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ABSTRACT 

A standard part of the calculus curriculum is learning exponential growth models. This paper, designed to serve as a 
teaching aid, extends the standard modeling by showing that simple exponential models, relying on two points to fit 
parameters do not do a good job in modeling population data of the distant past. Moreover, they provide a constant 
doubling time. Therefore, the student is introduced to hyperbolic modeling, and it is demonstrated that with only two 
population data points, an amazing amount of information can be obtained, such as reasonably accurate doubling times 
that are a function of t, as well as accurate estimates of such entertaining topics as the total number of people that have 
ever lived on earth. 
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1. Introduction 

This year, the world’s population passed the 7 billion 
mark. Being able to forecast population in the future, and 
even being able to answer some interesting questions 
about population in the past, depends on developing ac-
curate mathematical models of population growth. This 
model development makes for an excellent calculus pro-
ject. Here, I present such a project that I think might 
achieve multiple specific learning objectives in a very 
step-by-step fashion, and provide students with a genuine 
feel for how theoretical mathematics has very real-world 
applications. This project follows the lines developed by 
Banks [1]. 

The learning objectives are as follows: 
1) Learn to use the wealth of available internet re- 

sources, such as Google Data, to obtain information on 
world population. This involves such simple skills as 
reading graphs and tables; 

2) Learn to plot data, using programs such as Excel; 
3) Develop a simple exponential model of population 

growth by understanding its assumptions and learning 
how to solve a simple first order differential equation. 
Learn how to solve for the model’s parameters in a very 
simple way. In this paper, we use initial values from 
1960 and 2009; 

4) Compare the model to recent population data, say 
from the 20th century. The students will see that there is 
an excellent fit between actual and predicted population 
values. This will give confidence in using the model to 

forecast future population growth, e.g., when will the 
world population reach 10 billion or 100 billion, or what 
will the population be in 2050? 

5) Compare the exponential growth model to more 
remote population data, starting at 1 AD. Students will 
then see that there is now a serious discrepancy between 
the model and actual data, spurring the search for a new 
model; 

6) Students will develop a hyperbolic growth model, 
as an illustration of modeling using a relative growth rate 
which is not constant, but is a function of the population. 
The hyperbolic growth model differential equation is 
developed and solved, once again estimating parameters 
in a very hands-on simple fashion. This model is then 
compared to real data. Students will find a much better fit 
with past population data. The weaknesses of the hyper- 
bolic model (e.g., it cannot forecast the distant future 
because of asymptotic behavior) are discussed; 

7) Students will develop expressions for doubling 
times using both models, and learn the difference be- 
tween a constant doubling time (as in the exponential 
growth model) and a time-dependent doubling time (as in 
the hyperbolic growth model); 

8) The hyperbolic growth model will be used to an-
swer such interesting questions as, “How many people 
have lived since the birth of Jesus?” or “Of all the people 
who have ever lived on earth, what percent are alive to-
day?” Students can test their intuition on the last question 
before solving for the answer, since there have been spe- 
cious reports in the media, for example, purporting that 
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of all the people who have ever lived, 75% are alive to-
day, etc.; 

9) Students will come to appreciate that different mod- 
els can be used to describe the same data, each with its 
own strengths and weaknesses. For example, given only 
the simple tools of an introductory calculus course, we 
would rely on an exponential model to forecast future 
population growth, but on a hyperbolic growth model to 
answer questions about the past. 

To achieve these ends, the paper begins by asking stu- 
dents to collect world population data from 1 AD to the 
present. Using only two data points, an exponential 
growth population model is developed and used both to 
project future population and compare to past population 
data. A hyperbolic growth model is then developed, and 
its fits to prior population data are compared with the 
exponential model. Expressions for doubling times are 
derived from both models and compared to real world 
data. Finally, the hyperbolic growth model is used to 
estimate the number of people that have ever lived on 
earth. In the conclusion section, the student is pointed to 
the notion that the simplistic models presented here are 
insufficient for truly accurate projections, and that such 
projections would need to take numerous additional fac- 
tors into account. 

2. World Population Data 

The first step in developing a population model is to re- 
search world population data. Estimates of world popula- 
tion from 1 AD through the present are available from 
various sources [2,3]. 

With sufficient data points, a nice graph of world 
population over time can be produced to allow us to 
visualize the trend of population growth. We see a very 
sharp increase starting about 1900 (Figure 1). 

3. Mathematical Models 

3.1. Exponential Growth Population Model 

It is possible to construct an exponential growth model of 
population, which begins with the assumption that the 
rate of population growth is proportional to the current 
population: 

d

d

P
kP

t
  

where k is the rate of population growth (in yr−1), and P 
is the population. This differential equation produces a 
model of the following form: 

  ektP t C  

Using data from two arbitrary sample points, e.g., 
1960 and 2009, where the world population was 3.0402 
and 6.8158 billion respectively, we can determine C and  
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Figure 1. World population (in billions) versus time, start- 
ing at 1 AD. 
 
k as follows. We set 1960 as the t = 0 time point by re- 
casting the model as follows: 

   1960ek tP t C   

Since in 1960, the population was 3.0402 billion, this 
makes 

0 3.0402C P  . 

So, we can write our model as: 

   1960
0e

k tP t P   

Now, using the population data from 2009, we can 
solve for k as follows: 

 
 
2009 6.8158ln ln1960 3.0402

0.016476
49 49

P

P
k

       
       

Thus, the exponential model can be written as: 

   0.016476 19603.0402e tP t   

This model can now be used to make future predic-
tions about the population, as shown in Figure 2: 

We see an excellent agreement between actual data 
and predicted data between 1960 and 2011, and so this 
gives us some confidence about forecasting the future. 

Thus, using our model, we can plug in t = 2050 to es-
timate the population in that year in billions, 

   0.016476 902050 3.0402e 13.393P    

Also, the model can be used to determine the year in 
which a specific population target will be reached, such 
as 10 billion or 100 billion. Setting  billion, 
we get t = 2032.27, so the population is estimated to 
reach 10 billion during the year 2032. Similarly, the 
population is estimated to reach 100 billion in the year 
2172. 

  10P t 

Additionally, we can use the exponential growth mo- 
del to estimate the rate of growth as follows: 

Copyright © 2013 SciRes.                                                                                  AM 



D. HATHOUT 301

120 

100 

80 

60 

40 

20 

10 

Actual Data
Predicted Data

1900  1950  2000  2050   2100  2150   2200  

Figure 2. Actual population data (in billions) from 1960 to 
2011 versus predicted data using the exponential model, 
with future population predictions. 
 

  ektP t C  

gives us 

     e 0.016476ktP t kC kP t P t    , 

which of course is the differential equation that gives rise 
to the exponential model. Thus, the rate of population 
growth at any time, in billions per year, is simply the 
population at that time multiplied by k, the relative 
growth rate, which we have already determined. For ex- 
ample, in 2009, P(t) = 6.816 billion, giving us that P’(t) is 
0.112 billion/year. This leads to a predicted population of 
6.816 + 0.112 billion = 6.928 billion in 2010, which is 
quite close to the actual figure of 6.8944 billion. 

3.2. Comparing the Exponential Growth Model 
to Real Data 

Now that we have our exponential model of population 
growth, it would be interesting to see how its predictions 
about the more distant past compare with the true popu- 
lation data, since this is a good way to gauge the accu- 
racy of the model. Using our equation, 

   0.016476 19603.0402e tP t   

we can calculate what the model would predict about the 
past (Figure 3): 

We see that the exponential model provides an excel- 
lent fit for the data beginning about 1950, but signifi- 
cantly underestimates the actual population at earlier 
times. This makes it interesting to explore other models. 

3.3. Developing a New Model: Hyperbolic 
Growth 

With exponential growth, we began with the differential 
equation, 

d

d

P
kP

t
  
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Figure 3. World population (in billions) versus time, start- 
ing at 1 AD. Series 1: actual population data. Series 2: 
population as predicted by the exponential growth model. 
 
where we assumed that k, the relative growth rate, was a 
constant. Now, we would like to explore altering this 
assumption, where in general k becomes a function of P, 
i.e., 

 d

d

P
k P P

t
  

Probably the simplest such function, used in what are 
called hyperbolic growth models, is to assume that k is 
proportional to P [4]. This model makes some sense, in 
that as population grows, this may indicate favorable 
economic conditions or social conditions which encour-
age people to have more children, and so the rate of 
population increase actually grows with the population. 
To maintain the dimensions in the equation, we can say 
that 

 
0

kP
k P

P
  

where on the right, k is now a constant multiplied by P, 
which varies with time, and P0 is a constant. Now, our 
differential equation becomes: 

 
2

0 0

d

d

P kP
k P P P

t P
  

kP

P
 

Now, we need to solve the differential equation, 
2

0

d

d

P kP

t P
  

This can be done by separation of variables, so that we 
have 

2
0

d
d

P k
t

PP

 
  
 

 

Now, we can integrate both sides, such that 

2
0

d
d

P k
t

PP

 
  

 
   

This gives us that 
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0

1 k
t C

P P

 
   

 
 

Now, if we say that the population is P0 at time t = 0, 
then we see that  

0

1
C

P
   

So, we have as our hyperbolic growth model, 

  0

1

P
P t

kt



 

Once again, we can use data from 1960 and 2009 to 
get our constants. We let 1960 be our zero time point, 
and so , and use this to find k, by 
manipulating the equation above: 

 0  1960 3.0402P P 

  02009 ,
1 49

P
P

k



 

or 

 
0 3.04021 12009 6.8158 0.0113

49 49

P

P
k

 
    

Therefore, we can now write our hyperbolic growth 
model as: 

   
3.0402

1 0.0113 1960
P t

t


 
. 

3.4. Comparing the Hyperbolic Growth Model to 
Real Data 

Just as we did with the exponential growth model, we 
can compare our hyperbolic growth model to the real 
population data we have (Figure 4): 

We see that overall, the hyperbolic growth model 
gives a better fit to the data. To compare this to the ex- 
ponential model, we can plot the predictions of both 
models against the real data (Figure 5). We see that 
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Figure 4. Hyperbolic model versus real data. Series 1: ac- 
tual population data (billions) versus time. Series 2: predic- 
tions of the hyperbolic model. 
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Figure 5. Real population data (Series 1) versus both the 
hyperbolic model (Series 2), and the exponential model (Se- 
ries 3). 
 
overall the hyperbolic model is significantly more accu-
rate for the past, while the exponential model is slightly 
more accurate for the modern era: 

Of course, we have to be very clear that the hyperbolic 
model, while accurate for the current and past data, has 
one fatal flaw in terms of future prediction, in that it goes 
to infinity at 0.0113 (t − 1960) = 1, or t = 2048.5, so it 
predicts that the population would become infinite in the 
year 2048! 

We see that overall, the hyperbolic growth model 
gives a better fit to the data. 

4. Doubling Times 

One very interesting issue about populations is how long 
it takes the population to double, known as the doubling 
time. We can use both of our models to predict the dou- 
bling times. For the exponential model, let us say we 
observe the population to be  at some point t1, and 
we want the time interval it takes for the population to 
double: 

 1P t

  1
1 ektP t C  

Then at time t2, the population has doubled and we have 

    2
2 12 ektP t P t C   

Dividing the second equation by the first, we have 

 2 1
2 1

ln 2 0.693
2 e ,or doubling timek t t t t

k k
      

Thus, for the exponential model, the doubling time is a 
constant, and depends on the value of k. 

In our model, k = 0.016476 yr−1, and so the doubling 
time is about 42 years. This seems to fit pretty well with 
the modern data, where in 1960, the population was about 
3.04 billion people, and in 2000, it was about 6.12 billion 
people. However, the doubling time given by the expo- 
nential model is a constant, and we see that for earlier 
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times, it is not accurate. For example, it took about 150 
years for the population to double from 0.61 billion in 
1700 to 1.2 billion in 1850. Also, it took over 500 years 
for the population to double between 1000 AD and the 
16th century, when the population went from 0.265 billion 
in 1000 AD to 0.545 billion in 1600. 

Using the hyperbolic growth model, we can also cal- 
culate an expression for the doubling time, starting with 

   0 0
1 2

1 2

and
1 1

P P
P t P t

kt kt
 

 
 

Now, if we let    2 2P t P t 1 , and account for the 
fact that we have let t = 0 correspond to 1960, and that 
for this baseline, k = 0.0113, we can manipulate the ex- 
pressions above to get  

   

 

2
2 1

2

1 196
doubling time

1 0.0113 1960

0.0113

k t
t t

k
t

 
  

 


0

 

Therefore, we see that for the hyperbolic growth mo- 
del, the doubling time is not constant, but actually varies 
with time. Therefore, for the period ending in the year 
2000, we see that 

 1 0.0113 2000 1960
doubling time

0.0113
48 years

  



 

Similar calculations for the period ending in 1850, we 
get a doubling time of about 178 years, quite close to the 
actual doubling time in the range of 150 years. Also, for 
the period ending in 1600, we get a doubling time of 
about 450 years, again quite close to the 500 - 600 year 
doubling time observed during this epoch. Therefore, we 
see that the hyperbolic growth model has the nice feature 
of varying doubling times, mirroring real world data. 

5. The Number of People Who Have Lived 

We can do some very interesting things with the hyper-
bolic model, since it matches the past fairly well, such as 
answer the question, “How many people have lived on 
earth since the birth of Jesus?” 

If we look at the model’s equation,  

  0

1

P
P t

kt



, 

which describes the curve of population growth over 
time, we see that we can integrate this equation between 
two time points: 

2

1

0 d
1

t

t

P
t

kt  

to get the total person-years between time t1 and time t2. 

We can integrate by substitution, letting 1s kt  ,  

and so 
1

dt
k

  ds , and we have 2

1

0 1
d

t

t

P
s

k s
  , which 

simplifies to 

0 1

2

1
ln

1

P kt

k kt

 
  

. 

Recalling that we calculated P0 and k with t = 1960 as 
the baseline t0, and that the current year, which we des- 
ignate as t2, is 2012, we can now rewrite this as: 

 
 

 1 10 0

2

1 1960 1 1960
ln ln

1 1960 1 52

k t k tP P

k k t k k

     
         

 

Finally, plugging in 0  
we have our final form, and we can calculate the number 
of person-years that have elapsed since the year 1 AD, by 
letting t1 = 1. Doing the calculation, we get about 1083 
billion person-years. 

3.0402 and 0.011305,P k 

To get how many people have lived since the year 
1AD, we need to divide this number by the average life 
expectancy of people over this era. This is a very difficult 
estimate. Population expert Carl Haub states in a recent 
article that “life expectancy at birth averaged only about 
10 years for most of human history” [5]. This was con- 
tributed to by a very high infant mortality rate during 
much of human history. Trying to account for the more 
recent increases in life expectancy, we’ll use an average 
value of 20 years. Doing this, we get 1083 billion per-
son-years/20 years, or about 54 billion people. Thus, of 
all the people who have lived since the year 1 AD, more 
than 1 out of 8 is alive today. 

Now, we want to answer the question posed by Carl 
Haub, “How Many People Have Ever Lived on Earth?” 

Since homosapiens have existed since about 100,0000 
BC, we can set 1 100,000t    in our equation: 

 10
1 1960

ln
1 52

k tP

k k

  
   

 

Doing that gives us a value of about 2134 billion per-
son-years. Again, using an average life span over the 
length of human history of 20 years, we get that about 
107 billion humans have lived on the earth since the 
dawn of history. This is extremely close to the current 
estimates of 108 billion [6]. 

6. Conclusion 

Mathematical modeling of population growth provides 
an excellent tool both to predict and forecast future 
population growth, as well as to answer questions about 
the past. In this paper, we explored the exponential 
growth model, and used it to forecast the future. While 
there was an excellent fit to the data from the 1900’s, the 
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exponential growth model did not show a good fit to 
more distant population data. Therefore, we developed a 
hyperbolic growth model, which showed excellent data 
fits with the past, but is clearly flawed in predicting the 
future. Therefore, one has to always test models against 
real data, and to carefully know the strengths and weak- 
nesses of each model. Also, it is important to note that 
accurate predictions of population growth are much more 
complicated than the simple models presented above. 
Such predictions must take into account such factors as 
the age distribution of the population, birth rates, death 
rates, and scarcity of resources as a population grows. 
The interested reader is referred to fuller treatments of 
these issues in the works of Pollard [7] and Song and 
Jingyuan [8]. 
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