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ABSTRACT

Signaling games are characterized by asymmetric information where the more informed player has a choice about what
information to provide to its opponent. In this paper, decision trees are used to derive Nash equilibrium strategies for
signaling games. We address the situation where neither player has any pure strategies at Nash equilibrium, i.e. a purely
mixed strategy equilibrium. Additionally, we demonstrate that this approach can be used to determine whether certain
strategies are part of a Nash equilibrium containing dominated strategies. Analyzing signaling games using a deci-
sion-theoretic approach allows the analyst to avoid testing individual strategies for equilibrium conditions and ensures a

perfect Bayesian solution.
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1. Introduction

Signaling games are a class of games with incomplete
information. We use the tools of decision theory to
provide a process for analyzing signaling games and
divide the solution process into two phases: 1) strategy
selection-determining the strategies for each player that
are chosen at equilibrium; and 2) equilibrium calcula-
tion-finding the percentage of each time the players
should choose the selected strategies. We address this
second task by solving for a purely mixed strategy Nash
equilibrium. Additionally, we suggest how the approach
used to solve for a purely mixed Nash equilibrium may
assist in the first task, that of identifying the strategies
that form an equilibrium solution.

1.1. Background

A basic signaling game has two players. Player 1 (the
“Sender”) has private information about her type, while
Player 2 (the “Receiver”) does not know the type of
Player 1. However, Player 2 knows the population
distribution of types of Player 1. Player 1 sends messages
that Player 2 receives. Player 2’s actions depend on his
beliefs about Player 1’s type. In a classic example of a
signaling game [1], education is a signal that can be
obtained by workers of both high and low skill-level.
Milgrom and Roberts [2] subsequently define a limit
pricing game where an incumbent firm may temporarily
charge lower prices to signal that the market is unpro-
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fitable. Descriptions of additional applications of signa-
ling games have been provided by Kreps and Sobel [3]
and Riley [4].

Previous research has been devoted to finding efficient
Nash equilibrium solution algorithms for extensive form
games. Von Stengel [S] summarizes much of the research
on equilibrium calculation in extensive-form games as
part of a text on algorithmic game theory [6]. While
much of this research has not exclusively focused on
signaling games, some of the algorithms can be used to
calculate Nash equilibria in signaling games. For
example, the Gambit software package developed by
McKelvey et al. [7] can be used to solve signaling games.
However, the developers state on the Gambit website that
it is “...quite easy to write down games which will take
Gambit an unacceptably long amount time to (solve).”
This has been our experience in using this software to
calculate Nash equilibria for signaling games. Thus, we
feel there is a need to develop algorithms with heuristic
approaches for determining Nash equilibria in signaling
games, and this is the focus of our paper.

We suggest a method that combines modeling techni-
ques from the fields of decision analysis and game theory.
Previous research has combined game theory, decision
analysis, and/or statistical risk analysis to address
situations where the decision maker has an adaptive
adversary, such as those in counterterrorism decisions.
We mention some examples here. Rios Insua et al. [8]
introduce a Bayesian approach to adversarial risk
analysis where two or more opponents make decisions
with uncertain outcomes. Decision trees and influence
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diagrams are used to simultaneously model the decision-
making of each player. Parnell et al. [9] use decision tree
and influence diagram models to illustrate a defender-
attacker-defender problem where the United States
selects actions both prior to and after a bioterrorism
attack. Paté-Cornell and Guikema [10] use an influence
diagram for the attacker’s decision to provide input to an
influence diagram model for the defender in a counter-
terrorism measures selection problem.

The three articles cited above are similar to our
method in that they use decision-theoretic models to
examine a strategic problem from the perspective of each
opponent. Our research differs in that we seek a Nash
equilibrium solution (as opposed to a utility maximizing
solution) and limit our analysis to problems that can be
framed as a signaling game. Our primary objective is to
enhance the methodology available for solving signaling
games. We are optimistic that achievement of this
objective will allow signaling game methodology to be
applied to important decision problems that involve
strategic interaction. We primarily address situations
where a purely mixed Nash equilibrium exists in signa-
ling games. Toward the end of the paper, we examine
how our method can be extended to games with other
types of equilibria.

Most game theory textbooks classify the equilibria for
signaling games into three categories-separating on the
message, pooling on the message, and semi-separating
equilibria where some types of players select mixed
strategies [11, pp. 326-328]. The typical analytical
approach to solve for these equilibria is to assume that
the equilibrium exists and then test whether either player
has an incentive to deviate from the strategy or not. This
process forces the game theorist to test each possible
strategy pair for each of the three types of possible
equilibria. In other words, the strategy selection task is
by-passed and the equilibrium calculation task is sim-
plified by testing only equilibria for which the mathe-
matical conditions can be easily identified. In games with
more than two types of players sending messages and/or
more than two possible messages this approach can be
tedious, time consuming and prone to errors.

1.2. Decision-Theoretic Approach

We suggest that a decision theoretic approach may pro-
vide a standardized process for analyzing signaling
games that does not involve testing individual strategies
for equilibrium qualities. Our approach can simplify both
the strategy selection and equilibrium calculation tasks
required to solve signaling games. This approach to
solving signaling games uses the concept of Nash
equilibrium. Thus, in the mixed-strategy equilibrium,
each player acts in a way that makes other players
indifferent between choosing among different actions.
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Thus conceptually, our approach is not that different
from the usual PBE (Perfect Bayesian Equilibrium)
approach to solving signaling games [12]. However, the
actual solution process for PBE involves testing each
possible strategy for “beliefs that are consistent with
strategies, which are optimal given the beliefs” [11, p.
326]. This circularity in the solution process precludes
the possibility of using backward induction as a way of
solving signaling games. However, in our approach we
do use backward induction.

This paper uses a decision tree approach to model the
two-player, n-type symmetric signaling game. The use of
decision trees for representing problems of strategic
interaction was introduced by van Binsbergen and Marx
[13]. In their model, a decision tree is constructed for
each player. A player’s own choices are modeled with
decision nodes and the opponent’s strategies are shown
as chance variables.

Cobb and Basuchoudhary [14] modified the decision
tree approach by modeling the choices of both players in
each tree with chance nodes and using the probabilities in
the trees to represent the strategies. This allowed use of
the decision tree approach to solve the two-type signaling
game; however, this prior research only discussed the
determination of pooling, separating, and semi-separating
equilibria. This paper extends the previous research by
both addressing signaling games with more than two
types of Senders and by finding a purely mixed Nash
equilibrium (the equilibrium calculation task), which is
one where neither player has any pure strategies.

We employ a decision tree representation of the
signaling game to determine Nash equilibrium strategies
for several reasons. First, the equations capturing the
Nash equilibrium strategies are actually calculated while
solving the decision tree, as opposed to being abstractly
determined by analyzing the game tree. This is par-
ticularly advantageous in the signaling game because
Bayes’ rule is used routinely at the time the decision tree
is constructed. Second, the Nash equilibrium conditions
are intuitively apparent through inspection of the de-
cision tree. Additionally, the decision tree representa-
tion is more easily expanded as the number of Sender
types increases than a corresponding game tree repre-
sentation.

1.3. Outline

After first introducing signaling games and notation used
in the paper, we solve for Nash equilibrium strategies in
a two-type signaling game. The purpose of this section is
to illustrate how decision trees are constructed for
signaling games. Next, we give general derivations of
Nash equilibrium strategies in the n-type signaling game
where both players select purely mixed strategies
at Nash equilibrium. In general, for a strategy vector
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chosen by the Sender to be part of a purely mixed Nash
equilibrium, the Receiver observing each possible mes-
sage must be indifferent between all of its subsequent
actions after assigning any dominated strategies for the
Sender a value of zero. Similarly, for a strategy vector
chosen by the Receiver to be part of a purely mixed Nash
equilibrium, each type of Sender must be indifferent
between transmitting each of its possible messages after
assigning any dominated strategies for the Receiver a
value of zero.

Later in the paper, we will discuss how to apply
decision trees to signaling games where the players do
not necessarily select purely mixed strategies at Nash
equilibrium, i.e. we use decision trees to address the
strategy selection task. In the final section, we discuss
our results and describe the development of a com-
prehensive approach to determining all types of equi-
libria in signaling games as a direction for future re-
search.

2. Preliminaries

This section outlines notation and definitions that will be
used throughout the paper.

In the n -type signaling game, the Sender has n
possible types, t,---,t; and can choose one of n
possible messages, m;,---,m,, from a discrete strategy
set. The Receiver responds with one of n possible
actions, @&,,---,a,, that it chooses from its discrete
strategy set once it observes the Sender’s message.
Descriptions and definitions of the parameters in the
n -type signaling game are shown below.

Parameter Description
Probability the sender is type i
P (t for i=1--,n)
m; t, Sender’s strategy
(% of time t, i=1,---,n, plays
message M, for j=1,--,n)
Receiver’s strategy after observing message
% m;, j=L--n
(% of time receiver takes action a,
for k=1,---,n)
Payoff to the Receiver observing
Vi message M, and taking action a,
when the Sender is t;
Payoff'to the t, Sender playing
w,

message m i

when the Receiver takes action a,
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Let us summarize the strategies played by the Sender
and the Receiver, respectively, in vector form as

T
mz[mn my - m m, - mnn]

nl

and

a:[all a, -, a4 - ann]T'

Note that m is indexed differently than a. The first
part of the index on m; refers to the Sender type and
the second part refers to the message transmitted by the
Sender. The first number in the index on a; refers to
the message of the Sender, whereas the second stands for
the action of the Receiver. This ordering is consistent
with the order in which the nodes appear in the decision
trees presented throughout the remainder of the paper.

The strategy m; for the Sender can be interpreted as
the conditional probability P(m;[t) that the t
Sender will transmit message m,;. Analogously, the
strategy a; for the Receiver can be interpreted as the
conditional probability P(ak [ m; )

We use a decision tree approach to identify Nash
equilibrium strategies in signaling games. We first
consider the case where neither player has any dominated
strategies at Nash equilibrium and address the equili-
brium calculation task. In this situation, the payoffs are
structured so that there is an equilibrium where each type
of Sender plays a mixture of all of its possible messages,
so each Sender strategy satisfies 0<m; <1 at Nash
equilibrium. Correspondingly, the payoffs are also
structured so that the Receiver plays a mixture of all its
possible strategies after observing each message, which
requires each Receiver strategy to satisfy 0<ay <1.

By inspecting the decision tree models, we are able to
intuitively observe the conditions that must exist for a
solution to be a Nash equilibrium. The decision tree
provides for easy calculation of the expected values for
each player, which are ultimately used to derive the
mathematical conditions necessary for a Nash equili-
brium in purely mixed strategies.

3. Signaling Game Example

This section analyzes a two-type signaling game. For
now, we assume nature’s selection of each Sender type is
equally likely, i.e. p,=p,=0.5. The Sender will
choose one of two messages-Left or Right. The selection
of the Left strategy by the t, Sender is the strategy m,,,
whereas the choice of Left for the t, Sender is m,,.
The alternate strategies (Right) are denoted by m,, and
m,, for t, and t,,respectively, and these probabilities
satisfy m, =1-m,, and m,, =1-m,,.

Once the Receiver observes the signal, it decides
whether or not to move Up or Down and this threat
represents its strategy. If it observes the Left message, its

TEL



B.R.COBB ET AL. 55

Up strategy is denoted by a,,. If it observes Right, its
Up strategy is denoted by a,,. A Down strategy by the
Receiver is denoted by either a,, or a,,, depending on
the type of signal observed.

The payoffs for the Sender and Receiver are shown in
Table 1. As an example, if the Receiver moves Up
against a t; Sender, both players could suffer
significant losses, thus v;;; =-8 and w,;, =-3. The
Sender ends up with a worse outcome in this scenario by
selecting Right, so w,,, =—4.

3.1. Receiver’s Nash Equilibrium Strategies

The decision tree for the Sender in this game is shown in
the left panel of Figure 1. The model shows that nature
chooses the Sender’s type. After learning its type, the
Sender chooses its message. Whereas the “Type” node is
a chance node, the “Signal” nodes are random strategy
nodes as defined by Cobb and Basuchoudhary [14], as
the probabilities at these nodes represent Sender strate-
gies. These nodes are shaded to distinguish them from
typical chance nodes. After its strategy is chosen, the
Sender’s payoff in the game is determined by the action
chosen by the Receiver.

To find its Nash equilibrium strategies, the Receiver
rolls back the Sender’s decision tree one level as shown
in the left panel of Figure 2. Since all nodes in the tree
are chance nodes, the roll-back procedure involves
calculating expected values. For example, the t, Sender
observing m, calculates its expected value as
-3-a,+2-a, at the chance node representing the
Receiver action at the top of its tree in Figure 1. This
expected value is placed in the rolled back decision tree
in Figure 2 as the payoff on the branch representing the
t, Sender and the m, observation. Other expected
values are calculated similarly during the roll-back
process.

Two conditions must be met by the strategies &,
a,, a,, and a,, established at Nash equilibrium by
the Receiver:

1) A t, Sender must be indifferent among all possible
strategy assignments m,;, and m,.

2) A t, Sender must be indifferent among all possible
strategy assignments m,, and m,,.

These conditions are met when the expected values at
the end of either branch at the two Signal nodes in the
decision tree in the left panel of Figure 2 are equal, or

Table 1. The payoffs to each player in the signaling game.

Type 1 Sender (t,)
with probability p, =0.5

Type 2 Sender (t,)
with probability p, =0.5

Left Right Left Right
Receiver m, m, Receiver m, m,
Up (a) -8, -3 0, —4 Up (a) 1, -5 -1, -5
Down (a,) -2, 2 -1, 1 Down (a,) -2, 2 1,0
p mn/(mitma))
my an p; .
a
: Y mo/(myy+mz)
- 0.5m 1 +0.5my; . h
[ 05 . mn, Action
| 4 Signal p | my/(my+my,)
[ ———
apn -2
“ Type my /[(myi+my1)
ny & -
Sender ‘ Type ‘ Receiver Signal
a =5
m i Action p myp/(myytmy)
— g P2 Ta2)
an @1 0
a }— a T
’ 0.5 2 : ype my/(miy+n,)
t . Signal p 0.5m,+0.5my, Acti f -1
a 2 ction e mp (Mg tmay)
@ —= L] 1
1 M .
my Action mao/(matman)
o L2 1
20

Figure 1. Decision trees for the general two-type signaling game.
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a
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Figure 2. Decision trees rolled back one level.

when
-3a,, +2a,, =—4a, +4a,,
and
-5a,, +2a, =-5a,, .

The solutions must also meet the conditions
a,+a,=1 and a, +a, =1. The solution to this
system of four equations in four unknowns is a;, =0.5,
a, =05, a,=03,and a,,=0.7.

The equilibrium calculation task is easily accomp-
lished by solving the decision tree, because the expre-
ssions required to solve for a,, a;,, a&,,and a, are
precisely the expected values calculated during rollback.

The strategies a;,, a,, @, , and a,, determined
using this method are only guaranteed to make the
Sender indifferent between any assignment of its stra-
tegies if none of its pure strategies is dominant. However,
if a dominant strategy exists in the game, the decision
tree solution can assist in the strategy selection task
described in the introduction. For example, suppose the
Sender’s payoffs in the example are changed so that
W,,, ==5. The solution process outlined previously
yields a;, =1.2. Since this not a valid probability, a
purely mixed strategy equilibrium does not exist and the
Sender must have at least one pure strategy at equi-
librium.

Observe from the tree in the left panel of Figure 1
(with w,, =2 replaced by w,, =-5) that t, should
never move Left, so m,, =1. Note from the Receiver’s
tree in Figure 2 that with m,, =1, when the Receiver
observes m, it will never move Up (a,, =1) because
1-m, >—1. The Receiver’s Nash equilibrium condi-
tions are further reduced to -—3a,+2a,=1 and
a,; +a,, =1. The solution (a, =02 and a, =0.8) is
given by Proposition 1 in Cobb and Basuchoudhary [14,
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p. 252].

3.2. Sender’s Nash Equilibrium Strategies

The decision tree for the Receiver in this game is shown
in the right panel of Figure 1. The Receiver does not
directly learn the Sender’s type, but does observe
whether it chooses Left or Right. Once it observes this
message, it decides whether to move Up or Down. The
“Action” nodes are shaded to indicate these are random
strategy nodes (as opposed to typical chance nodes). The
payoff to the Receiver in the game is then determined by
the Sender’s actual type.

The marginal probabilities for the Sender’s message
type are calculated as

P(m;)= P(mj mtl)+ P(mj mtz)
=P(m; [t,)P(t,)+P(m; |t,)P(t,)
=0.5m;; +0.5m,;

for j=1,2. The conditional probabilities for the Sen-
der’s type given the observed message in this model are
determined using Bayes’ rule as

ofy Im,) - LT 0IPC)

P(m;)
0.5m,; o my

0.5m; +0.5m,;  my;+m,

with P(t, |m;)=1-P(t [m;).

To find its Nash equilibrium strategies, the Sender
rolls back the Receiver’s decision tree one level as shown
in the right panel of Figure 2. For example, the Receiver
observing m, and taking action @, calculates its ex-
pected value as
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_8'm11/(m11 +m21)+ m21/(m11 +m21)
:(_Smll +m21)/(m11 +mzl)

at the chance node representing the Sender type at the top
of its tree in Figure 1. This expected value is placed in
the rolled back decision tree in Figure 2 as the payoff on
the branch representing the Receiver observing m, and
taking action a, .

Two conditions must be met by the strategies m,,,
m,, m,,and m,, established at Nash equilibrium by
the Sender:

1) If the Receiver observes m,, it must be indifferent
between the strategies a,, and a,,.

2) If the Receiver observes m,, it must be indifferent
between the strategies a,, and a,, .

These conditions are met when the expected values at
the end of either branch at the two Action nodes in the
decision tree in the right panel of Figure 2 are equal, or
when

—8m,, +m,, ==2(m, +m,,)

and
My, =—M, +M,,.

The solutions must also meet the conditions
m,+m, =1 and m,, +m,, =1. Solving this system of
four equations in four unknowns gives m;, =1/3,
m,=2/3, m;, =2/3,and m,, =1/3.

The strategies m;,, m;,, m, , and m;, determined
using the process outlined above are only guaranteed to

my
mj ()

L 0]

Message || 12
m RO

. mln( )
my 2

make the Receiver indifferent between any assignment of
its strategies if none of its strategies are dominant. Recall
the example from the last section where the Sender’s
payoffs are such that it always plays m, =0 and
m,, =1 . The revised probabilities in the Receiver’s
decision tree will indicate that P(t,|m )=0. We also
established that in this scenario the Receiver observing
m, should always play a,,=0 and a, =1. By
inserting the pure strategies that will always be played by
both the Sender and Receiver in the decision trees and
rolling back the trees, the Nash equilibrium strategies for
a semi-separating equilibrium can be determined. The
solution for the Receiver observing m, is given by
Proposition 2 in Cobb and Basuchoudhary [14, p. 252].

In this next section, decision trees and the expected
values obtained from the solution process are used to
obtain a pure mixed strategy Nash equilibrium for the
n -type signaling game.

4. General Signaling Game

In this section, we discuss the general n -type signaling
game. Decision trees similar to those used in the n=2
case will be useful in demonstrating the conditions that
are required to establish a Nash equilibrium.

4.1. Analysis of Sender’s Decision Tree

Figure 3 shows a portion of the decision tree for the
Sender in this game. The model is expanded beyond the

4 o

Action [~ a2
2

| I

[ Qin
W2ln

n

(203}
Waoi

Sender )23
5

t
L |

PN Message m
1Y ;) r72< )
“ m .‘."

Action 2 | an
_2 Wa22

@ (260
I W

ai | dni
Wonl

Moy Action [ Q,;p
| 92 | Wi

| al?ﬂ

Gn W2nn

Figure 3. Sender’s decision tree in the general signaling game.
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“Message” branch for the t, Sender. This expansion
shows that the t, Sender chooses from among n
possible messages. Once it selects a message, it will
which of the Receiver’s n possible actions has been
taken. An expansion of the decision tree for the other
Sender types would appear similarly.

Rolling back the section of the decision tree in Figure
3 for the t, Sender results in the expected values

BV, =, W, +a,W, , +---+a;, Wy,

for j=1,---,n. A Nash equilibrium in this game must
meet the n—1 separate conditions

EV,; —EV,, =0,

1
EVS —EVS =0,--,EVS | —EVS =0. M

More generally, the Receiver’s strategies at Nash
equilibrium must obey the conditions

EVS —EVS =0,
EVS —EVS =0,---,EV;

i,n—1

2
—EVS =0 @

for i=1,2,---,n.

To solve for the mixed strategy Nash equilibrium
strategies for the Receiver, we construct the n’xn’
matrix W as

W, 0
0O W, - 0

W=l S
0O 0 ... W

n

where each W; is itself an nxn matrix and 0 is the
nxn zero matrix. The i, kth entry of block W; is
simply W, . The vector EV® is n’xl1,with

EVS =[EVS EVS EVS EVS - EVS].

Note that Wa=EV?® .

We can encode the conditions specified in (1) and (2)
in the (n2 —n)x n* matrix

where | isthe nxn identity matrix.

To satisfy a Nash equilibrium, we need NWa =
N(EV)=0 This gives us n’—n equations for our
n® unknowns. We have yet to use the fact that the sum
of the a; should be one (when j is fixed). The nxn’
matrix P takes this into account:

Copyright © 2013 SciRes.

ET AL.

Ixn Ixn o 1xn
P = Ol'xn lf(n
01><n

0

Ixn

NW
Thus, we want Pa=1. Let G :[ P } and define

1

nx1

0 2
b :[ (" n)xi . We want to solve for a in the equation

Ga=h.

Thus, the Nash equilibrium strategies for the Receiver
are determined as

a*'=G™'b

provided these entries are all non-negative. When the
Receiver plays the strategies in a*, the Sender cannot
unilaterally change its strategy to earn a higher expected
payoff.

The prior discussion describes how the decision tree
formulation is used for equilibrium calculation in the
case of a purely mixed strategy equilibrium. To aid in
strategy selection, the vector a can be examined to
determine whether there are any dominated strategies at
equilibrium. This is indicated when a contains entries
that are not strictly between 0 and 1, or when G is not
invertible. In the n-type signaling game, if a Sender of
any type has any dominated strategies, these should be
assigned zero probabilities prior to finding the remaining
strategies in a that comprise the Receiver’s strategies
in a Nash equilibrium. Since the Receiver can assume
that the Sender will never play dominated strategies, it
can adjust its strategies accordingly and may find
dominated strategies of its own. The decision tree metho-
dology can still be useful in determining Nash equi-
librium strategies for the Receiver. A well-defined algo-
rithm for finding Nash equilibria where each player
chooses some pure strategies and mixes over the re-
maining strategies is beyond the scope of this paper and
requires future research. An example of such a solution
in the context of a specific example will be provided later
in this section.

4.2. Analysis of Receiver’s Decision Tree

The Receiver’s decision tree in the general n -type
signaling game is partially shown in Figure 4. This
diagram shows the detail in the tree beyond the “Action”
node when the Receiver observes message m,. The
detail shows that the Receiver will first learn the message
selected from the Sender’s n possible choices. Once it
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9

Figure 4. Receiver’s decision tree in the general signaling game.

observes the message, it chooses an action from its n
available possibilities. Only after the Receiver selects an
action does it finally learn which of the n possible
Sender types it opposes in the game.

In this section, P is an nxn diagonal matrix that
holds the probabilities p, on the diagonal, or

P=diag([p, P, p,]). Let D be the n’xn’
diagonal matrix of n copies of P, or

D =diag([P P - P]).

The marginal probabilities for the message observed
by the Receiver are calculated as

q; = P(mj):izlj;P(mj |ti)P(ti):iZ,::mij P,

The conditional probabilities for Sender type given the
message observed by the Receiver are calculated as

P(mj mti) Uy
) a

r=P(tIm;)=

where 1; is the conditional probability the Sender is t;
given message m; is observed. Let

nl nn

rz[rll LSRR YR (P ]T~

Note that r is indexed in the same manner as m.

Copyright © 2013 SciRes.

One can derive r from m by pre-multiplying m by
the above matrix D and by the matrix Q defined as
the n’xn’ diagonal matrix whose first n diagonal
entries are 1/q, , whose second n diagonal entries are
1/9, , etc. One can view Q as being block diagonal,

Q=diag([Q Q Q,]) where each Q; is nxn

diagonal, with the diagonal containing only 1/ q;. We
have that r =QDm . However, in calculating the Nash
equilibrium strategies, we will not actually need the
d;’s and hence we will not need Q. The matrix Q
will be used to calculate the expected value in the game
for the Receiver.

V is n*xn’ and contains the Receiver’s payoffs. It
is analogous to the matrix W from previous analysis of
the Sender’s tree, but is defined in a different manner. It
can be viewed as a diagonal block matrix,

V. 0 - 0

0V, - 0
V=l L)

0 0 ..V

n

where each V; is nxn, and the k,i" entry of V; is
Vi -
Let EVR® denote the n?x1 vector of expected
values of the outcomes for the Receiver, or
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EVE=[EV} EV] - EVS EVS VR

Note the indexing of EV® differs from EV°. The
components of EV® are derived by rolling back the
decision tree in Figure 4. For instance, rolling back the
tree for the Receiver observing m, results in the
following expected values:

R _ -1
EV21 =0, (m12 PiVigp + My, PoVoyy + o0+ Myy PV, )

R -1
EV22 =0, (mlz PiVigy + My, PyVoyy +oo0+ My, annzz)

R -1
EVZn =0, (m12 PiVian + My PVopy +o0-+ My, PV, )

In general, we have Vr = EV® . At Nash equilibrium,
the Receiver observing the message m, must be
indifferent between each of its actions, so that

EV} =EV) =--=EV,}.
The matrix N will be (nz—n)xn2 with
A0 -0
No[ RO
00 - A

with A an (n-1)xn “upper bidiagonal” matrix, with
1s on the diagonal and —1s on the upper bidiagonal. For
instance, inthe n=4 case, we have

1 -1 0 O
A=0 1 -1 0
0 0 1 -1

We have NVr=NEVR® =0.

Replacing r with QDm gives NVQDm =0. Be-
cause of the block diagonal structure of V and Q, we
have that VQ =QV . Likewise, NQ =Q"N , where
Q" is (n2 - n)><(n2 - n) diagonal, with n—1 copies

of each l/qj on the diagonal instead of n copies.
Thus

NVQDm = NQVDm = Q*NVDm =0

Since Q" is invertible (as long as no q ; =0), this
implies that NVDm =0, and hence we can ignore Q
and directly solve for m.

We currently have n® —n equations describing our
n’ unknowns. Our final n equations come from the

fact that the m; form a distribution, hence Z?:lmij =1

for i=1,---,n. Because of the way that we have indexed
the matrix m, this amounts to summing every n"
entry of m and getting 1. This can again be done
conveniently through matrix multiplication.

Let S be the nxn® matrix which is the concatenation
of n copies of the nxn identity matrix | . That is,

Copyright © 2013 SciRes.

S=[I 1 I]. Then Sm=1,,.

NVD .
Let G= s | We want to solve for m in the

equation
Gm=h,

where b is defined as in the previous section. Thus, the
Nash equilibrium strategies for the Sender are deter-
mined as

m* =G'b.

We can show an example of the conditions under
which G will not be invertible. If for two values of i,
say i, and i,, we have that v, =V, , ==V, and
Vi,ji =Vi,jo ="+ =V, j,, then G will have two identical
columns and hence will not be invertible.

In the N -type signaling game, if a Receiver observing
any message has any dominated strategies, these should
be assigned as zero in any Nash equilibrium solution.
This may occur simply because of the structure of the
Receiver’s payoffs, or perhaps because the Receiver can
assume that at least one type of Sender has dominated
strategies that will never be played at Nash equilibrium.
One such case mentioned earlier occurs when the
Receiver has multiple actions that lead to exactly the
same payoffs (this causes G to be invertible). All but
one of such strategies can be considered dominated and
assigned zero probabilities. As stated in the previous
section, some additional discussion will be provided later
in the paper regarding the use of decision trees to identify
such equilibria, and further study of methods for using
decision trees to solve for such equilibria will be the
subject of ongoing research.

The same conclusions to those in Section 3 for the
two-type signaling game about the solutions a* and
m* outlined above can be made for the n-type signa-
ling game. The solutions either compute a purely mixed
Nash equilibrium or indicate that a Nash equilibrium
containing at least some pure strategies exists.

5. Examples

In this section, the process from Section 4 is used to find
Nash equilibrium strategies in the signaling game from
Section 3 with n=2.

5.1. Determining the Receiver’s Nash
Equilibrium Strategies

In this problem, let a=[a, a, &, a,] . Substi-
tuting the values from Table 1 gives

-3 2 0 0
-5 2 0 0
W= .
0 0 4 1
0 0 -5 0
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Recall that Wa = EV. At Nash equilibrium
EV,,—EV,, =0 and EV,, -EV,, =0. This idea is enco-
ded in the matrix N .Combining N and W gives

-3 2 4 -1
NW = ) 3)
-5 25 0
Therefore,
NWa = N(Wa): N(EV)
_ EV,, —-EV, @)
EV, —EV,,

_ -3a,, +2a, +4a,, —a,, _ 0
—5a,, +2a, +5a,, 0]
Up to this point, we have two equations for four

unknowns. The sum of the a; should be one (when j
is fixed). This is ensured by the matrix P . Thus, we

have that
a, +a 1
Pa{ ¥ 12:|:|:i|. ®)
a, +ay, 1
Combine Equations (4) and (5) together. The matrices
NW and P areboth 2x4,and hence the matrix

{NW} |
G= is4x4
P

Ga=[0 0 1 1]'.

and

The Nash equilibrium strategies are

a"=[0.5 05 03 07].

5.2. Determining the Sender’s Nash Equilibrium
Strategies

This section illustrates the determination of the Sender’s
solution in the example from Section 3.
Let the Sender’s strategy vector be denoted by

m=[m, m, m, m,] and the vector of revised
probabilities P(t; |m;) be denoted by

r=[r, n, f, 1,]'. Thematrix P holds the

probabilities p, on the diagonal. The matrix D is
4x4 block diagonal, with two copies of P on the
diagonal.

The matrix V contains the payoffs v, and is also

block diagonal, V =diag([V, V,]), or

-8 1 0 0
-2 -2 0 0

V= .
0 0 0 -1
0 0 -1 1
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The k,i™ entry of V, is v . Thus, Vr=EVR,
where EVR=[EV} EVS EVS EVE].

to multiply EV® by a matrix N that ensures we have
a Nash equilibrium. This matrix is the same as N from
the previous section.

The expression NVDm =0 gives two equations for
our four unknowns. Two more equations are required
because m represents two probability distributions
where m; +m, =1.Let S=[l, I,]. The matrix S

We want

is formed such that Sm=1, . This gives two more
equations that must be satisfied at Nash equilibrium.
We form G as before, concatenating our matrices.

NVD
Set G:{ 5 }.Thus

Gm=[0 0 1 0].

Forming G as directed gives

-3 15 0 O

0 0 05 -1
G= .

1 0 1 0

0o 1 0 1

Finally, with G invertible, m can easily be found.
With this, the ¢, ’s can be easily determined as can r
if needed.

The Nash equilibrium strategies are

m*=[1/3 2/3 2/3 1/3]".

5.3. Nash Equilibria without Purely Mixed
Strategies

When applied to an arbitrary set of Sender and Receiver
payoffs, the solutions a* and m" can be classified
into two mutually exclusive categories:

1) All elements of a* and m" are valid, non-zero
probabilities (requiring that the matrices G wused to
determine the solution are both invertible), i.e. the
solution is a purely mixed Nash equilibrium.

2) Some or all elements of a* and m* are not valid
non-zero probabilities, or one or both of the vectors of
solutions are not defined because one of the G matrices
is not invertible.

All signaling games have either a pooling, separating,
semi-separating or purely mixed Nash equilibrium. These
equilibrium types are mutually exclusive. Solutions a*
and m" from the first category above are identically
associated with games with purely mixed strategies.
Therefore, solutions from the second category above are
identified with pooling, separating, or semi-separating
equilibria. Thus, we can be certain that our solution
technique will either identify a purely mixed strategy or
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verify the existence of a Nash equilibrium containing at
least some pure strategies (the strategy selection task). In
terms of the equilibrium calculation task, purely mixed
strategy equilibria are the primary focus of this paper.
We give an example in this section that uses decision
trees to facilitate the determination of an equilibrium in
the second category.

The payoffs and prior probabilities for Sender type in
the game are listed in Table 2. The Sender may be one of
three types and the Receiver has three possible actions.
The first number in each pair is the payoff to the
Receiver and the second number is the payoff to the
Sender.

In this problem, calculating a* or m" in the stra-
tegy selection phase reveals that a purely mixed Nash
equilibrium does not exist and dominated strategies must
be identified to determine the Nash equilibrium. The
procedure from Section 4 gives the solutions a,, =3.237,
a, =-1.156, and a,; =-1.082 as the strategies for the
Receiver observing m, . Clearly, these are not pro-
babilities and this result provides an indication that the
Sender has a dominated strategy.

The part of the Sender’s decision tree related to the
Sender is shown in the left part of Figure 5 and rolled
back in the right part of Figure 5. Again, the roll-back
procedure involves calculating expected values. For
instance, the t, Sender selecting m, obtains expected
value -l-a,-1-a,-2-a,=-a,-a,-2a,. From
these diagrams, we can clearly observe that the Sender
will always play m;; =0, as this strategy is dominated

by both m,, and m,,. Specifically,

min Q) —8y +ay 2 max —a,-a,- 2a13
(221,322,893 )€[0.]] (ar1,812,213)€[0.1]

and

min a;, 2 max —a,—q;, _2a13 :

(a32)<[0,1] (ar1.a12,a53)€[0,1]

Once the Receiver accounts for the fact that m;, =0,
it will adjust its payoffs and ascertain (through similar
analysis as that performed above for the Sender) that it
should always play a, =0 because &, is dominated
by &, and a;.

The method presented in Section 4 can be adapted to
find the remaining equilibrium strategies in this game.
Since m,, =0, the expected value EV,] does not have
to be considered in the Nash equilibrium conditions
when the Receiver determines its optimal strategies using
the Sender’s decision tree. Since the first row of the
matrix NW in (3) captures the condition EV,} =EV,;,
this row can be removed from the matrix. Since a, =0
the second column of NW can be removed. The matrix is

1 2 1 -1 -2 0 0 O

-05 0 05 0 1 O O O

NW= 0 0 1 -1 1 0 -1 0
o o -1 1 2 -1 =2 1

-1 06 -1 -1

0 0 -05 0

The Nash equilibrium strategies for the Receiver (with
a, =0 replaced) are

a' =[0.926 0 0.074 0.156 0459 0385 0914 0.082 0.004]".

To determine its equilibrium strategies, the Sender
must adjust the Receiver’s decision tree for the conditions
m, =0 and a, =0. After adapting the process in Sec-

tion 4 for these dominated strategies, solving

0
Gm :{ 5”} gives

3x1

m'=[0 0.831 0333 0990 0.110 0550 0.010 0.059 0.117]".

The strategy m;; =0 has been re-added to the vector.

The decision tree for the Receiver observing m, is
shown in Figure 6 with the optimal strategies and
resulting conditional probabilities for both players
inserted. The Sender’s strategies make the Receiver
indifferent between any possible assignment @, and a,,
(although it has selected a;, =0.926 and a, =0.074
at equilibrium). Since m,,, the Receiver can never gain a
higher payoff by assigning any positive probability a,,,
so this was set to a,, =0 prior to determining the other
equilibrium strategies.

This example demonstrates that the decision trees are
still useful for identifying Nash equilibria that are not
purely mixed (the strategy selection task). The process

Copyright © 2013 SciRes.

for interpreting the results of Section 4 for an arbitrary
signaling game where a purely mixed Nash equilibrium
does not exist, then adapting the matrices representing
the Nash equilibrium conditions is not well-defined and
has only been demonstrated by example. Creating such
an algorithm requires further investigation, but the
decision tree approach appears to hold promise for
developing a heuristic approach to determining a Nash
equilibrium in signaling games.

6. Conclusions

The main contribution of this paper is to introduce a
standard approach to constructing and solving the equa-
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Table 2. Payoffs to each player in the example.

Sender t, Sender t, Sender t,
P(t)=p =04 P(t,)=p, =04 P(t)=p, =02
m, m, m, m, m, m, m, m, m,
a -2,-1 -11,1 2,0 a, -2,1 -1,-1 -1,1 a 3,-0.5 2,-05  —2,-0.6
a, 0.1,-1 -10, -1 -1,1 a, -2, 0 0,1 2,2 a, -1,-1 -2, 0 -1,1
a, -1,-2 -11,1 -1,0 a, -1,2 4,2 2,-1 a, -2, 0 0,-1 -3,1
i

apn

-1
P ais
3
2

mi

aj _0’21_ 2

1 —aj —dp—4dp3

Action| a
2

1

ass

0
-
g Type - 0.833
—1.167 L= -2
. 0.167
‘ -3
oL
Action ! 0.1
0
L@

Figure 6. Decision tree for the Receiver observing m;.
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tions required to determine a mixed strategy Nash equili-
brium in a signaling game. Some existing algorithms in
the literature can solve two-type signaling games very
fast. The problem is that once the game becomes even
slightly more complex, finding equilibrium becomes
increasingly difficult. This is acknowledged, for instance,
by the developers of the Gambit software package [7].

In some sense, the purely mixed strategy is the most
general solution for the n-type signaling game. Naturally,
many signaling games have payoffs structured so that
certain strategies for either player are dominated. In these
cases, the decision tree can still be used to identify the
Nash equilibrium conditions and solve for a mixed
equilibrium over the remaining strategies. The eventual
goal of future research is to provide new heuristic
approaches for solving signaling games that can be
derived from the solutions to the equations for the mixed
strategy Nash equilibrium. This potential was demon-
strated in Section 5.3 through an example where the
Sender has a dominated strategy.

Decision trees provide a convenient modeling tool to
facilitate the calculation of purely mixed Nash equilibria
in signaling games. This paper extends decision tree
results for the two-type signaling game presented by
Cobb and Basuchoudhary [14] by finding general results
for a purely mixed Nash equilibrium. Most game theory
textbooks limit the possible types of solutions to pooling,
separating, and semi-separating equilibria. The decision
tree allows an analyst to simply compute a purely mixed
Nash equilibrium, as opposed to testing a hypothesized
Nash equilibrium by abstractly examining the payoffs or
game tree for the problem.

The graphical representation of the decision tree
models used to determine the purely mixed strategy Nash
equilibria will clearly grow exponentially as the number
of Sender types expands in the symmetric signaling game.
However, the expected values required to solve such a
decision tree are easily defined in matrix form. In a sense,
we can dynamically construct nodes of interest in the
decision tree, calculate expected values, then find the
Nash equilibria using these expected values. This allows
the decision tree solution to be used to find the purely
mixed Nash equilibrium solution, even when the Sender
has many possible types.
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