

Application Study on Multi-Vary Analysis*

Xiaomin Xu

Business School, Shanghai Dianji University, Shanghai, China Email: lygxxm@126.com

Received August 11, 2012; revised October 27, 2012; accepted November 8, 2012

ABSTRACT

In this article, we studied the bearings made by one company in Shanghai. Through statistical process controlling the quality characteristic of bearings' diameters and multi-vary analysis is applied to find the key variation factors which have an influence on the quality characteristic of the bearings, the quality level of the bearings of this company is improved.

Keywords: Statistical Process Control; Multi-Vary Analysis; Process Capability Index

1. Background and Signification

The manufacturing in China is developing fast through 30 years reform and opening up. China has firmly established itself as a manufacturing power in the world. At the same time, we should see that Chinese manufacturing is large but not strong. The improvement of product quality lags behind the growth of economic scale. The whole level of product quality has a gap with the developed countries. With the bearing for instance, China is a power of bearings, but the most is belonging to medium or lower end product. It is the lag of R&D capability, equipment and handcrafts that result in the precision of bearing unsure. If the precision of bearing can not meet the quailfication, the steel plate is unqualified. Therefore, it is essential subject to study through technology improvement which can advance bearing quality and increase enterprise benefit.

2. Literature Summary

SPC (statistical process control) is a tool of process control by means of mathematical statistics method. It analyses and controls the process by using the statistical law nature of figure fluctuation. Control chart becomes the one of most important tool of management after birth of the first control chart.

Zhen He, Ershi Qi, Shenghu Zhang [1] proposed that in practice, the control chart is always of on effect because the sampling plan can not capture the key random variation in spite of the statistical characteristics of $\overline{x} - R$ chart is theoretically thorough studied. Zhonghua Yu, Shaotong Wu [2] pointed out the control chart method proposed by W. A. Shewhart forecasts and controls production by using the output of process; it is essentially lack of regularity description of process; change itself. D. C. Montgomery [3] presented that the traditional control chart of W. A. Shewhart is an available tool only in controlling single variation source. S. W. Well, J. D. Smith [4] proposed that the control chart of W. A. Shewhart often gives a false warning when there are variations in batches of product or shifts of production of the process of production. The main reason is that the control chart of W. A. Shewhart is based on a single variation. M. Hamada, R. J. Mackay, and J. B. Whitney [5] proposed that the key is to determine the source of variation in the application of traditional Shewhart control chart.

As to how to control the problem of multiple variation sources, product quality problems caused by the variation source can be known if we can make sure of sources of variation and proportions in all variation factors. Then we can take relevant measures according to the relative size of variation source and proportion.

3. Empirical Study

In this article, the CHTD5/7 model bearings made by one company in Shanghai were taken for research objects. The quality remand of the diameter is considered as the key factor because it has a directly effect on the final assembly of pumps.

3.1. $\overline{x} - R$ Control Chart and Process Capability Index

CHTD5/7-type self-bearing diameter quality requirements: Φ (60 ± 0.02) mm. When the products are processing, five samples per half hour are taken. And the data of its inner diameters are shown in the **Table 1**. So we can get 20 groups of data (**Table 1**).

^{*}Key Disciplines Assistance in Shanghai Dianji University (10XKJ01).

Table 1. Bearing data.

Number	$\overline{x} - R$ Control Chart Data							
Number	\mathbf{X}_1	X_2	X_3	X_4	X_5	Average	Range	
1	60.008	60.001	59.998	59.996	59.986	59.9978	0.022	
2	60.008	60.016	59.989	60.013	60.01	60.0072	0.027	
3	59.993	59.992	60.004	60.004	60.006	59.9998	0.014	
4	60.003	60.012	59.997	59.989	59.994	59.9990	0.023	
5	59.992	60.009	60.006	59.993	60.002	60.004	0.017	
6	60.006	60.013	60.007	60.006	60.012	60.0088	0.007	
7	60.013	59.993	59.992	60.005	60.007	60.002	0.021	
8	59.993	59.998	60.007	60.008	60.002	60.016	0.015	
9	60.008	60.012	60.004	59.992	59.992	60.016	0.02	
10	60.014	60.007	60.009	60.004	60.009	60.0086	0.01	
11	59.987	59.993	59.993	60.004	60.014	59.9982	0.027	
12	60.013	60.01	60.005	59.998	60.012	60.0076	0.015	
13	59.991	59.993	60.001	59.998	60.006	59.9978	0.015	
14	59.99	60.003	60.007	60.012	60.012	60.0048	0.022	
15	60.001	60.007	60.001	60.003	60.003	60.003	0.016	
16	60.003	60.012	60.006	60.016	60.006	60.0086	0.013	
17	60.009	60.014	60.011	60.005	60.004	60.0086	0.01	
18	60.013	60.001	59.998	60.003	59.990	60.001	0.023	
19	60.007	60.006	60.011	59.998	59.995	60.0034	0.016	
20	60.009	60.006	60.011	60.009	59.999	60.0086	0.012	

a. Unit: mm

So we can get the $\overline{x} - R$ control Chart (see Figure 1).

From the **Figure 1**, we can see that all the sample points are in the control limits and the arrangements of the points are not abnormal. So we come to the conclusion that the procedure of bearings is controlled.

From **Table 1**, we obtain the average value of samples is 60.0033 mm and the Standard Deviation is 0.00717 mm^2 .

$$C_{pk} = \frac{T - 2\varepsilon}{6s} \tag{1}$$

Following the above equation, we can obtain: $C_{pk} \approx 0.77$. It shows that the process capability is deficient because 0.77 less than 1.

3.2. Application of Multi-Vary Method

In multi-vary analysis (MVA), the variation sources of process quality characteristics are divided into time to time variation, piece to piece variation and within piece variation. After on-site analysis, the main factor affecting the diameter of bearings is the taper and the non-concentricity. The different tapers of two ends of bearings

Figure 1. Average-range control.

can not make the bearings keep in parallel. It maybe has an influence on the contact area when bearings are used. And the different non-concentricity of bearings can make the circle centers of bearing two ends unsymmetrical and cause these bearings can not be assembly.

First, the systematic analysis chart of quality variation is drawn (see **Figure 2**).

3.2.1. Data Collection and Analysis

The sample data at 8:00, 9:00, 10:00, 11:00, 12:00 are collected to analyze the quality characteristics of diameters of bearings.

- This can not only ensure the continuity of time, but also collect sufficient data.
- Considering that the bearing itself has a certain errors and there are some errors existing in measure, we take three bearing samples in every time span.
- We twirl each bearing to read the data of the maximum and the minimum of the left and the right. Then we can get four data of every bearing.
 There are data of monitoring as follows. (Tables 2-7)
 The multi-vary data analysis at 8:00 is as follows:
 1) Within piece variation:

Different tapers variation = |the value of the left aver- age diameter of samples – the value of the right average diameter of samples| = 60.014 - 60.010 = 0.004.

Different non-concentricity variation = the maximum of average diameter of samples – the minimum of average diameter of samples = 60.012 - 60.011 = 0.001.

Figure 2. Systematic analysis chart of quality variation.

Table 2	2. 8:00	data of	bearing ar	id corres	ponding	figures.
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ponona	

Time		8:00			
Sample		Left	Right	Average	
1	Maximum	60.018	60.015	(0.010	
	Minimum	60.008	60.007	60.012	
2	Maximum	60.020	60.015	(0.010	
	Minimum	60.009	60.008	60.013	
3	Maximum	60.018	60.017	(0.011	
	Minimum	60.009	60.000	60.011	
	Average	60.014	60.010	60.012	

8:00 the average diameter value of three samples = 60.012.

Table 3. 9:00 data of bearing and corresponding figures.

Time					
Sample		Left	Right	Average	
1	Maximum	60.010	60.000	(0.000	
1	Minimum	59.998	59.992	60.000	
2	Maximum	60.008	60.001	(0.001	
	Minimum	60.000	59.995	60.001	
	Maximum	60.011	60.000	(0.000	
3	Minimum	60.000	59.997	60.002	
A	verage	60.0045	59.9975	60.001	

2) Piece to piece variation:

Sample 1 - 2 = |the average of sample 1 - the average of sample 2| = 60.013 - 60.012 = 0.001.

Sample 2 - 3 = |the average of sample 2 - the average of sample 3| = 60.013 - 60.011 = 0.002.

3) Time to time variation:

By parity of reasoning, five time span variation values are obtained. (**Table 7**)

By analogy, we can obtain five time variation values.

Table 4. 10:00 data of bearing and corresponding figures.

Time	10:00				
Sample		Left	Right	Average	
1	Maximum	59.997	59.984	50.088	
1	Minimum	59.992	59.979	39.900	
2	Maximum	59.995	59.983	50.096	
	Minimum	59.985	59.981	39.980	
3	Maximum	59.997	59.991	50.020	
	Minimum	59.987	59.981	59.989	
Av	verage	59.992	59.983	59.988	

Table 5. 11:00 data of bearing and corresponding figures.

Time	11:00				
Sample		Left	Right	Average	
1	Maximum	60.018	60.004	(0.007	
	Minimum	60.006	60.000	00.007	
2	Maximum	60.016	60.006	(0.000	
	Minimum	60.010	60.000	60.008	
3	Maximum	60.017	60.014	(0.000	
	Minimum	60.009	60.000	60.009	
Av	verage	60.014	60.003	60.008	

Table 6. 12:00 data of bearing and corresponding figures.

Time	12:00					
Sample		Left	Right	Average		
1	Maximum	60.010	60.000	60.002		
	Minimum	60.000	59.998	60.002		
2	Maximum	60.008	60.001	(0.001		
	Minimum	60.000	59.995	60.001		
3	Maximum	60.011	60.002	(0.002		
	Minimum	60.002	59.997	60.003		
Av	verage	60.005	59.999	60.002		

#### 3.2.2. Process Improvement Suggestion

Through field analysis on the above sample data, we can offer a proposal on improving process quality of bearings. (**Table 8**)

#### 3.2.3. Taking Data of Bearings Anew

We take the inner diameter data of bearings of one process through the above adjustment. (**Table 9**)

From **Table 9**, we obtain the average value of samples is 60.0019 mm and the Standard Deviation is  $0.00542 \text{ mm}^2$ .

### X. M. XU

Table 7. Multi-vary data of bearing.

Variation kind		8:00	9:00	10:00	11:00	12:00
Within piece variation	Tapers variation	0.004	0.007	0.009	0.011	0.006
	Non-concentricity variation	0.001	0.008	0.007	0.008	0.006
Piece to piece	Sample 1 – 2	0.001	0.001	0.002	0.001	0.001
variation	Sample 2 – 3	0.002	0.001	0.003	0.001	0.002
Time to time variation		60.012	60.001	59.988	60.008	60.002

By analogy, we can obtain five time variation values.

Table 8. Quality	variation	reason	and	modification	table.

Variation Group	Variation Sub-Group Degree		Variation Reason	Variation Modification
Within piece variation	Tapers variation		Unbalance of bearing axis	Adjust track
within piece variation	Non-concentricity variation		wear of air connection	Adjust non-concentricity or replace bearing
Piece to piece variation	Bearing to bearing	neglectable		
Time to time variation	Hour to hour	key	Lack of coolant	Add coolant

## Table 9. Bearing data.

Number	$\overline{x} - R$ Control Chart Data								
Number —	$\mathbf{X}_1$	X ₂	X ₃	$X_4$	X5	Average	Range		
1	60.008	60.001	59.998	59.996	60.001	60.0008	0.012		
2	60.007	60.004	59.993	60.005	60.009	60.0036	0.016		
3	59.992	59.994	60.001	60.003	60.004	59.9988	0.012		
4	60.005	60.005	59.999	59.991	59.993	59.9986	0.014		
5	59.997	60.003	60.003	59.995	60.003	60.0002	0.008		
6	60.007	60.006	60.007	60.006	60.006	60.0064	0.001		
7	60.011	59.996	60.004	59.994	60.005	60.002	0.017		
8	59.989	60.004	60.007	60.01	60.001	60.0022	0.021		
9	60.004	60.003	60.004	59.996	59.997	60.0008	0.008		
10	60.011	60.009	60.009	60.004	60.009	60.0084	0.007		
11	59.997	59.995	60.002	60.004	60.009	60.0014	0.014		
12	60.008	60.01	59.995	60.002	60.008	60.0046	0.015		
13	60.009	60.003	59.999	59.998	59.997	60.0012	0.012		
14	59.993	60.002	59.993	60.009	60.011	60.0016	0.018		
15	60.002	59.993	59.999	59.998	60.003	59.999	0.01		
16	59.999	60.011	60.007	60.012	60.005	60.0086	0.013		
17	60.008	60.01	60.008	59999	59.989	60.0028	0.021		
18	60.008	60.005	60.002	60.003	59.994	60.0024	0.014		
19	60.003	59.998	59.993	59.998	59.99	59.9964	0.013		
20	59.996	59.998	59.997	60.002	60.003	59.9992	0.007		

a. Unit: mm.

According to the Equation (1), we can obtain  $C_{pk} = 1.11$ . For  $1 \le C_{pk} \le 1.33$ , the process capability is normal. The goal has now been finally attained through the multi-vary analysis of bearings.

## 4. Conclusion

In brief, the process capability is improved through the multi-vary analysis to the CHTD5/7 model bearings made by one company in Shanghai, so the quality of bearings is made better.

#### REFERENCES

 H. Zhen, E. S. Qi and S. H. Zhang, "Some Problems in the Application of x-R Control Chart," *Journal of Industrial Engineering and Engineering Management in* China, Vol. 12, No. 1, 2000, pp. 4-5.

- [2] Z. H. Yu and S. T. Wu, "Study on Quality Control Method in Small Batch Manufacturing Process," *Chinese Journal of Mechanical Engineering*, Vol. 22, No. 2, 2001, pp. 3-4.
- [3] D. C. Montgomery, "Design and Analysis of Experiments," John Wiley and Sons, New York, 1996, pp. 25-26.
- [4] S. W. Well and J. D. Smith, "Making Control Chart Work for You," *Semiconductor International*, Vol. 31, No. 4, 1991, pp. 24-25.
- [5] M. Hamada, R. J. Mackay and J. B. Whitney, "Continuous Process Improvement with Observational Studies," *Journal of Quality Technology*, Vol. 25, No. 2, 1993, pp. 77-84.