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ABSTRACT 

This paper presents a new family of twelfth-order methods for solving simple roots of nonlinear equations which greatly 
improves the order of convergence and the computational efficiency of the Newton’s method and some other known 
methods. 
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1. Introduction 

Solving nonlinear equations is one of the most important 
problems in numerical analysis. Generally，it is difficult 
to find the exact root of the nonlinear equations, and so 
iterative methods become the efficient way to obtain ap-
proximate solutions. Two important aspects related to 
iterative methods are order of convergence and computa-
tional efficiency. Order of convergence presents the 
speed at which a given iterative sequence converges to 
the root, and the computational efficiency shows the 
economy of the iterative scheme. In this paper, we will 
consider the above two aspects and establish a family of 
iterative methods to find the simple roots for the nonlin-
ear equation , i.e., we will find   0f x    such that  

   0, 0f f   . 

It is well known that the classical Newton’s method is 
a basic and important iterative method [1] to find   by 
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which is quadratically convergent in the neighborhood of 
 . 

In recent years, many variants of accelerated Newton’s 
methods have been proposed, for example [1-14]. In par-
ticular, [1,14] constructed a variant of Newton’s method 
via the iterative scheme: 
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which converges cubically with three function evalua-
tions per iteration and the computational efficiency index 
1.442. In [10], the authors presented a new modification 
of Jarratt’s method based on the circle of curvature which 
has the same convergent speed as our method.  

Motivated by the recent activities in developing modi-
fied Newton’s method, concerning both the order of 
convergence and the computational efficiency, we pre-
sent a family of new iteration schemes for solving non- 
linear equations with twelfth-order convergence which 
are better than Newton’s method, the method provided 
by [1,10,14], and can be used to find the simple roots of 
any type of nonlinear equation .   0f x 

2. Convergence Analysis 

Based on the iterative method provided by [1,14], we 
construct the iterative scheme as follows: 
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where 
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 and   is an arbitrary real  

constant. 
Theorem 2.1. Let   be a simple root of sufficiently 

smooth function :f I  R  for an open interval I . If 

0x  is sufficiently close to  , then the method defined 
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by (1) is at least twelfth-order , and its error equation is 
given by 
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where 

       , 1 ! , 1, 2,3,j
n n je x c j f f j       . 

Proof: By Taylor expansion of the function  f x  at 
point   and using the fact that   is a simple zero of 
 f x , we have 
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Similarly, we have 
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Note that 
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and using the Taylor expansions of  nf z  and  nf z , 

we have 
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Furthermore, we can obtain that 
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new iterative method (1) with 2   (denoted by 
NVNM) and compare the method with Newton’s method 
(NM), the method provided by [1] (VNM), [10] (YM) 
and [14] (VNM).  

2 3c c 

 
We use the following stopping criteria for computer 

programs:  

1n nx x     and  1nf x   , 

where 2810  , which are the same as those used in 
[14].  and 
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The test functions are listed as follows: 
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it follows from (1) that  
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The computational results in the Table 1 show that the 
method NVNM requires less NOFE than NM, and less 
NOFE than VNM in most cases. So, it is better in practi-
cal interest. 

that is 
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4. Conclusion 

It is shown that the method (1) converges to the root. The 
computational efficiency index is 1.513 which is bigger 
than the index of NM 1.414 and the index of VNM 1.442. 
The method constructed in this paper is more efficient 
and performs better than classical Newton’s method and 
the method presented by [1,10,14]. 

The proof is complete. 

3. Numerical Examples 

We give some examples to illustrate the efficiency of the  
 

Table 1. Comparison of some iterative methods. 

 f x  0x  N NOFE ROOT 

  NM VNM YM NVNM NM VNM YM NVNM  

−0.5 112 6 28 3 224 18 168 18 
 1f x  

−0.3 53 6 12 6 106 18 72 36 
1.36523001341410   

1 6 6 2 2 12 18 12 12 
 2f x  

3 6 3 2 2 12 9 12 12 
1.40449164821534   

2 6 4 2 2 12 12 12 12 
 3f x  

1.5 7 5 2 3 14 15 12 18 
0.25753038543986   

1 4 2 2 1 8 6 12 6 
 4f x  

0.5 4 3 2 1 8 9 12 6 
0.73908513321516   

3.5 7 5 2 2 12 15 12 12 
 5f x  

2.5 6 4 2 2 12 12 12 12 
2   

 6f x  1.5 6 4 2 2 12 12 12 12 2.15443469003188   

 7f x  −2 8 6 3 3 16 18 18 18 1.20764782713092    

 8f x  3.5 12 8 4 6 24 24 24 36 3   

N  : Numbers of iterations; NOFE: Numbers of function evaluations. 
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