structured (Barb) 
images. This is illustrated in Figure 7. From the experi- 
mental results, it is observed that the proposed method 
gives higher compression ratio with good reconstruction 
quality for both textured and structured images.  

The proposed model can be applied in data mining for 
clustering, classification, prediction, and searching. In 
the proposed method, there is no question of model se- 
lection and order determination, as it has infinite struc- 
ture with a finite number of parameters and so com- 
pletely avoids the problem of order determination. The 
number of parameters fixed is only four and the order 
does not increase the computational complexity, since 
the estimation of these parameters is the same irrespec- 
tive of the order of the model, and hence it increases the 
efficiency of the model. So, the proposed model is a  

8. Conclusions and Future Work 

In this paper, a family of FRGMRF model and an error 
model are proposed for monochrome continuous-tone 
still image compression. Since the residual image ef  
has no spatial direction among the pixels, the angle θ is 
set to zero in the proposed model in Equation (1). Thus, 
it facilitates to derive the error model from the proposed 
FRGMRF model. The parameters of the FRGMRF 
model are estimated using the Bayesian approach. A few  

 

     
(a)                                                    (b) 

     
(c)                                                    (d) 

Figure 7. (a), (b), (c): Comparison of PSNR vs. bpp; (d): Comparison of PSNR vs. Quality factor.  
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generalized one for different categories of images. Hence, 
the proposed model can also be extended to colour image 
compression by restructuring it as a three dimensional 
model. 
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Appendix 

A.1 Derivation of Equation (18) from Equation 
(17) 

Let us consider the Equation (17) in Section 4. 
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The expression given in Equation (1A) can be written 
as in Equation (2A), since the term b1 can be ignored. 
Because b1 represents the location of the variate K, which 
follows t-distribution. 
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The probability density function  f t  of t-distribu- 
tion with  d.f. satisfies the condition  1n  
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Now put,  in Equation (4A) 2
1a nK y

The limits of “K” and “y” remain the same and differ-
entiate the above equation. 
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Using these values in Equation (4A) and making use of 

(6A), we get Equations (7A) and (8A) 
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The probability density function of Beta distribution of 

second kind for variate 2
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where  –1n   d.f.. 
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The factor 2 disappearing since the integral form  to 
 must be unity. The expression in Equation (11A) is the 
t-distribution with (n–1) d.f.. 

Acording to Equations (10A) and (11A), the variate  
1

,
2 2

n 
 


  in Equation (9A) follows t-distribution with n  

d.f. and its probability density function is equal to 1. 
Thus, Equation (9A) can be written as follows: 
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Therefore, 
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     (13A) 

As said earlier, the term b1 represents the location of 
the distribution. So it can be ignored. The expression 
given in Equation (13A) gives the required result. 
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