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ABSTRACT 

We consider general regime switching stochastic volatility models where both the asset and the volatility dynamics de-
pend on the values of a Markov jump process. Due to the stochastic volatility and the Markov regime switching, this 
financial market is thus incomplete and perfect pricing and hedging of options are not possible. Thus, we are interested 
in finding formulae to solve the problem of pricing and hedging options in this framework. For this, we use the local 
risk minimization approach to obtain pricing and hedging formulae based on solving a system of partial differential 
equations. Then we get also formulae to price volatility and variance swap options on these general regime switching 
stochastic volatility models. 
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1. Introduction 

In this paper, we consider general regime switching 
stochastic volatility models where both the asset and the 
volatility dynamics depend on the values of a Markov 
jump process. We are interested in finding formulae to 
solve the problem of pricing and hedging contingent 
claims in this framework. However, due to the stochastic 
volatility and the Markov regime switching, the market is 
incomplete and thus perfect pricing and hedging are not 
possible. Hence, to hedge derivatives, we adopt firstly 
the local-risk minimization approach studied by Föllmer 
and Schweizer in [1]. This approach consists of con- 
trolling the hedging errors at each instant  0,t T  by 
minimizing the conditional variances of the instantane- 
ous cost increments. Health et al. in [2], provided com- 
parative theoretical and numerical results on risks, values 
and hedging strategies for this approach versus the mean- 
variance (see [3] or [4] for more details on this approach), 
in the specific case of stochastic volatility models. We 
propose in this paper to apply the local risk minimization 
approach to a more global class of stochastic volatility 
models since we will assume in the sequel that all para- 
meters of the model depend on the values of a Markov 
jump process. Hence, we will work on a global class of 
regime switching stochastic volatility models. We will 
obtain formulae to give the price of contingent claims by 
solving a system of partial differential equations. We will 
also obtain the optimal strategy which solves the local 
risk minimization hedging problem. 

There has been considerable interest in applications of 
regime switching models driven by a Markov process to 
various financial problems. Elliott et al. in [5] provided 
an overview of hidden Markov chain models. Indeed, the 
use of Markov switching in diffusions allows us to have 
different levels of drift or volatility during time. More- 
over these regime switching activities are a better fit for 
economic times series data than non regime switching 
models and also allow us to better capture some market 
features or economics behaviors such as recession and 
financial crisis periods (see for example Goutte and Zou 
in [6]). Thus, Di Masi et al. in [7] considered the 
problem of hedging an European call option for a (non- 
stochastic volatility) diffusion models where the drift and 
volatility are functions of a Markov jump process. 

Furthermore, we are also interested in pricing vola- 
tility derivatives, such as variance and volatility swaps. 
Broadie et al. in [8] studied the pricing and hedging of 
variance swaps and other volatility derivatives in the 
classical Heston stochastic volatility model introduced by 
Heston in [9]. Elliott et al. in [10] then developed a 
model for pricing the same class of derivatives but under 
a Markov-modulated version of this stochastic volatility 
model. In their paper, they only considered the case 
where not all the parameters of the model depend on the 
state of the Markov process. Moreover, they studied only 
the Heston stochastic volatility model. Hence, based on 
these two preceding works, we will extend this metho- 
dology to our global class of regime switching stochastic 
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volatility models. Thus, we will obtain formulae to price 
options on the stochastic volatility process such as va- 
riance and volatility swaps. 

This paper is arranged as follows: Section 1 gives the 
notion of the regime switching framework and presents 
our regime switching stochastic volatility models. Sec- 
tion 2 solves the problem of pricing and hedging using 
the local risk minimization approach. Section 3 then 
gives the formulas to price options on the volatility pro- 
cess. 

2. The Stochastic Regime Switching 
Volatility Model 

Let  be a filtered probability space with fil- 
tration  0,t t T

 satisfying the usual conditions for 
some fixed but arbitrary time horizon . We 
consider a general stochastic volatility model defined by 
the stochastic differential equations: 

 , , P 
  


0,T  

 
   

 

1

2

1 2

d , , d d ,

d , , d , , d

d , d with 0,1 .

t t t t t t t

t t t t t

t

S t Y X S t Y S W

Y a t Y X t b t Y X W

W W t



 

 

 

 

,t    (1.1) 

where  and  are two correlated Brownian mo- 
tions. In fact, the process  represents the discounted  

1W 2W
S

price process of a tradable asset price process    0,t T
S


   

divided by a Bond price process  . The process    0,t t T
B



B  represents the savings account in a riskless asset.  

   0,t t T
Y


 is a real stochastic process which is -  t

adapted and  is a Markov jump process on     0,t t T
X



finite state space . It can be viewed as 
an observable exogenous quantity. We assume that the 
time invariant matrix  denotes the infinitesimal gene-  

: 1,2, , N 

Q



rator  of  
, 1, ,ij i j m

q
 

X , where  is an infinitesimal  ijq

intensity of X . This generator is defined as , for  0ijq 
all  and  for all ii j 

;
0ii ijj i j S

q
 

   q  . 

Then, the semi-martingale decomposition for X  is 
given by  

 0 0
d , 0,

t X
t s t ,X X QX s M t T     

where 

 is an   0,

X
t t T

M


N

 t

-valued martingale with 

respect to   
0,

: ,0X X
tt T

X t T


    , which is  

the natural filtration generated by the Markov process 
X  under . P

Hence, in our model, there are three sources of ran- 
domness: ,  and 1W 2W X . We will denote by 

  1 2     0,
: , ,0t t tt T

W W t T


   the filtration ge- 

nerated by the two Brownian motio

 

ns. Finally, we will 
denote by   the global filtration : X    . 

Let nT   the sequential jump  be  times of X  (i.e. 

0 1 nT T T0       ) and   a jump mea re of su
X , i.e teger-valued. the in  random measure given by  

  0, 1 .t            ,T nn
X T t 

1n

 (1.2) 

Then th -compensator of e    is given by  

  , 1 .dt j q dt   tX jij
i j
          (1.3) 

Assump on 1.1 
ll the hypot  

st

ti
1) We assume a hesis to ensure the exi-

ences and the regularities of the solutions of our model 
(1.1) (see for example [11] for more details). Hence, the 
system of stochastic differential Equations (1.1) admits a 
unique strong continuous solution for the vector process 
 , ,S Y X  with a strictly positive price process S  and a 

rocess Y . 
2) We assume m

volatility p
oreover that process  the Markov X  

is
the Mar- 

ko

 independent to both processes S  and Y . 
Remark 1.1 This independence implies a th t 
v process X  is an exogenous factor of the market in- 

formation. Th , it can be viewed as an exogenous factor 
such as an economic impact factor. An economic inter- 
pretation of this is that this Markov process can re- 
present a credit rating of a firm 

us

A . Indeed, assume that 
our stochastic volatility model describes the price of a 
commodity produced by the firm A , then the Markov 
process X  can represent the credit rating of this firm 
given by  exogenous rating company as “Standard and 
Poors”. Thus, it is natural to think that the dynamic of 
the commodity’s price, produced by the firm 

an

A , de- 
pends on the value of this notation X . 

To exclude arbitrage opportunitie ws, e 

otion 2
tW

assume that the 
pr

an m  as  

ocess S admits an equivalent local martingale measure 
(ELMM) Q . In the sense that it is a probability measure 
with the sa  null sets as P  and such that the process S 
is a local martingale unde Q . We will denote, in the 
sequel, by   the set of all ELMMs Q . 

Remark  

me

 1.2

r 

1) We can rewrite the Browni
2 1 2 31t t tW W    , where the pro s 3W

n such that processes W and 
3W  are now independent. 
) The condition that S

W  is 
another B nian motio

 shoul ar- 
tin

ces

d be a Q -lo
sf

row 1  

cal m2
gale fixes the effect of the Girsanov tran ormation of 
1W  but allows us for different transformations on the in- 
endent Brownian motion 3W  defined in point 1. 

Consequently, if the correlation factor 
dep

  satisfies 
1  , then the set   contains more than  element 
 the financial m rket is then incomplete. Moreover, 

there is an other source of incompleteness of the market 
which is the dependence of processes S  and Y  with 

one
and so a
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respect to the Markov process X . 
We give now some examp  oles f classical stochastic 

volatility models which are contained in our model (1.1). 
Example 1.1 Hull-White: 

   

 

2

, , , , ,tY X
2 2

and , , ,
2

t
t t t t

t t t

Y
t Y X Y a t

b t Y X Y

  



 
   

 



 

,

Stein-Stein: 



,

d .tW

1d dt t t t tS Y S t Y S W  d t  
2d tW  

 , ,tY X

d t  
2  



2 2 2d dt t tY Y t Y   .

 , ,t Y X   
 

,

and , , ,

t t t t t

t t

Y a t Y

b t Y X

  






 

1d dt t t t tS Y S t Y S W 

 d dt tY Y t    

Heston: 

  

 

24
, , , , ,tY X

d t

8 2

and , , ,
2

t t t t t
t

t t

t Y X Y a t Y
Y

b t Y X

   




  



2d tW

 

1d dt t t t tS Y S t Y S W  ,  

 2 2d dt t tY Y t Y     ,  

22 .   

3. Pricing and Hedging via Local Risk 
Minimization Approach 

We are interested, in this section, in the hedging of an 
European contingent claims with an -measurable 
squared integrable random variable 

T
H  based on the dy- 

namics given by (1.1). As an example of this payoff, we 
can take an European call option:  

   T TH h S S K
    with maturity T and strike K > 

0. 
We consider here the local risk-minimization approach 

to hedge in this incomplete market. We recall some de- 
finitions of this approach. 

Definition 2.1 An hedging strategy is a pair  
 ,v   such that  v v  is a predictable pro- 

cess which satisfies  
0,t T t

  2
2 2 2

0 0
d , ,

T T

t t t t t tv Y S t v ,Y X
      

   t 
  (2.4) 

and   is an adapted process such that    0,t t T
 




 2 0,t t T      ,  .

sa

 

       (2.5) 

We will denote by  the set of strategies which 
tisfy (2.4) and (2.5). 

The hedging strategy



  
re

defines a portfolio where 
de
by

t

notes the number of sha s of the risky asset S  held 
 the investor at time 

v  

0,t T  and t  denotes t  
amount invested at time t  in . 

Definition 2.2 Given a h dging strategy 

he
the bond

e  , we call 
the Value process  V   of this correspondin portfolio 
the right continuou ess given by  

g 
s proc

   ,V v S t     0t t t t , .T       (2.6) 

Definition 2.3 Given a hedging strategy  , we call 
the Cost process  C   of this correspondin portfolio 
the process given b

g 
y 

.T    (2.7) 

We can see that the quantity 

     
0

d , 0,
t

t t s sC V v S t    

0
d

t

s sv S


 represents the 

he e dging gains or losses up to tim 0,T  following t
the hedging strategy  . A hedging strategy   is called 
self-financing if its cost rocess is P -a.s. constant ver 
the time 

 p  o
 0,T  and mean self-financing if  C   is a 

P -martingale. If  C   is 
 pro

square integrable, then the 
cess of risk   is defined by 

        2: , 0, .t T t t
R C C t T        

    (2.8) 

Remark 2.3 Since the contingent claim H  is - 
m

T
easurable and   is adapted, there alway exist  

hedging strategy s ch that  TV H  . Indeed, we can 
take 0v

s s a
u

  and 1t t TH    for all  0,T . t

3.1. Local Risk Minimization Approach 

icate con- We only consider hedging strategies which repl
tingent claim H  at time T . This means that we only 
allow hedging ategies str   such that 

   , .TV H P a s .          (2.9) 

Thus, the hedging problem is so to find the strategy 
   which minimizes at time  0,t T  the qua- 

risk: dratic 

    2

0
min : min d .

T

t sR H v s C
 

 
  t t

     


 
  (2.10) 

The idea is so to control the hedging errors at each 
instant  0,t T  by minimizing the conditional vari- 
ances o antaneous cost increments sequentially 
over time. 

Remark

f the inst

 2.4 An alternative approach to hedge in 
incomplete market is the mean-variance approach (see 
[3]). In fact, in this approach, the aim is to minimize the 
global risk over the entire time  0,T . Hence, it is a 
different approach than the local risk minimization which 
focuses on the minimization of the second moments of the 
infinitesimal cost increments (8). 
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Therefore, the study of this minimization problem in a 
ge

where 

neral semimartingale case is due to Schweizer [3] and 
it requires more assumptions on the asset dynamic S . 
We assume firstly that S  can be decomposed as  

,t t tS S M A    0

M  
-m

is a real valued locally squared integrable 

d 

 recall now the Definition of the Structure Con- 
di

local P artingale null at zero and A is a real valued 
adapte continuous process of finite variation also null at 
zero. 

We
tion (SC). We say that the process S  satisfies the (SC) 

if there exists a predictable process   such that the 
process A  is absolutely continuous with respect to 

M  (i. e oblique bracket). In the sense that  e. th

0
d

t

t s s
A M   

and such that the so called mean variance tradeoff 
process (MVT) K  satisfies 

2: d
t

0
, . .t s s

K M P a s     

Lemma 2.1 Since e have that i he process 

]. 
eizer in [1] 

sh

  , w
 (SC) is

f t
S  is continuous then  satisfied. 

Proof. See Theorem 1 of Schweizer [4
Proposition 2.24 of Föllmer and Schw
ows that finding a locally risk minimizing strategy for 

a given contingent claim  2H L P  is equivalent to 
finding a decomposition of H  of the form: 

d ,lr lr lr
0 0

T

t t TH H S L            (2.11) 

where 0
lrH  is a constant, lr  is a pred

ng

ictable process 
satisfyi ondition (2.4) an lrL  is a square integrable 
P -martingale null at 0 and str ly orthogonal to 

ng C d 
o M  

. lrL M  is a P-martingale). The representation (2.  
is usu referred to as the Föllmer-Schweizer (FS) de- 
composition of the random variable 

(i.e 11)
ally 

H . Once we have 
(2.11), then the desired hedging strat y lreg  , which is 
locally risk minimizing, is then given, for all  0,t T , 
by  

lr lr
t tv                  (2.12) 

and 

  ,lr lr lr
t t tV v   tS        (2.13) 

where 

   
0

d
tlr lr lr

t tV C v    s sS      (2.14) 

with 

L          (2.15) 

In view of these results, finding the F
de

  0 .lr lr lr
t tC H  

öllmer-Schweizer 
composition (2.11) of a given contingent claim H  is 

important because it allows us to obtain the locally risk 
minimizing strategy. Monat and Sticker in [12] and Pham 
et al. in [13] give sufficient conditions to prove the 
existence of this decomposition. We therefore explain 
how one can often obtain this decomposition by switch- 
ing to a suitably chosen martingale measure for S. Indeed, 
as it is shown in [1] and [4], there exists a measure 
P̂ , which is the so called minimal equivalent local 

gale measure (minimal ELMM), such that martin

     ˆ | , 0, ,lr T       t tV H F t  (2.16) 

denotes the conditional expectation under . 

 

where 

strategy

̂  
ark

P̂
Rem  2.5 If there exists a locally risk minimizing 

lr  then we can use the expression of  lr
tV    ,

appearing in (2.16) as a price of the contingent claim 
H  at time  0,t T . 

In the case where the process S  is continuous (wh  
is our c eo

ich
ase), Th rem 1 of [1] ows us to construct  all

uniquely P̂ . Indeed, we have the following result: 
Proposition 2.1 P̂  exists if and only if for all 
 0,t T   

21ˆ exp d d
t

t s s s0 02

t

s
Z M S       (2.17)  

 
 

are integrable martingale under . 

reover, 

is a squ

Mo

P

 2
ˆ

ˆ: T

P
Z L P

P
   defines a probability  

 since one 
easily verifies that 
measure P̂  equivalent to P  which is in 

ẐS  is a l cal 

w e 

o P -martingale.  

3.2. Markovian Regime S itching Cas

Let S , Y  and X  g  m  the 
ained in 

ter

iven by the odel (1.1), then
local risk minimizing hedging strategy can be obt
two steps: 

1) e mine  D P̂  and deduce the dynamic of 
 ,S Y  under P̂ . 

2) Find th uk-Kunita-Watanabe decomposi- e Galtcho
tion of H  with re to S  under P̂ .  

n, the op mal
spect 

ti  local risk minimizing hedging stra- 

n, the density process 
e minimal ELMM  with respect to  is 

ua n (2.17). We can firstly remark that  

The
teg

3.2.

of th

y is given by (2.12) and (2.13). 

1. Finding P̂  
According to the previous subsectio

 P̂ P
given by the Eq tio

2

0 0

1ˆ : exp d d
2

t t

t s s s

0

1
exp d .

2

s

t

s s tM K



    
 

is continuous, we have first of all to deter- 

Z M S    
  

 

Since S  
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mine the canonical decomposition 

0 0
d

t

t t s s
S S M M     

of the asset process  under 
Proposition 2.2 Assume that the regime stochastic 

vo

S P . 

latility model follows (1.1) then we have, for all 
 0,t T , that 

 1

0 0

2 2d ,
t

s s0t

d , , , d ,
t t

t s s s t s ssM S Y W A s Y X S s

Y

  
 

M S s 

 

 

2

2

0

d

, ,
and d ,

t tt

t s s
t

s

M S Y

s Y X

, ,d t tt
t

t Y XA

K s
Y

 
   

 


 

therefore we obtain 


  

    2

1

0 0

ˆ

, , , ,1
exp d d .

2

t ts s s s
s

s s

Z

s Y X s Y X
W s

Y Y

   
         
 

 

mediately from the definition of the 
dynamic of our model (1.1). 

We are now able to determine the dynamic of our 
model under 

Propositio Assume that 

Proof. It comes im

P̂ . 
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Remark 2.6 Moreover, taking the problem at time 
t T , we get 
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We can also obtain a formulation of the conditional 

expected squared cost on the time interval  ,t T  for the 
locally risk-minimizing strategy lr . 
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


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
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


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j v u X u j   
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v u j v u X u j


    


 

   ˆ ˆ, , d ,d .u tv u j v u X u j 
        

 

We can also simplify the second expectation 
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To apply all the results about local risk minimizing 

hedging strategy , it remains to prove that Ẑ  
 P

is a true 
P-martingale and square integrable under . A well- 
known sufficient condition for both is the boundedness 
of the mean variance tradeoff process , stated in 
Proposition 0.2, uniformly in  and 

K
t   ( 2-14]). 

Proposition 2.6 If the mean variance tradeoff process 
 defined in Proposition 0.2, is uniformly bounded in 

 and 

see [1

K ,
t   then we have that: 

1) Ẑ  
P

is a true artingale and square integrable 
under . 

ion given 
by (2.11). 

3) , defined in (2.12) and (2.13), is  

the local risk minimizing hedging strategy. 
Example 2.3 (Heston model) We can take for the 

odel (1.1) a Heston model case. Hence, by Example 1.1, 

P -m

2) H admits a Föllmer-Schweizer decomposit

   0,
: ,lr lr lr

t t t t T
v 




m
we take  

   
 1

, ,

with , , ,

t t t t

N
N

t Y X X Y 

  



  
 

       

 

2
4

, , t t t
t t

X X X
a t Y X

  


8

,
2

t

t
t

Y

X
Y




 

   with , , , , , ,       

 1and , , ,N   
 

1 1N N

     0and 1,1 .     , ,
2

t
t t

X
b t Y X




The constants i , i  and i  are all nonnegative for 
all i . And we assume for the existence and 
positivity of the solution Y  that for all i , 

1

2i i i   . 

The model is then given by 

d ,  

2d ,

and the corresponding mean variance tradeoff process is 
then given by 

  1d dt t t t t t tS X Y S t Y S W 

      2 2d dt t t t t tY X X Y t X Y W      t

   

 

2 2 2

2 20 0

2

0

, ,
d

d .

t ts s s s
t

s s

t

s

t Y X X Y
dK s s

Y Y

X s

 



 

  

 


 

Hence the MVT process K is deterministic so bounded 
uniformly in  0,t T d  an  . his implies that ˆT Z  is 
a P-martingale n apply all the results 

mentioned before.  

4. Pricing Option on the Volatility: 

We are now interested in establishing some formulae to 
price options based on the stochastic volatili  process 

4.1. Variance Swap 

A variance swap is a forward contract on the annualized 
variance, which is the square of the realized annual 
volatility. Thus, let 

 and so that we ca

tY  

ty
Y . 

2
RY  
of

denote the realized annual stock 
variance over the life  the contract. Then it is given by:  

2 2

0

1
d .

T

R tY Y
T

  t            (3.24) 

Let vK  and M  
tional

denote the delivery price for vari- 
ance an  no  amount of the swap in dollars per 

vo
d the

d annualize latility point squared. Then, the payoff H  
of the variance swap at the maturity time T  is given by 

 2
R vH M Y K  . Intuitively, the buyer will receive M  

annual dollars 
varian

for
ce 

 ea
2

ch point by which th lized e rea

RY  has exceeded the variance delivery  price 

vK . The results provided, in the sequel, e an ex
d in [10]. Indeed, tly we stu

more general class of stochastic volatility models and 
secondly we apply our results, in the particular case of 
Heston model, but where not only the long-term volati- 

 volatility of the volatility. 
Hence, we start by considering the evaluation of the 

conditional price of a derivative H given the information 
about the sample path of the Markov process from e 0 
to time T (i.e. This means that we assume to know 
all the historic  of the Markov process 

 ar
firs

tension 
dy of the results obtaine

lity level depends on the regime but also the speed of 
mean reversion on the

 tim
X

T ). 
al path X . Assume, 

also, that we are under the minimal ELMM P̂ . Thus, 
we recall that in this case our gime switching model is 
given by: 

dS Y S

 re

,1ˆdt t t tW  

 

  1 2 3ˆ ˆ, , d 1 d ,t t t tb t Y X W W   
 

ˆd , , dt t tY a t Y X t

with  

       ˆ , , , ,t t t ta t Y X a t Y X , , , ,t t t tt Y X b t Y X
Y

  .  I n 
t

particular, given X
T , the conditional price of the 

variance swap  P X  is given by 

   2ˆ ˆ| |X X
T R v TP X H F M Y K F        

  (3.25) 
2ˆ | .X

R T vM Y F MK   

Hence, if we denote as previous  
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2 1 2 3ˆ1 dt t tW  , we obtain by Itô formula that 
for all 

ˆ ˆdW W 
0,t T , 

    
 

2 2 2
0 0

2

0

ˆ2 , , , , d

ˆ2 , , d .

t

t t s s s s

t s s s

Y Y Y a s Y X b s Y s

Y b s Y X W

  






 (3.26) 

Thus, g n X
T , we get  

   

2 2

2 2
0 0

ˆ ˆ| :

ˆ ˆ2 , , , , d .

X X
t T t

t X
s s s s s

Y F Y

Y Y a s Y X b s Y X s

      

    

 


 (3.27) 

So 

t

X

ive

   
2

2
ˆd

ˆ
X

t X
Y    


ˆ2 , , , , .

d t t t t tY a t Y X b t Y X
t

    (3.28) 

Assumption 3.2 Assume that we know the solution of 
Equation (3.28) which we will denote by  , ,t ty t Y X , 
for all  0,t T . 

Proposition 3.7 Under Assumption 3.2, w ve, for 
all 

e ha
0,t T , that the conditional variance swap price 

P(X) is given by  

   
0

1
, , d .t t vP X M y t Y X t K

T
   
     (3.29) 

Example 3.4 (Heston Model) Assume that we are in 
the Heston model case. Hence as mentioned in Example 
1.1 we take  

T

         2
4

ˆ , ,
8

t t t t
t t 2t

X X X X
a t Y X Y

Y

   
  t  

and 

   
, , .

2
t

t t

X
b t Y X


  

Then the dynamic of Y  is given by 

      2 2 2d d dt t t t t t tY X X Y t X Y W     . 

Moreover, (3.28) becomes 

    
2

2ˆ
d

t X
Y

t

  ̂d
.

X

t t tX X Y        

Let 2ˆ: X
t ty Y    , then we have to solve 

re

the diffe-  

ntial equation     
d

t
t t t

t

dy
X X y   . The solution  

of this differential equation is given for all  0,t T  by 

  
   

  

0 0

0 0

0

exp d

exp d d
.

exp d

t

t s

t s

u s s

t

s

y y X s

X u s

X s



  



 





 



 

Thus, we get 


 

 
  




2 2
0 0
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ˆ exp d
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



    









    (3.30) 

can now obta
 Proposition 3.7: 

  

We in the conditional variance swap 
price by applying

 

    
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 
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We can also obtain the

he full ory



 value of the conditional va- 
riance given t hist  of X .  

Lemma all  0,t T ,
 

3.2 For  the conditional vari- 
ance of s given by 

.s




of. By Ito’s lemma we get  

d
 

Hence, given , we find that 

 d .s
2
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
0
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
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2
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2ˆ 4
t X

s sY Y   



 
 (3.31) 

Using (3.27) and the definition of the variance give the 
result. 

Example 3.5 (Heston Model) We continu
of the Heston model case (see Example 3.4). Thus Equ- 
ation (3.31) gives 

e the study 

     

   24
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Given (3.30), we know that 

  
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
hich is a function of t  0,T  and the Markov 
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The solution of this differential equation is given for 
all  0,t T  by 

00

1 t
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1
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We finally obtain in the Heston model case that  
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and that the conditional variance is equal to 
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4.2. Pricing Volatility Swaps 

In this section, we follow the same m odology studied 
by Broadie and Jain in [8] where there is no regime 
switching component. We recall that the realized annual 
stock







eth

 variance over the life of the contract is given by 
(3.24) and depends on the values of the Markov process  

X . D by 2

0
d

t

t sI Y s enote  the accumulated variance  

between time 0 to  0,t T
 of the sto

. We recall that the process 
the solution chastic differential equation 

 

2Y  is 
given by
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Hence tI  
n give

is the solution of the stochastic differential 
equatio n by 2d dt tI Y t . Let define by  the 
expectation at time

 T
tE

  0,t T  with respect to X
T  

2 21 1ˆ ˆd | d
T TT X X
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E Y s Y

T T
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    
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
   (3.32) 

Hence    0,t t T
E


 depends on the variance processT   

of the underlying asset and on the Markov process 2Y  
X . 

quan
We call by fair conditional variance strike price the 
tity vK   

 
which is defined such that Equation 3.25 

shes:

T
 

Then, we have that 
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T
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 (3.33)

Proposition 3.8 The forward price process
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 (3.34) 

with boundary condition given by  

  I2, , ,T T T
TF

T
. T Y X I 

Proof. Rewrite T
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