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ABSTRACT

We consider general regime switching stochastic volatility models where both the asset and the volatility dynamics de-
pend on the values of a Markov jump process. Due to the stochastic volatility and the Markov regime switching, this
financial market is thus incomplete and perfect pricing and hedging of options are not possible. Thus, we are interested
in finding formulae to solve the problem of pricing and hedging options in this framework. For this, we use the local
risk minimization approach to obtain pricing and hedging formulae based on solving a system of partial differential
equations. Then we get also formulae to price volatility and variance swap options on these general regime switching

stochastic volatility models.
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1. Introduction

In this paper, we consider general regime switching
stochastic volatility models where both the asset and the
volatility dynamics depend on the values of a Markov
jump process. We are interested in finding formulae to
solve the problem of pricing and hedging contingent
claims in this framework. However, due to the stochastic
volatility and the Markov regime switching, the market is
incomplete and thus perfect pricing and hedging are not
possible. Hence, to hedge derivatives, we adopt firstly
the local-risk minimization approach studied by Follmer
and Schweizer in [1]. This approach consists of con-
trolling the hedging errors at each instant te [O,T] by
minimizing the conditional variances of the instantane-
ous cost increments. Health et al. in [2], provided com-
parative theoretical and numerical results on risks, values
and hedging strategies for this approach versus the mean-
variance (see [3] or [4] for more details on this approach),
in the specific case of stochastic volatility models. We
propose in this paper to apply the local risk minimization
approach to a more global class of stochastic volatility
models since we will assume in the sequel that all para-
meters of the model depend on the values of a Markov
jump process. Hence, we will work on a global class of
regime switching stochastic volatility models. We will
obtain formulae to give the price of contingent claims by
solving a system of partial differential equations. We will
also obtain the optimal strategy which solves the local
risk minimization hedging problem.

Copyright © 2013 SciRes.

There has been considerable interest in applications of
regime switching models driven by a Markov process to
various financial problems. Elliott et al. in [5] provided
an overview of hidden Markov chain models. Indeed, the
use of Markov switching in diffusions allows us to have
different levels of drift or volatility during time. More-
over these regime switching activities are a better fit for
economic times series data than non regime switching
models and also allow us to better capture some market
features or economics behaviors such as recession and
financial crisis periods (see for example Goutte and Zou
in [6]). Thus, Di Masi et al. in [7] considered the
problem of hedging an European call option for a (non-
stochastic volatility) diffusion models where the drift and
volatility are functions of a Markov jump process.

Furthermore, we are also interested in pricing vola-
tility derivatives, such as variance and volatility swaps.
Broadie et al. in [8] studied the pricing and hedging of
variance swaps and other volatility derivatives in the
classical Heston stochastic volatility model introduced by
Heston in [9]. Elliott et al. in [10] then developed a
model for pricing the same class of derivatives but under
a Markov-modulated version of this stochastic volatility
model. In their paper, they only considered the case
where not all the parameters of the model depend on the
state of the Markov process. Moreover, they studied only
the Heston stochastic volatility model. Hence, based on
these two preceding works, we will extend this metho-
dology to our global class of regime switching stochastic
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S. GOUTTE 71

volatility models. Thus, we will obtain formulae to price
options on the stochastic volatility process such as va-
riance and volatility swaps.

This paper is arranged as follows: Section 1 gives the
notion of the regime switching framework and presents
our regime switching stochastic volatility models. Sec-
tion 2 solves the problem of pricing and hedging using
the local risk minimization approach. Section 3 then
gives the formulas to price options on the volatility pro-
cess.

2. The Stochastic Regime Switching
Volatility Model

Let (,F,P) be a filtered probability space with fil-
tration F=(F )IE o satisfying the usual conditions for
some fixed but arbitrary time horizon T &(0,00). We
consider a general stochastic volatility model defined by
the stochastic differential equations:

d§ = (LY, X, ) §dt+Y,SdW,,
dY, =a(t,Y,, X, )dt+b(t,Y, X, )dW?,  (1.1)
d(Wl,WZ)t = pdt with pe[0,1].

where W' and W? are two correlated Brownian mo-
tions. In fact, the process S represents the discounted

price process of a tradable asset price process (S)t 07]

divided by a Bond price process (BQ . The process

te[0,T]
B represents the savings account in a riskless asset.
(%

)tE[OT] is a real stochastic process which is F -

adapted and (Xt )te[OT] is a Markov jump process on
finite state space S:={1,2,---,N}. It can be viewed as

an observable exogenous quantity. We assume that the
time invariant matrix Q denotes the infinitesimal gene-

rator (qij )
intensity of X . This generator is defined as q; >0, for
all i#jeS and g, =-Y <0 forall ieS.

Then, the semi-martingale decomposition for X is
given by

- of X, where ¢; is an infinitesimal
ivj=Lom

j¢i;jeSqii

X, = X, + [QXds+ M, te[0.T],
where (M x) is an R" -valued martingale with
U Jieo,T]

respect to F* =<£X) =0(X,,0<t<T), which is

te[0.T]
the natural filtration generated by the Markov process
X under P.

Hence, in our model, there are three sources of ran-
domness: W', W? and X .We will denote by
G=(4) = o-(V\/tl,V\f,O <t< T) the filtration ge-

tefo,T] *

Copyright © 2013 SciRes.

nerated by the two Brownian motions. Finally, we will
denote by F the global filtration F:=GvF*.

Let T, be the sequential jump times of X (i.e
0=T,<T,<---<T,<---) and v a jump measure of
X, i.e. the integer-valued random measure given by

v([O,t]xS) :le{XTneS,Tnst}' (1.2)
Then the [ -compensator of v is given by
V(dt,{j}):Zqijl{X!:j}dt. (1.3)

i*]

Assumption 1.1

1) We assume all the hypothesis to ensure the exi-
stences and the regularities of the solutions of our model
(1.1) (see for example [11] for more details). Hence, the
system of stochastic differential Equations (1.1) admits a
unique strong continuous solution for the vector process
(S,Y,X) with a strictly positive price process S and a
volatility process Y .

2) We assume moreover that the Markov process X
is independent to both processes S and Y.

Remark 1.1 This independence implies that the Mar-
kov process X isan exogenous factor of the market in-
formation. Thus, it can be viewed as an exogenous factor
such as an economic impact factor. An economic inter-
pretation of this is that this Markov process can re-
present a credit rating of a firm A Indeed, assume that
our stochastic volatility model describes the price of a
commodity produced by the firm A, then the Markov
process X can represent the credit rating of this firm
given by an exogenous rating company as “Sandard and
Poors”. Thus, it is natural to think that the dynamic of
the commodity’s price, produced by the firm A, de-
pends on the value of this notation X .

To exclude arbitrage opportunities, we assume that the
process Sadmits an equivalent local martingale measure
(ELMM) Q. In the sense that it is a probability measure
with the same null sets as P and such that the process S
is a local martingale under Q. We will denote, in the
sequel, by P the set of all ELMMs Q.

Remark 1.2

1) We can rewrite the Brownian motion W as
W = pW' +4/1- p*W’ , where the process W* is
another Brownian motion such that processes W' and
W? are now independent.

2) The condition that S should be a Q-local mar-
tingale fixes the effect of the Girsanov transformation of
W' but allows us for different transformations on the in-
dependent Brownian motion W’ defined in point 1.
Consequently, if the correlation factor p satisfies
| p| <1, then the set P contains more than one element
and so the financial market is then incomplete. Moreover,
there is an other source of incompleteness of the market
which is the dependence of processes S and Y with
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72 S. GOUTTE

respect to the Markov process X .
We give now some examples of classical stochastic
volatility models which are contained in our model (1.1).
Example 1.1 Hull-White:

Y 2
,u(t’thXt):/UYu a(t’Yt’Xt) :j[a_%j

and b(t,Y;, X, ) = th,

d§ = Y, Sdt+Y,SdW,,
dY? = aY dt+ BY AW .
Stein-Stein:
w(LY, X)) =uY,, a(ty,X,)=a(e-Y,)
and b(t,Yt, X, ) =p,
dS = PYSdt+Y, AW,
dY, =a(w-Y,)dt+ AW
Heston:
4kf-0° K
/u(taYtaXt) = /-lYt, a(t,Yl, )(I)ZS—YI—EYt
and b(t,Yt,Xt):%,
dS = £Y,Sdt+Y, AW,
dY? = (60— )dt+ oY dW,

2x0 > o”.

3. Pricing and Hedging via L ocal Risk
Minimization Approach

We are interested, in this section, in the hedging of an
European contingent claims with an 7 -measurable
squared integrable random variable H based on the dy-
namics given by (1.1). As an example of this payoff, we
can take an European call option:

H=h(S;)=(S; —K)" with maturity T and strike K >
0.

We consider here the local risk-minimization approach
to hedge in this incomplete market. We recall some de-
finitions of this approach.

Definition 2.1 An hedging strategy isa pair
¢=(v,7) suchthat v=(v,) is a predictable pro-
cess which satisfies

E[j(jvafgqu N E[( 7w e (Y0 %, )ﬂ <o, (2.4)

and 7 =(n, )te[oﬂ is an adapted process such that
E[n |<w, vte[0,T]. (2.5)

IE[O,T]

We will denote by A the set of strategies which
satisfy (2.4) and (2.5).

Copyright © 2013 SciRes.

The hedging strategy ¢ defines a portfolio where V,
denotes the number of shares of the risky asset S held
by the investor at time te[0,T] and 7, denotes the
amount invested at time t in the bond.

Definition 2.2 Given a hedging strategy ¢, we call
the Value process V (¢) of this corresponding portfolio
the right continuous process given by

Vi(¢)=vS+n, vte[oT]. (2.6)

Definition 2.3 Given a hedging strategy ¢, we call
the Cost process C(¢) of this corresponding portfolio
the process given by

C(p)=Vi(p)-[VvdS,. Vte[0.T]. (@7

. t
We can see that the quantity IoVSdSS represents the

hedging gains or losses up to time te [O,T] following
the hedging strategy ¢ . A hedging strategy ¢ is called
self-financing if its cost process is P -a.s. constant over
the time [0,T] and mean self-financing if C(¢) is a
P -martingale. If C(¢) is square integrable, then the
risk process of ¢ is defined by

R(w):=E[(CT(¢)—Ct(¢))2|ft},we[o,T]. 2.8)

Remark 2.3 Since the contingent claim H is A -
measurable and #n is adapted, there always exists a
hedging strategy such that V; (¢)=H . Indeed, we can
take v=0 and 7, =Hl,_, foral te[0,T].

3.1. Local Risk Minimization Approach

We only consider hedging strategies which replicate con-
tingent claim H at time T . This means that we only
allow hedging strategies ¢ such that

V; (p)=H, P-as (2.9)

Thus, the hedging problem is so to find the strategy
@€ A which minimizes at time te[O,T] the qua-
dratic risk:

T 2
minR (¢):= I;gi}E{(H = [, vds-C, ((ﬂ)) Ift}- (2.10)

The idea is so to control the hedging errors at each
instant te[O,T] by minimizing the conditional vari-
ances of the instantaneous cost increments sequentially
over time.

Remark 2.4 An alternative approach to hedge in
incomplete market is the mean-variance approach (see
[3]). In fact, in this approach, the aim is to minimize the
global risk over the entire time [0,T]. Hence, it is a
different approach than the local risk minimization which
focuses on the minimization of the second moments of the
infinitesimal cost increments (8).
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S. GOUTTE 73

Therefore, the study of this minimization problem in a
general semimartingale case is due to Schweizer [3] and
it requires more assumptions on the asset dynamic S.
We assume firstly that S can be decomposed as

S=5+M +A,

where M is a real valued locally squared integrable
local P -martingale null at zero and A is a real valued
adapted continuous process of finite variation also null at
Zero.

We recall now the Definition of the Structure Con-
dition (SC). We say that the process S satisfies the (SC)
if there exists a predictable process A such that the
process A is absolutely continuous with respect to
(M ) (i.e. the oblique bracket). In the sense that

A =[Ad(m),

and such that the so called mean variance tradeoff
process(MVT) K satisfies

K, = _[;ﬂ:d(M ), <», P-as

Lemma 2.1 Snce P =, we have that if the process
S iscontinuous then (SC) is satisfied.

Proof. See Theorem 1 of Schweizer [4].

Proposition 2.24 of Follmer and Schweizer in [1]
shows that finding a locally risk minimizing strategy for
a given contingent claim H e L’(P) is equivalent to
finding a decomposition of H of the form:

H=HY +[l&ds + LY, @.11)
where H(')r is a constant, £" is a predictable process
satisfying Condition (2.4) and L" is a square integrable
P -martingale null at 0 and strongly orthogonal to M
(i.e. "M is a P-martingale). The representation (2.11)
is usually referred to as the Follmer-Schweizer (FS) de-
composition of the random variable H . Once we have
(2.11), then the desired hedging strategy ¢", which is
locally risk minimizing, is then given, for all te[0,T],
by

V=g (2.12)
and
=V, (¢")-v'S, (2.13)
where
Vi(0")=C(o")+[Wds, @14
with
C(p")=Hy +L1. (2.15)

In view of these results, finding the Féllmer-Schweizer
decomposition (2.11) of a given contingent claim H is

Copyright © 2013 SciRes.

important because it allows us to obtain the locally risk
minimizing strategy. Monat and Sticker in [12] and Pham
et al. in [13] give sufficient conditions to prove the
existence of this decomposition. We therefore explain
how one can often obtain this decomposition by switch-
ing to a suitably chosen martingale measure for S Indeed,
as it is shown in [1] and [4], there exists a measure
PeP, which is the so called minimal equivalent local
martingale measure (minimal ELMM), such that

Vi(¢")=E[HIR], te[o,T], (2.16)
where & denotes the conditional expectation under P.

Remark 2.5 If there exists a locally risk minimizing
strategy ¢'", then we can use the expression of V, (¢ )
appearing in (2.16) as a price of the contingent claim

H attime te[0,T].

In the case where the process S is continuous (which
is our case), Theorem 1 of [1] allows us to construct
uniquely P . Indeed, we have the following result:

Proposition 2.1 PeP exists if and only if for all
te [O,T]

A

t 1 ¢t
2, = exp(—jozdes -3 jo/ljd(s)sj (2.17)
is a square integrable martingale under P .

P S . .
Moreover, 5= Z; €’ (P) defines a probability

measure P equivalent to P whichisin P since one
easily verifies that ZS isalocal P -martingale.

3.2. Markovian Regime Switching Case

Let S, Y and X given by the model (1.1), then the
local risk minimizing hedging strategy can be obtained in
two steps:

1) Determine PeP and deduce the dynamic of
(S.Y) under P.

2) Find the Galtchouk-Kunita-Watanabe decomposi-
tionof H withrespectto S under P.

Then, the optimal local risk minimizing hedging stra-
tegy is given by (2.12) and (2.13).

3.2.1. Finding P
According to the previous subsection, the density process

of the minimal ELMM PeP with respect to P is
given by the Equation (2.17). We can firstly remark that

5 t 1.,
2, = exp(— [ Aam, -5 [/ d(S)sj
t 1
= exp —jOASdMS—EKt .
Since S is continuous, we have first of all to deter-
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74 S. GOUTTE

mine the canonical decomposition

§=5+M,+[Ad(M),

of the asset process S under P.

Proposition 2.2 Assume that the regime stochastic
volatility model follows (1.1) then we have, for all
te[0,T], that

M, = [[SY.AW,.A = [u(s.Y,. X,)Sds,
(M), =[[sivcds
dA _a(tY.X)
d(M) §Y

2
Y, X
and K, = j;(%] ds,

S

therefore we obtain

A

z

= exp[—j‘—#(S’Ys’ %) gw! —lj‘L—“(S’YS’ XS)]Z ds}.

0 Y, * 2% Y,

Proof. It comes immediately from the definition of the
dynamic of our model (1.1).

We are now able to determine the dynamic of our
model under PeP.

Proposition 2.3 Assume that Z is a true P -mar-
tingale, then the dynamic of the model (1.1) under P is
givenfor all te[0,T] by

ds =Y, SdW', (2.18)
dY, =a(t.Y,, X, )dt
+B(LY, X, )(detl 1 p? dvvf)
with
a(t.y, X,)=a(t.Y, X,)
(2.19)

—é,u(t,Yl,Xt)b(t,Yt,Xl).

t

Proof. Since Z is a P -martingale, Girsanov’s the-

. Y,, X
orem implies that W' =W, + J;Mds and
S
W} =W are independent P -Brownian motions.
Hence

d§ = (LY, X,) St +Y, W/

ZEEN

:y(t,Yt,Xt)Sdt+YtS£thl - A

~<|<

=Y, SdW,'

Copyright © 2013 SciRes.

and

av,

=a(t,Y, X, )dt+b(t,Y, X, )dW;’

a(t.Y,, X, )dt+b(t.Y,, Xt)(detl +«/1—p2dV\/t3)

=a(t,Y, X, )dt+b(t,Y, X,)

{p(dwt' —Md‘[}+«/l—p2dﬂ3}

t

[0 %) £t ol )
t

+b(LY,. X, )(pdv(/t1 +1/1—p2dV(/t3).|:|

3.2.2. Decomposition of the Contingent Claim H

with Respect to S under P
Let H be acontingent claim of the form
H =h(S:.Y;,X;), then finding the Galtchouk-Kunita-
Watanabe decomposition of H under P reduces to
solve a system of partial differential equations if one
exploits the Markovian structure. Indeed, using the Mar-
kov property, we can rewrite (2.16):

Vi(#")=E[h(s) %]
:O(t’S’Yt’Xt)’
te[O,T],

for some function V defined on [0,T]x(0,00)xRxS.

Proposition 2.4 For all te[0,T],if X, =ieS,then
V is the solution to the system of partial differential
equations given by

0=V, (t.S.Y.i)+a(t.Y,i)V, (t.S,Y.i)

+ > a (Ut

j#i,jeS

.Y 1)-9(t.S.Y.0))

1 N . N2 .
+5[§2\42v$(t,S,Yt,|)+b(t,Yt,|)2 v, (t,S,Y,0)

+2SY,b(t,Y,.i) pl, (t, S,Ypi)J
(2.20)

with terminal condition for all i €S given by

A~

V(T,S:.Y;,i)=h(S;.Y;,i):=H and where Y, ::%,

o

%} ._6_\7 V. Y/ '—ﬁ and V_ = 0V
YUayT T oestT YT ay? ¥ oY

Proof. Since
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V(LS. YL X,)
=0(0,S),Y,, X, ) + J‘;Wdu
tov(u,S,,Y,, X,
107(u,S§,,Y,, X, toV(U,S,,Y,, X,
QL%MS)U*L%M
t0 > Tys Ny
IL)‘MY)U
{0V S, Y.,
(IS g

+Z[\7(U’Sh>Yu’ Xu)_

us<T

WU, Y X, )]

(2.21)
and notice that for any function g on
[0,T]x(0,00)xRx S, which is right continuous and with
left limits in U, we have

2[0(u8Y %)= 0(u S, Y, X, )]
)=9(u.S, .Y X, ) Jv(du.dj)

= JJLo(us.X,. |
= [ [0(wS. Y i)-9(uS Y, X, )](v=7)(dudj)
9(u, S, Y., X,) Jay, du,

+j;z[g(u,suvu,1)

= ['[.[o(u.8.Y,.]

+[Qo(u.s,.Y,, u)
Hence, replacing the last equality in (2.21) gives

CER Y

-9(u8.Y, X, )] (v-7)(du.dj)

=9(0,S,,Y,, X, )+ jleu
+j;—av(u S@JS“’ vy S, dv!
+2j;—a V(U?S w “)sJYZdu

o S )

( (u,Y,, X, )du+b(u,Y,,X,) (pdV(/ul-i-\/l—pde(/u}))
A J-taV(USJ s u)b2
2

0 oY?
It% SY,b(u,Y,, X, )du
008 1) 0(0S, Y, X, )] (-7 (i)
+[1QU(u,S,. Y, u)

Copyright © 2013 SciRes.

The function V is a ﬁ—martingale so all boundary
terms are null. Hence we obtain that V¥ need to satisfy

( SJ’ u? u) 182A(USJ u’ u)szZ
ou "2 oS’ ‘
2
( S_p u? )é(U,YU,XU)-i-la ( s_nz u’ u)bZ
oY 2 oY
0%(u.S,.Y,. X,)
——————pSY,b(uY, X
oy PRND(UY.X)

+QU(u,§,,Y,, X,)=0

with terminal condition V(T,S;,Y;,X;)=h(S;,Y;,X;).
Moreover,

QI(u,S,, Y, X,)
= > o (V(us,

S Y i)
j#i,jeS

where V(u,S,.Y,,i) means that at time ue[0,T] the
Markov process is in state ieS (i.e. X, =i). Hence
with ie{0,1,---,N}, we obtain the expected result.o

Example 2.2 (Pricing European call options on the
underlying process S) The value of an European call
option on the stock price S with maturity T and strike
K is given by h(S;)=(S; -K)". Hence we can apply
Proposition 2.4 with
C =B[h(S)I £ ]=B[(S -K)'| % ]=¥(t.S.Y, X,)
where the terminal conditions for +all ieS aregiven by
Cr (1) =9(T.s y.0)= (S ()-K) .

According to (2.12) and (2.15), we are now able to
find the decomposition of H with respect to S under
P and so the locally risk minimizing H -admissible

strategy @' .
Theorem 2.1 For all te[0,T], we have that the

locally risk-minimizing hedging strategy of H ,

(u.8,,%,.1)),

Q" = (v",n”) is given by
thr:V( su us u)
o (2.22)
( S.I u’ u)leub(u’YU’XU)
=V (¢")-V'S, (2.23)
where
V(0" )=V (¢")+ [ Vrds + LY,
and
L = Hl P, (080 X, (WY, X, ) AV
+[ [ [9(u.8 Y 1) - 9(u S, .Y, . X, ) ](v=7)(du.dj)

Remark 2.6 Moreover, taking the problem at time
t=T,weget
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76 S. GOUTTE

H=V, (07) =V, (0 )+ [ veds, + L,

which is the so-called Follmer-Schweizer decomposition
of the random variable H .
Proof. Let t=T , apply Ito’s formula to

U(T,S. Y, X; ) = h(S:, Yo, X )= H , then by (2.21),
we obtain:

h(S:. Y. X, )

=\7(0,%,y0,><0)+I (0.8, Y, X, )dS,

+[9, Y, X, du+5j0T\7 (U,S,.Y,. X, ) S2Y2du
+j0\7y(u

~(é(u,Yu,X )du+b(w,Y,, X, (deu‘ +~/1—p2dv§/j))
+= j Y, X, )07 (1Y, X, )du

+]19, X, ) S Y,pb(u.Y,, X, )du

+jj SYer 1) -9(U S, Y, X, ) ] (v=7) (du,dj)
+I QU(u,S,.Y,, u)

We apply now the result of Proposition 2.4 to obtain

R -8 ([
+EUT [Q\?2 (u,X,)

28 (JVi=079, (wp(u

dW3)

-2V(u, X,_)QV(u, X

(v )({f Lo

h(S:. Y. X, )
=0(0,5, %5, % )+ [ % (1., Y, X, )dS,
19, (u.S,, u)(b uYu,Xu del—h/l p dW3))
L0008 Y 1) =9 (u 8 Y X, ) (v =) (dund)
=V(0,~%,yo,><o) I L (U, Y, X, )dS,

T b(uY,, X,
+f0‘7y(u’5u%sxu)%d3h
00, (U S Y X, ) b(U Y, X, ) 1= 02 AV
L0080 1) - 9(uS, Y, X, )] (v=7) (du,dj)

Combining this result with
V, ((p" ) =V, ((p" )+ J';v'sr dS, +L) gives the expected re-

sult.o
We can also obtain a formulation of the conditional
expected squared cost on the time 1nterval [t T] for the
locally risk-minimizing strategy ¢"
Proposition 2.5 We have, for all te[0,T], that the
conditional expected squared cost on the interval [t,T]
for the locally risk-minimizing strategy ¢'" isgiven by

)]du‘}'t]

(U, X, )](V—V)(du,dj))‘}}}

Proof. Applying the result of Theorem 2.1 in (2.8) we obtain

R ()= (e (o) (o)

_ ]E_( ['\i= 279, (u)b(u
) (I \/7
+2]E[( [T= 02, (u)b(

We can also simplify the second expectation
LI S
]E['[[ _fs[v(u, i)=9(u, X, )} 7 (du,

- E[HQ@Z (u, X, )—29(u, X, )Q0(u, X

u)dVi? )

Copyright © 2013 SciRes.

| -ef -y
YA + [T].[9(u, ) -9(u X, ))(v-
7| (1ot )-

u)dwf)(ms[

)% - {I 209 (0 §)+ 0 (U X, )=29(4 1) 9(u X, ) o, du

)]du‘}'t}.u

A

7)(dudj ))2

d

9(u.%, )](v—7) (dudi))

d

o(u, j)-9(u, Xu_)](v—v)(du,dj))‘]{}

.
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To apply all the results about local risk minimizing
hedging strategy , it remains to prove that Z is a true
P-martingale and square integrable under P. A well-
known sufficient condition for both is the boundedness
of the mean variance tradeoff process K , stated in
Proposition 0.2, uniformly in t and @ (see[12-14]).

Proposition 2.6 If the mean variance tradeoff process
K, defined in Proposition 0.2, is uniformly bounded in
t and @ thenwe havethat:

1) Z is atrue P -martingale and square integrable
under P.

2) H admits a Follmer-Schweizer decomposition given
by (2.11).

3) o =(W),

the local risk minimizing hedging strategy.

Example 2.3 (Heston model) We can take for the
model (1.1) a Heston model case. Hence, by Example 1.1,
we take

, defined in (2.12) and (2.13), is

e[O,T]

,u(tsYt’xt)::u(xt)Yt
with  pr= (g, 1y ) €RY,

4 (X,)0(X, )~ (X,)
8Y,

a(t,Y, X,)=

with & =(k,,ky),0=(6,.6y),

and o =(0,,,0y),

X
b(t,m,xJ:# and p=p,e]-L1[.

The constants «;, 6 and o, are all nonnegative for
all ieS. And we assume for the existence and
positivity of the solution Y thatforall ieS,

K0 Zlai .
2
The model is then given by
dS = u(X,) Y, Sdt+Y,SdW,
Y = k(X )(0(X,) =¥ )dt+o (X, )YdW?,

and the corresponding mean variance tradeoff process is
then given by

2 2 2
Ktzﬁﬂ(t’\\(j;XS) s=[* (;%)Ys
S S
=I;y2(XS)dS< 00,

Hence the MVT process K is deterministic so bounded
uniformly in te[0,T] and . This implies that Z is
a P-martingale and so that we can apply all the results

ds

Copyright © 2013 SciRes.

mentioned before.

4. Pricing Option on the Volatility: Y,

We are now interested in establishing some formulae to
price options based on the stochastic volatility process
Y.

4.1. Variance Swap

A variance swap is a forward contract on the annualized
variance, which is the square of the realized annual
volatility. Thus, let Y denote the realized annual stock
variance over the life of the contract. Then it is given by:
Y2 = %joTdet. (3.24)

Let K, and M denote the delivery price for vari-
ance and the notional amount of the swap in dollars per
annualized volatility point squared. Then, the payoff H
of the variance swap at the maturity time T is given by

H=M (YR? - KV). Intuitively, the buyer will receive M
dollars for each point by which the realized annual
variance Y; has exceeded the variance delivery price
K, . The results provided, in the sequel, are an extension
of the results obtained in [10]. Indeed, firstly we study
more general class of stochastic volatility models and
secondly we apply our results, in the particular case of
Heston model, but where not only the long-term volati-
lity level depends on the regime but also the speed of
mean reversion on the volatility of the volatility.

Hence, we start by considering the evaluation of the
conditional price of a derivative H given the information
about the sample path of the Markov process from time 0
to time T (i.e. ). This means that we assume to know
all the historical path of the Markov process X . Assume,
also, that we are under the minimal ELMM PelP. Thus,
we recall that in this case our regime switching model is
given by:

d§ =Y, §dW,

dy, =4a(t.Y,, X, )dt

+b(1% X, ) a4 - 2 avg ),
with

é(t,Yt,Xt)=a(t,Yt,Xt)—éy(t,\q,xt)b(t,\q,Xt). In
t
particular, given 7~ , the conditional price of the
variance swap P(X) is given by
P(X)=E[H |F* |=E[M (Y3 -K,)| F*
(O=B[HIF ]=B[MOG—kIF] o
=ME[ Y7 [F*]-MK,.

Hence, if we denote as previous
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W2 = pdW' + /1 p*dW, we obtain by It6 formula that
forall te [O,T] ,

Y2 =Y+ [ (2%A(S Y, X)) +b7 (S Y, X, ) )ds

t A (3.26)
+[ 2Yb(s.Y,, X, ) dViL.
Thus, given 5, we get
B[Y R =B [¥?]
. (3.27)
=V7 +[BX[2YA(s Y. X, ) +b* (Y., X, ) ]ds
So
dE* [y ] .
% =B [2YA(tY, X, )+b* (LY. X,) ] (3.28)

Assumption 3.2 Assume that we know the solution of
Equation (3.28) which we will denote by y(t,Y;,X,),
forall te[0,T].

Proposition 3.7 Under Assumption 3.2, we have, for
all te[0,T], that the conditional variance swap price
P(X) is given by

1,7
P(X)=M (?L y(LY, X, )dt - va. (3.29)
Example 3.4 (Heston Model) Assume that we are in

the Heston model case. Hence as mentioned in Example
1.1 wetake

a(ty, X,)= - Y,

and

P(X)=M %joT Y2 exp(-[x(X,)ds)+

We can also obtain the value of the conditional va-
riance given the full history of X.

Lemma 3.2 For all te[0,T], the conditional vari-
anceof Y’ isgivenby

Var [ Y| 7" |

= [BX[ Y2 (4YA(s Y, X,) + 607 (sY,, X, ) |ds
—(LEEX [ZYSé(s,YS, X, )+b*(sY,, xs)]ds)2
-2Y7 [ [2Y, (.Y, X, ) +b* (s.Y,. X,) ]ds

Proof. By Ito’s lemma we get
Y = Y7 (4YA(LY,, X, )+6b” (1Y, X, ) )dt

+4Y2b(L,Y,, X, )dW

Copyright © 2013 SciRes.

j;(exp(.[oslc( X, )du)/csas)ds

Then the dynamic of Y is given by
dY? = k(X )(0(X,) =¥ )dt+o (X, ) YdW’ .

Moreover, (3.28) becomes
a8 [ ¥’ ] i
T: K(XJ(@(XJ—E I:Yl2:|)

Let y, =&~ [Yf} , then we have to solve the diffe-

rential equation % = k(X )(6(X;)=¥)- The solution

t
of this differential equation is given for all te [O,T] by

Y. =Y, exp(—.ﬁ/{(xs)ds)
J';(exp(j:lc(xu)du)rcsﬁs)ds

' exp(.[;K(XS)dS)

Thus, we get
1Dt [Ytz ] =Y, exp (—L:K‘( Xs) dS)
X J.;(exp(.[oslc( X, )du)zcsé’s)ds
exp(ﬁ/(( Xs)ds) .

We can now obtain the conditional variance swap
price by applying Proposition 3.7:

(3.30)

dt-K

v |-

exp(.ﬁ/{( Xs)ds)

Hence, given .7-'TX , we find that
Ex |:Y14:| _ Y04

P X (3.31)
B [Y2 (4YA(s Y, X, )+ 60 (5 Y,, X)) | ds
Using (3.27) and the definition of the variance give the

result.

Example 3.5 (Heston Model) We continue the study
of the Heston model case (see Example 3.4). Thus Equ-
ation (3.31) gives

B[]

L [2exo00)- 2 e v
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Given (3.30), we know that
BX[¥?]=¥; exp( ds)

Slen{fexaoas
exp [ (X S)ds)

which is a function of time te [O T] and the Markov
process X. Let z = =X [Y g then we have to solve
the differential equation given by

d_zrztz,((xt)e(xt)—"(xt)}yl

d, 2

3
-2k(X,)z +EG(Xt )2.

The solution of this differential equation is given for
all te[0,T] by
1 ¢t 1
=—|ugds+—
2=y [ua L%
where

u = { j 2k (X ds}

Y, =Y, exp(—ﬁx( Xs)ds)

.[; (exp (JOSK( X, )du) k0, ) ds
+ .
exp (J:K‘( X ) ds)
We finally obtain in the Heston model case that
v

— e’j(t)z"(xs)ds."t ejOsZrc(Xu)du (21(( xs)g( Xs) _ O-( Xs)j ys

0 2

+Y4e—j(t]21<()(s)ds
0
and that the conditional variance is equal to

Var[ Y} | 7" |
-t K| S 2k u o Xs
=e Iﬂz (XS)d J‘;ejoz (Xu)d [2’(()(5)9()(5)_ (2 )Jys

e {Jix () Jas
exp(J.;K( Xs)ds)

I (exp( (%, )au) ., Jos |
exp [ (X, )as|

-2| Y, exp (—I;K( X,) ds)

Copyright © 2013 SciRes.

4.2. Pricing Volatility Swaps

In this section, we follow the same methodology studied
by Broadie and Jain in [8] where there is no regime
switching component. We recall that the realized annual
stock variance over the life of the contract is given by
(3.24) and depends on the values of the Markov process

X . Denote by I, =IOVSZdS the accumulated variance
between time 0 to te[0,T]. We recall that the process

Y? is the solution of the stochastic differential equation
given by

Y7 =(2YA(LY, X, ) +b (1Y, X,))dt

+2Yb(t.Y,, )dW2

Hence |, is the solution of the stochastic differential
equation given by dl, =Y dt. Let define by ES
expectation at time t [0,T] with respectto 7

~ | 1 |
EN =L, {?L Yszds|}‘TX}:]E,tx [?Ldes}. (3.32)
Hence (ET )t 0] depends on the variance process

Y? of the underlying asset and on the Markov process
X . We call by fair conditional variance strike price the
quantity K which is defined such that Equation 3.25

vanishes:
;)17 ]
=B [M (Y2 -K;)]=o0.

Then, we have that K! =I|Y? |FTXJ and for time

t=0, we obtain that Ej =K . We define now the
forward price process Z as

yal :E{ /% ['Yeds| FTX}:]EIX{ /% j[TY;ds}. (3.33)

Proposition 3.8 The forward price process Z| can
be expressed as a function F (t,Yf, X, t) and it is the
solution of the system of stochastic differential equations
given by

a_F a_FY2 + oF

ot o ' ay?
1 6°F

(2va(tY, X, )+1)

SAY3D(LY, X, ) +QF (LY, X, 1) (3.34)

with boundary condition given by

F(T,YTZ,XT,IT):\/E.

Proof. Rewrite Z| as

JMF



80 S. GOUTTE

z =]ﬁ;5{ /%(ll +jtTY;ds)}:: F (LY X, 1,).

Applying It6 Lemma to F, using (3.26) and the fact that
the forward price measure F is a martingale give the
expected result.

5. Conclusions

In this paper, we studied the problem of pricing and

hedging options based on an asset which is modeled by a

regime switching stochastic volatility model. We pre-

sented firstly this class of regime switching stochastic
volatility models. We shown that this class of regime
switching models encompasses a large panel of classical
financial models. We also explained the interest in appli-
cations of this kind of models. Secondly, we used the
local risk minimization approach to solve the problem of
pricing and hedging contingent claims in this incomplete
market. Thus, we obtained pricing and hedging formulae
and also the formula of the optimal hedging strategy.

Finally, we fund formulae to price volatility and variance

swap options by solving a system of stochastic diffe-

rential equations.
Some possible future directions in this field of re-
search are the following:

- Develop a method to estimate all the parameters of
this class of regime switching models, including the
hidden Markov chain (its transition matrix);

- Apply these pricing and hedging formulae to eco-
nomic and financial data. Indeed, regarding the exist-
ing literature, a good candidate could be the electri-
city spot price;

- Construct a method to evaluate quickly the solutions
of the system of stochastic differential Equations
(2.20) and (3.34). A system of spatial and time dis-
cretization grids could be considered and investi-
gated.
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