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ABSTRACT 

Semi-supervised Support Vector Machines is an appealing method for using unlabeled data in classification. Smoothing 
homotopy method is one of feasible method for solving semi-supervised support vector machines. In this paper, an in- 
exact implementation of the smoothing homotopy method is considered. The numerical implementation is based on a 
truncated smoothing technique. By the new technique, many “non-active” data can be filtered during the computation of 
every iteration so that the computation cost is reduced greatly. Besides this, the global convergence can make better 
local minima and then result in lower test errors. Final numerical results verify the efficiency of the method. 
 
Keywords: Semi-Supervised Classification; Support Vector Machines; Truncated Smoothing Technique; Global  

Convergence 

1. Introduction 

In the field of machine learning, it’s essential to collect a 
large amounts of labeled data for the purpose of train- 
ing learning algorithms. However, for many applica- 
tions, huge number of data can be cheaply collected, but 
manual labeling of them is often a slow, expensive and 
error-prone process. It’s desirable to utilize the unlabe- 
led data points for the implementation of the learning 
task. The goal of semi-supervised classification is to 
employ the large collection of unlabeled data jointly with 
a few labeled data to finish the task of classification and 
prediction [11,18]. 

Semi-supervised support vector machines (S3VMs) is 
an appealing method for the semi-supervised classifi- 
cation. In [7], K.P. Bennett et al. first formulated it as a 
mixed integer programming such that some state-of- 
the-art softwares can handle the formulation. Since that, 
a large number of methods have been applied to solve the 
non-convex optimization problem associated with S3VMs, 
such as convex-concave procedures [5], non-differntiable 
methods [1], gradient descent method [13], continuation 
technique [12], branch-and-bound algorithms [7,14], and 
semi-definite programming [17] etc. A survey of these 
methods can be seen from [11,18]. 

As pointed out in [12], one reason for the large number 
of proposed algorithms for S3VMs is that the resulting 
optimization problem is non-convex that generates local 
minima. Hence, it’s necessary to find better local minima 
because better local minima tend to lead to higher pre- 

diction accuracy. In [12], a global continuation tech- 
nique is presented. In [21], a similar global smoothing 
homotopy method is given. However, both the method is 
experiential and the calculations are lengthy. 

The focus of this paper is giving a new efficient im- 
plementation of the smoothing homotopy method for the 
S3VMs. In Section 2, we first introduce the new S3VMs 
model used in [21] and list two smoothing functions 
called aggregate function and twice aggregate function 
respectively. The two smoothing functions are given to 
approximate the nonsmooth objective function (the de- 
tailed discussion of these two smoothing functions can be 
seen from [4]). And then the smoothing homtopy method 
solving S3VMs is recalled. In Section 3, the new trun- 
cated smoothing technique is established to give a more 
efficient pathfollowing implementation of the smoothing 
homotopy method. The new technique is based on a fact 
that, some “non-active” data do little effect on the value 
of the smooth approximation functions with their gra- 
dients and Hessian during the computation, as a result, 
these “non-active” data can be filtered by the new trun- 
cated technique to save the computation cost. With the 
inexact computation technique, only a part of original 
data is necessary during the computation of every itera- 
tion. In the last section, Two artificial data sets with six 
standard test data from [10] are given to show the effi- 
ciency of our method. 

A word about the notations in this paper. All vectors 
will be column vectors unless transposed to a row vector 
by a prime superscript T. The scalar (inner) product of 
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two vectors x and y in the n-dimensional real space  
will be denoted by 

nR
Tx y . For a matrix m nA R  , iA  

will denote the  th row of i A . For a real number , a
a  denotes its absolute value. For a vector nx R ,  

1
x  denotes its 1-norm, i.e., 

1
1

n

i
i

x x


  , x


 

denotes its infty-norm, i.e., 
1
max i

i n
x x

  
 . For an index  

set I , I  denotes the element number of it. For a 
given function : nf R 


R , if  is smooth, its 

gradient is denoted by 
f

f x , if  is nondifferential, 
denote its subdifferential as 

f
 f x . 

2. Semi-Supervised Support Vector  
Machines 

There lies several formulations for S3VMs such as the 
mixed integer programming model by K.P. Bennett et al. 
[7], the nonsmooth constrained optimization model by 
O.L. Mangasarian [5], and the smooth nonconvex pro- 
gramming formulation by O. Chapelle [13] and etc. Here 
we mention the contributions by O. Chapelle et al. in 
[11-14]). 

Given a dataset consisting of m labeled points and p 
unlabeled points all in , where the  labeled points 
are represented by the matrix 

nR m
m nA R 




B R
, p unlabeled 

points are represented by the matrix  and the 
labels for 

p n

A  are given by  diagonal matrix  
of . The linear S3VMs to find a hyperplane 

mm D
1 T x b   

far away from both the labelled and unlabeled points can 
be formulated as follows:  

     T 2
1 1 2 2

,

T

1 1

1
, ,min

2

1 1
s.t.

b

p m

i ii
i i

b C f b C f b

B b D
p m


   


 

  

 
  

 
 

,

  (1) 

where  

    1 1
1

, max 0, ,
m

i

i

f b f 


  b  

    2 2
1

, max 0, ,
p

i

i

f b f 


  b



 

1 ,if b  and 2 ,i f b  are loss functions corres- 
ponding to the labeled data and unlabeled data respec- 
tively and defined as follows,  

   T
1 , 1i

ii if b D A    b  

  T
2 , 1i

if b B    b  

where T
iB b   denotes the absolute value of 

. The constraint is called balanced constraint 
that is used to avoid unbalanced solutions which classify 
all the unlabeled points in the same class. 

T
iB b 

For arbitrary vector , there lies an equivalent 
relation between its 1-norm and inf-norm in the sense  

nR 

that 
1

1

n 1
  


  , then the sum term of model (1) 

can be substituted by the inf-norm form and model (1) 
can be reformulated as follows,  

     T 2
1 1 2 2

,

1 1

1
, ,min

2

1 1
s.t.

b

p m
T

i ii
i i

b C f b C f b

B b D
p m


   



  

 

  

 
  

 
 

 (2) 

where  

   1 1
1

, max 0, ,i

i m
f b f 

 
 b  

   2 2
1

, max 0, ,i

i p
f b f 

 
 b . 

We rewrite the constraint into the objective as a barrier 
term and reformulate  2 ,if b  into its equivalent for- 
mulation    T T

2 , m ,1i
i iin 1f b B  b  B b     , and 

then obtain the following formulation that is our goal in 
the paper.  

       2
1 1 2 2 3

,

1
min , , ,

2
T

b
b C f b C f b f b


       

where 

   1 1
1

, max 0, ,i

i m
f b f 

 
 b  

       1 2
2 2

1
, max 0, min , , ,i i

i p
2f b f b f 

 
 b  

 1 T
2 , 1i

if b B  b    

 2 T
2 , 1i

if b B  b    

 
2

T
3

1 1

1 1
,

p m

i i
i i

if b M B b D
p m

 
 

 
   

 
   

M  is a barrier parameter. 
If the dataset is nonlinear separable, we need construct 

a surface separation based on some kernel trick (detailed 
discussion of it can be seen from [2] and etc.). Denote 

 T;A A B , assume that the surface we want to find is 
 ,K x A u b = 0 , where  is usually taken as 

Gaussian kernel function with the form of  
 ,K  

   2
, expK x y x y    

  is the kernel parameter, . To find the 
nonlinear decision surface, we need to solve the fol- 
lowing problem:  

m pu R 

     

   

T 2
1 1

,

2 2 3

1
min , ,

2
 , ,

u b
f u b u u b C f u b

C f u b f u b

  

 
     (4) 
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where  

     T
1

1
, max 0,1 ,ii i

i m
f u b D K A A u b

 
    

 

     
2 ,f u b

T T

1
max 0,1 min , , ,i i

i p
K B A u b K B A u b

 
   

 


   
2

T
3

1 1

1 1
, ,

p m

i i
i i

if u b M K B A u b D
p m 

 
   

 
   

2.1. Aggregate Function and Aggregate 
Homotopy Method 

Aggregate function is an attractive smooth approximate 
 the non- 
alities [6], 

math ith equilibrium constraints 

function. It has been used extensively for the
smooth min-max problem [4], variational inequ

ematical programm w
(MPEC) [16], non-smooth min-max-min problem [6] and 
etc. In the following, we will utilize the approximate 
function with its modification to establish an globally 
convergent method, called as aggregate homotopy me- 
thod, for solving model (3) or (4). 

In short, let  , , 1x b s n     
(or,  , , 1x u b s m p    ) and denote model (3) or (4) 
as the following unified formulation:  

    1 2min
x

f x f x f x          (5) 

where  

    
       
   

     
     

1 1
1

1 2
2 2

1

T
1 1

1 1
2 2 3

2 2
2 2 3

max ,

max min , ,

1
,

2

,

,

i

i m

i i

i p

i i

i i

i i

f x f x

f x f x f x

f x x x f x

f x f x f x

f x f x f x

 

 





 

 

 

2

    (6) 

and        1 2
1 2 2 3, , ,i i if x f x f x f x  are defined as (3) or 

(4). 
Denote       1 2

2 2 2min ,i i if x f x f
condition of non-smooth optim

 know that the subdiffe

x , based on the 
optimality ization theory 

], wein [9 rential of  1f x  and 
2 f x  can be computed as follows,  

 
 

 
   

 
1

T
1

2 2

;1 ,

i

i i
i I x

ij
i ij

i I x

f x x A

 
2 2j J x

3f x f



 




     

  



 
  (7) 

x



 

f x

where  

1        1 11, , : iI x i m f x f x    

 
 1

0,1 , 1i i
i I x

 


   

        2 21, , : i
2I x i p f x f x    

        2 21,2 :i ij
2
iJ x j f x f x    

 
 2

0,1 , 1i i
i I x

 


 
 

 
 2

0,1 , 1
i

ij ij
j J x

 


   

 1 T
2 ;1i

if x B      

  2 1
2 2
i i f x f  

 
x

moreover, a point x  
tion point of (5) if satisfying 

can be called a stationary point or 
a solu  0 f x . 

egate homotopyTo solve model ( by an aggr  method, 
we first introduce the following two smoothing func- 

5) 

tions,  

   

   

1
1

1

, ln exp
i

f x
f x t t

t

2
2

1

,
, ln exp

i

ip

i

m

f x t
f x t t

t



  
       



where 




       


       (8) 

 

 i
if x  is defined as (6) and  

     1 2
2 2

2 , ln exp exp
i i

i f x f x
f x t t

t t

   
             

. 




all We c  ,1f x t  and  ,2f x t  as aggregate function 
and twice a ate functio pectively. The two 
smoothing functions have many good properties suc s 
uniform approximation and etc. More details can be seen 
fr

ggreg n res
h a

om [19]. 
Using above two uniformly approximations functions 

in (8), we define the following homotopy mapping:  

       0
0, 1 , 0xx

H x t t f x t t x x          (9) 

here 0 nx R  is an arbitrarily initial point and  

     1 2, , ,x x

w

xf x t f x t f x t    . 

We call Equation (9) as an aggregate homoto
ntains  hand 

as 

py equa- 
tion. It co  two limiting problems. On the one

1t  0, it has a unique solution x x
of it ap

. O he other 
han , the solution pro hes to a 
st

n t
acd, as 0t 

ationary point of (5), i.e., a solution x  satisfying 
 0 f x . 

For  given initial point 0 a sx R note the zeros 
point set of ggregate homotopy mapping  

, we de
 the a

   0 , : 0,1s

x
H R R     as  

        0,1 : ,s H x t0 0 0
x x

H x t R1 0 ,       (10) 

It can be proved that  0
1 0

x
H   includes a smooth path 

  with no bifurcation starting from points,  0 ,1x  and 
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approaching to the hyperplane  that lea
solution of the original problem 

3.

ath  can be 
rocedure. 

So tor algo- 
rith n from [3,8] and 

o

itial stepsize m stepsize

0t 
[21]. 

can be see

 maximu

ds to a 

 Inexact Predictor-Corrector  
Implementation of the Aggregate  
Homotopy Method 

The path-following of the homotopy p
implemented by some predictor-corrector p

me detailed discussion on the predictor-correc
m with the convergence 

 

etc. In the following, we first give the framew rk of the 
predictor-corrector procedure in this paper, and then 
discuss how to make an inexact predictor-corrector im- 
plementation. 

3.1. Predictor-Corrector Path-Following 
Algorithm  

Parameters. in 0h ,  mh , 
minimum stepsize h , stop criteria 1 0   fo
dure terminated, stop criteria 0N

r proce- 
   for Newton

rector stopped, criteria 
 cor- 

0c   for judging corr  ector
plane, counter 0iN  . 

Data.     0
0, 1sx t R  , 

Step 0. 0h h ,  0 0; 1d   , . 
Step 1. Compute a predi int 

0k 
ctor po   ,k

kx t  
1) Solve the following linear eq  

to obtain a unit tangent vector 

uation 

0

1

 
  

  ,k
kx t

 1
Td    0

DH
d

 
 

1
1

1

d
d

d
 ; 

2)  min ,mh h ; h       1, ,k k
k kx t x t h  ; d

3) If 0kt   or 1kt  , 
2

h
h   to, return  2); else, go to 

Step 2; 
p 2. Compute a corrector point Ste   1

1,k
kx t
  

1) If k cx  , take  0;1d  and  min ,h h h ; 
d . G  2)

2) Sol
else, take o to

v n  
1d 

e equatio
; 

 
T kd x x


    

 
, 0,H x t 

; 0kt t 

by th the stopping criteria  Newton method wi N  and go 
to 3); 

3) If Newton corrector fail, go to 2); else, 
denote the solution as 

0.7h h
 1

, 
1,k

kx t
 , go to 4); 

4) If 1t   or 0t  , 1k 1k 2

h
h  , go to 2) se, go to ; el

5); 
5) If 1kt  , stop ; else 0d d , k = k + 1

6) 1i iN N 
correcto

. If n number of 
ewton r is l  3 o 7); else , go to 1); 
7)

 and the iteratio
N , go t

 

3iN   
ess than

0iN  , 1.5h h ; go to 1). 
mputat  

3. s solv

computation cost of them. we take the following 
ap ximate homotop  

Notic  the main co ion cost of Algorithme that,
1 lies in the equation er in Step 1) and 2), some 

inexact computation technique can be introduce to save 
the 

pro y equation  ,H x t  with its 
Jacobian  ,DH x t  in place of the original  ,H x t  
with  ,DH x t  during the computation of step 1) and 
2). 

Given parameters  1 , 0x t  ,  2 , 0x t  , denote 
 1, ,M m  ,  1, ,P p  ,  

        

     

         
 

 

 

   
 

 
1

2

1 1 1 1, : , ,iI x t M f x f x x t

1 2
2 2

2 2 2 2

1
1

,

2
2 3
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p
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1
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2

,
, ln exp

i i
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i P

i
T

i I x t

i

i I x t

i

f x f x

t t2 , ln exp ex ,if x t t

    

, go to 6); 

I x t i P f x t f x t x t

f x
f x t x x t

t

f x t
f x t f x t








    
    
  

    

  
        

 









       

       
        

 

0

0
1 2

,

, 1 ,

1 , , ,

, ,

x

x x

t

H x t t f x t t x x

t f x t f x t t x x

H H
DH x t

x t

  
      

    

     

      



 



 

where  

      2 2
1 2= 1 , ,x x s

H
t f x t f x t t

x


I   


   

    
      

0
1 2

2 2
1 2

, ,

1 ,

x x

xt xt

H

,

x x f x t f x t
t

t f x t f x t


    



   

 

 
 

It’s proven in [20] that, only if the error 
   , ,H x t H x t  and    , ,DH x t DH x t

tly,  1 ,
 are 

small enough, or equivalen x t  and  2 ,x t  
wton are chosen appropriately, the te Euler-Ne

predictor-corrector also approaches to a solution of ori- 

omit the proofs. 

approxima

ginal problem. Here we only list the main results and 

Denote  

     1 , , ,E x t H x t H x t   

and      2 , , ,E x t DH x t DH x t  ,  ,d x t  is the 
unit tangent vector obtained by the ap ate com- 
pu

proxim
tation,  ,x t  d is the tangent vector act Euler by ex

Copyright © 2013 SciRes.                                                                                JDAIP 



H. XIONG, F. SHI 5

predictor, we have the following lemma to guarantee the 
efficiency of the approximate tangent vector. 

3.2. Lemma  

For a given  ,x t  , if  2 ,E x t  is small enough and 
satisfies  

      22
2

,
, 2

E x t
cond DH O E x t

DH
   

imate unit predictor tThe approx angent vector  ,d x t  
is effective, i.e.,  still makes a direction with 
arclength increa

During the correction process, the following equation 
must be solved  



 ,d x t

sed. 

 
 ,

, 0
H x t

F x t

      (11) 

    T 0 0, ,d x t x t



  

where  0 0,x t  is an appropriate predictor point obtain- 
ed from er predictor step. We adopt the fol- 
lowing approximate Newton method to solve (1

,k
k

 the form
1),  

        1
1

1, , ,k k k
k k kx t x t F x t F x t




       (12) 




From 0 is a regular value of 

where  

  1
1 ,k

kk DH x t


  
   

 
 

    

T

T 0
0

, ,

,
,

, ,

k

k
k

k
k k

k

F x t
d

H x t
F x t

d x t x t

 
 
 

 
 
 




 

 ,H x t
 ,DH x t

riately, th

 an  is a 
unit tangent vector induced by , we kn w, if 
the step  is chosen approp e equatio (11) 
has a solution and the approximate Newton iteration (12) 
is effective. 

rrector 

d d
o
n 

 
h

3.3. Approximate Newton Co
Convergence Theorem  

Suppose that  , 0F x t   have solution  ,x t
  with 

nonsingular  ,F x t
 , there exists a n rhood eighbo

  , ,S S x t 
  and 1 20, 0  

 0 0,
, for any 

x t S , if for each 1, 2,k   , E
,k t  satisfying  

 1 ,k
kx t  and 

E x2 k

    1 1 2 2, ,k k k
k kE x x t F x t . 

pproximate Newton iteration point se- 
, ,k

kx t  from (12) is  d  con- 
 ,

, ,kt E

Then the a
quence well efined and
verges t


o x t

 . 

4. Numerical Results 

In this section, som

 given to 
cial da ets are generated first. The first one 

consists of 34 points generated by “rand” function, 14 of 
 remaining 30 are seen as 

e numerical examples and compari- 

sons are illustrate the efficiency of our method. 
Two artifi tas

them are labeled and the
unlabeled data. The second one consists of 242 points 
taken from two nonlinear bihelix curves that are gene- 
rated by a b   , where one is obtained by taking 

0.2a b  , the other is by taking 0.2, 0.3a b  , 
 0 : π 40 : 3π  . We take randomly 30%  of them as 

labeled and the remaining 70%  as unlabeled. The com- 
parisons of our method with the LSVM method from [15] 
without the consideration of unlabeled data are given. 
Final results are illustrated in Figures 1 and 2. 
 

 

Figure 1. Result on linear artificial data of LSVM and the 
new algorithm. 
 

 

 

Figure 2. Result on nonlinear bihelix curve artificial data of 
LSVM and the new algorithm. 
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To reveal the efficiency of our algorithm for S3VMs, 
comparisons of our algorithm (InSH) with some other 
existing algorithms for S3VMs such as the convex- 
concave procedure in [5] (vS3VM), the continuation 
method in [12] (cS3VM) and the gradient descent method 
in [13] ( 3VM), are given for some standard test data 
from [1 or the linear programming subproblem aris- 
ing in [5  we solve it with the Matlab function 
in optim tion toolbox. The comparison 
ted in the following Table 1. 
 

Table 1. Comparison Results on test data (test error %). 

 S
0]. F
],
iza

linprog  
results are lis- 

Dataset  
(m + p) × n 

InSH  
(C1, C2,M) 

vS3VM  
(C1, C2) 

cS3VM  
(C1, C2) 

∇S3VM 
(C1, C2) 

Ionosphere 
(351 × 34) 

11.03  
(1, 0.25, 1e - 3) 

11.66  
(8, 2) 

11.34  
(100, 10) 

13.37  
(1, 0.1) 

MUSK1  
(476 × 166) 

12.26  
(1, 1, 0.1) 

15.93  
(2, 2) 

15.75  
(1, 1) 

15.34  
(100, 10) 

NDC  
(1000 × 32) 

13.60  
(2, 2, 0.05) 

13.90  
(4, 2) 

14.60  
(100, 1) 

24.00  
(0.01, 0.1)

Pima  
(769 × 8) 

22.66  
(8, 2, 0.05) 

22.65  
(10, 1) 

23.42  
(8, 0.5) 

39.45  
(10, 1) 

Sonar  
(208 × 60) 

15.45  
(16, 0.5, 0.01) 

23.02  
(100, 1) 

23.10  
(100, 10) 

23.50  
(100, 10) 

Votes  3.44  4.59
(435 × 16) (8, 2, 2) 

  
(1, 0.1) 

- 
4.38  

(10,

A

 1) 

ver. Time 
5.7367 9.2271 7.3925 6.0676 

(sec.) 

-: denotes the method fails for the

s rfor  er
r  s  Mat on W s

 Core 2 Du U 1 z 
pr  and ega f m

n e , 

 dataset. 

 
All the computation are pe med on a comput  

 unning the
Vista with

oftware
Intel(R) 

lab 7.0 
(TM)

Microsoft 
o CP

indow
.83 GH

ocessor
computatio

 1789 m
, we tak

bytes o

0 0.
emory. Du

1mh  , 
ring th
1e 3

e 
1h h   , 

1 1e 3   , 1eN 3   , 1ec 3   ,  
 3 3, 2 1e, 2C C  3, 1e 2

  ,  1eM  3,
cess e

2  are 
 tak hen as t

kernel par
e o thene for 

ameter 
 le  ast test error. If ne ary, th

  is
mo

 t eaken th  best leads to t the leas  
tes at error ng  1e

exact in
1,3 e
 s a


n dex

. Th
et are t

 
k
para et
en as  

m ers fo r-r dete  
mining the i

 

 

 

2

ln maxt


1

1 2

2 2
ln 2 1 max , ,1 , 1.

p q
t m t

 

4 1
,1 , 1;

,

t

x t

 m   
   

 
          

where  2 1

 

fp t B  ,  
   6 1 2g f g gq t B B t B   t  , B   1mf  ax iB f x

and   max maxgB  . A  2 ,x t  has the same ex- 
pression as  1 ,x t  where   2max ,i

fB f x t  and 
  max maxgB B . 1  and 2  are taken as  

1 2 1e 3     th  are given to bound the error of at
H H   and DH . 
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