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ABSTRACT 

Signaling games are characterized by asymmetric information where the more informed player has a choice about what 
information to provide to its opponent. In this paper, decision trees are used to derive Nash equilibrium strategies for 
signaling games. We address the situation where neither player has any pure strategies at Nash equilibrium, i.e. a purely 
mixed strategy equilibrium. Additionally, we demonstrate that this approach can be used to determine whether certain 
strategies are part of a Nash equilibrium containing dominated strategies. Analyzing signaling games using a deci-
sion-theoretic approach allows the analyst to avoid testing individual strategies for equilibrium conditions and ensures a 
perfect Bayesian solution. 
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1. Introduction 

Signaling games are a class of games with incomplete 
information. We use the tools of decision theory to 
provide a process for analyzing signaling games and 
divide the solution process into two phases: 1) strategy 
selection-determining the strategies for each player that 
are chosen at equilibrium; and 2) equilibrium calcula- 
tion-finding the percentage of each time the players 
should choose the selected strategies. We address this 
second task by solving for a purely mixed strategy Nash 
equilibrium. Additionally, we suggest how the approach 
used to solve for a purely mixed Nash equilibrium may 
assist in the first task, that of identifying the strategies 
that form an equilibrium solution. 

1.1. Background 

A basic signaling game has two players. Player 1 (the 
“Sender”) has private information about her type, while 
Player 2 (the “Receiver”) does not know the type of 
Player 1. However, Player 2 knows the population 
distribution of types of Player 1. Player 1 sends messages 
that Player 2 receives. Player 2’s actions depend on his 
beliefs about Player 1’s type. In a classic example of a 
signaling game [1], education is a signal that can be 
obtained by workers of both high and low skill-level. 
Milgrom and Roberts [2] subsequently define a limit 
pricing game where an incumbent firm may temporarily 
charge lower prices to signal that the market is unpro- 

fitable. Descriptions of additional applications of signa- 
ling games have been provided by Kreps and Sobel [3] 
and Riley [4]. 

Previous research has been devoted to finding efficient 
Nash equilibrium solution algorithms for extensive form 
games. Von Stengel [5] summarizes much of the research 
on equilibrium calculation in extensive-form games as 
part of a text on algorithmic game theory [6]. While 
much of this research has not exclusively focused on 
signaling games, some of the algorithms can be used to 
calculate Nash equilibria in signaling games. For 
example, the Gambit software package developed by 
McKelvey et al. [7] can be used to solve signaling games. 
However, the developers state on the Gambit website that 
it is “...quite easy to write down games which will take 
Gambit an unacceptably long amount time to (solve).” 
This has been our experience in using this software to 
calculate Nash equilibria for signaling games. Thus, we 
feel there is a need to develop algorithms with heuristic 
approaches for determining Nash equilibria in signaling 
games, and this is the focus of our paper. 

We suggest a method that combines modeling techni- 
ques from the fields of decision analysis and game theory. 
Previous research has combined game theory, decision 
analysis, and/or statistical risk analysis to address 
situations where the decision maker has an adaptive 
adversary, such as those in counterterrorism decisions. 
We mention some examples here. Rios Insua et al. [8] 
introduce a Bayesian approach to adversarial risk 
analysis where two or more opponents make decisions 
with uncertain outcomes. Decision trees and influence  *Corresponding author. 
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diagrams are used to simultaneously model the decision- 
making of each player. Parnell et al. [9] use decision tree 
and influence diagram models to illustrate a defender- 
attacker-defender problem where the United States 
selects actions both prior to and after a bioterrorism 
attack. Paté-Cornell and Guikema [10] use an influence 
diagram for the attacker’s decision to provide input to an 
influence diagram model for the defender in a counter- 
terrorism measures selection problem. 

The three articles cited above are similar to our 
method in that they use decision-theoretic models to 
examine a strategic problem from the perspective of each 
opponent. Our research differs in that we seek a Nash 
equilibrium solution (as opposed to a utility maximizing 
solution) and limit our analysis to problems that can be 
framed as a signaling game. Our primary objective is to 
enhance the methodology available for solving signaling 
games. We are optimistic that achievement of this 
objective will allow signaling game methodology to be 
applied to important decision problems that involve 
strategic interaction. We primarily address situations 
where a purely mixed Nash equilibrium exists in signa- 
ling games. Toward the end of the paper, we examine 
how our method can be extended to games with other 
types of equilibria. 

Most game theory textbooks classify the equilibria for 
signaling games into three categories-separating on the 
message, pooling on the message, and semi-separating 
equilibria where some types of players select mixed 
strategies [11, pp. 326-328]. The typical analytical 
approach to solve for these equilibria is to assume that 
the equilibrium exists and then test whether either player 
has an incentive to deviate from the strategy or not. This 
process forces the game theorist to test each possible 
strategy pair for each of the three types of possible 
equilibria. In other words, the strategy selection task is 
by-passed and the equilibrium calculation task is sim- 
plified by testing only equilibria for which the mathe- 
matical conditions can be easily identified. In games with 
more than two types of players sending messages and/or 
more than two possible messages this approach can be 
tedious, time consuming and prone to errors. 

1.2. Decision-Theoretic Approach 

We suggest that a decision theoretic approach may pro- 
vide a standardized process for analyzing signaling 
games that does not involve testing individual strategies 
for equilibrium qualities. Our approach can simplify both 
the strategy selection and equilibrium calculation tasks 
required to solve signaling games. This approach to 
solving signaling games uses the concept of Nash 
equilibrium. Thus, in the mixed-strategy equilibrium, 
each player acts in a way that makes other players 
indifferent between choosing among different actions. 

Thus conceptually, our approach is not that different 
from the usual PBE (Perfect Bayesian Equilibrium) 
approach to solving signaling games [12]. However, the 
actual solution process for PBE involves testing each 
possible strategy for “beliefs that are consistent with 
strategies, which are optimal given the beliefs” [11, p. 
326]. This circularity in the solution process precludes 
the possibility of using backward induction as a way of 
solving signaling games. However, in our approach we 
do use backward induction. 

This paper uses a decision tree approach to model the 
two-player, n-type symmetric signaling game. The use of 
decision trees for representing problems of strategic 
interaction was introduced by van Binsbergen and Marx 
[13]. In their model, a decision tree is constructed for 
each player. A player’s own choices are modeled with 
decision nodes and the opponent’s strategies are shown 
as chance variables. 

Cobb and Basuchoudhary [14] modified the decision 
tree approach by modeling the choices of both players in 
each tree with chance nodes and using the probabilities in 
the trees to represent the strategies. This allowed use of 
the decision tree approach to solve the two-type signaling 
game; however, this prior research only discussed the 
determination of pooling, separating, and semi-separating 
equilibria. This paper extends the previous research by 
both addressing signaling games with more than two 
types of Senders and by finding a purely mixed Nash 
equilibrium (the equilibrium calculation task), which is 
one where neither player has any pure strategies. 

We employ a decision tree representation of the 
signaling game to determine Nash equilibrium strategies 
for several reasons. First, the equations capturing the 
Nash equilibrium strategies are actually calculated while 
solving the decision tree, as opposed to being abstractly 
determined by analyzing the game tree. This is par- 
ticularly advantageous in the signaling game because 
Bayes’ rule is used routinely at the time the decision tree 
is constructed. Second, the Nash equilibrium conditions 
are intuitively apparent through inspection of the de- 
cision tree. Additionally, the decision tree representa- 
tion is more easily expanded as the number of Sender 
types increases than a corresponding game tree repre- 
sentation. 

1.3. Outline 

After first introducing signaling games and notation used 
in the paper, we solve for Nash equilibrium strategies in 
a two-type signaling game. The purpose of this section is 
to illustrate how decision trees are constructed for 
signaling games. Next, we give general derivations of 
Nash equilibrium strategies in the n-type signaling game 
where both players select purely mixed strategies  
at Nash equilibrium. In general, for a strategy vector 

Copyright © 2013 SciRes.                                                                                  TEL 



B. R. COBB  ET  AL. 54 

chosen by the Sender to be part of a purely mixed Nash 
equilibrium, the Receiver observing each possible mes- 
sage must be indifferent between all of its subsequent 
actions after assigning any dominated strategies for the 
Sender a value of zero. Similarly, for a strategy vector 
chosen by the Receiver to be part of a purely mixed Nash 
equilibrium, each type of Sender must be indifferent 
between transmitting each of its possible messages after 
assigning any dominated strategies for the Receiver a 
value of zero. 

Later in the paper, we will discuss how to apply 
decision trees to signaling games where the players do 
not necessarily select purely mixed strategies at Nash 
equilibrium, i.e. we use decision trees to address the 
strategy selection task. In the final section, we discuss 
our results and describe the development of a com- 
prehensive approach to determining all types of equi- 
libria in signaling games as a direction for future re- 
search.  

2. Preliminaries 

This section outlines notation and definitions that will be 
used throughout the paper. 

In the n -type signaling game, the Sender has n  
possible types, 1  and can choose one of n  
possible messages, 1 , from a discrete strategy 
set. The Receiver responds with one of n  possible 
actions, 1 , that it chooses from its discrete 
strategy set once it observes the Sender’s message. 
Descriptions and definitions of the parameters in the 

-type signaling game are shown below. 

, , nt 
m 

na

t
, , nm

, ,a 

n
 

Parameter Description 

ip  
Probability the sender is type i  

(  for ) 

Let us summarize the strategies played by the Sender 
and the Receiver, respectively, in vector form as  

 T11 21 1 12n nm m m m mm   n

n

 

and  

 T11 12 1 21 .n na a a a aa    

Note that is indexed differently than a . The first 
part of the index on  refers to the Sender type and 
the second part refers to the message transmitted by the 
Sender. The first number in the index on 

m  

ijm

jka  refers to 
the message of the Sender, whereas the second stands for 
the action of the Receiver. This ordering is consistent 
with the order in which the nodes appear in the decision 
trees presented throughout the remainder of the paper. 

The strategy  for the Sender can be interpreted as 
the conditional probability 

ijm
 | j iP m t  that the  

Sender will transmit message 
it

jm . Analogously, the 
strategy jka  for the Receiver can be interpreted as the 
conditional probability  |k jP a m . 

We use a decision tree approach to identify Nash 
equilibrium strategies in signaling games. We first 
consider the case where neither player has any dominated 
strategies at Nash equilibrium and address the equili- 
brium calculation task. In this situation, the payoffs are 
structured so that there is an equilibrium where each type 
of Sender plays a mixture of all of its possible messages, 
so each Sender strategy satisfies 0 1  at Nash 
equilibrium. Correspondingly, the payoffs are also 
structured so that the Receiver plays a mixture of all its 
possible strategies after observing each message, which 
requires each Receiver strategy to satisfy 0 1  . 

ijm 

a jk

By inspecting the decision tree models, we are able to 
intuitively observe the conditions that must exist for a 
solution to be a Nash equilibrium. The decision tree 
provides for easy calculation of the expected values for 
each player, which are ultimately used to derive the 
mathematical conditions necessary for a Nash equili- 
brium in purely mixed strategies. 

it 1, ,i n 

ijm  it  Sender’s strategy 

 
(% of time i , , plays  

message  for 

t n1, ,i  

j 1,m ,j n ) 

jka  
Receiver’s strategy after observing message 

, jm 1, ,j n   

 
(% of time receiver takes action   

for ) 
ka

1, ,k n 

ijkv  
Payoff to the Receiver observing  

message and taking action  jm  ka

 when the Sender is it  

ijkw  
Payoff to the  Sender playing  

message 

it

jm  

 when the Receiver takes action  ka

3. Signaling Game Example 

This section analyzes a two-type signaling game. For 
now, we assume nature’s selection of each Sender type is 
equally likely, i.e. 1 2 0.5p p  . The Sender will 
choose one of two messages-Left or Right. The selection 
of the Left strategy by the 1t  Sender is the strategy , 
whereas the choice of Left for the 2t  Sender is 21m . 
The alternate strategies (Right) are denoted by 12m  and 

22m  for 1t  and 2t , respectively, and these probabilities 
satisfy m

11m

12 111m    and 11m m  . 22 2

Once the Receiver observes the signal, it decides 
whether or not to move Up or Down and this threat 
represents its strategy. If it observes the Left message, its  
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r and Receiver are shown in 
T

Up strategy is denoted by 11a . If it observes Right, its To find its Nash equilibrium strategies, the Receiver 
rolls back the Sender’s decision tree one level as shown 
in the left panel of Figure 2. Since all nodes in the tree 
are chance nodes, the roll-back procedure involves 
calculating expected values. For example, the 1  Sender 
observing 1  calculates its expected value as 

11 12

t
m

2 a3 a  

t

  at the chance node representing the 
Receiver action at the top of its tree in Figure 1. This 
expected value is placed in the rolled back decision tree 
in Figure 2 as the payoff on the branch representing the 

1  Sender and the 1  observation. Other expected 
values are calculated similarly during the roll-back 
process. 

m

Up strategy is denoted by . A Down strategy by the 
Receiver is denoted by eithe 12a  or 22a , depending on 
the type of signal observed. 

The payoffs for the Sende

21a
r 

able 1. As an example, if the Receiver moves Up 
against a 1t  Sender, both players could suffer 
significant losses, thus 111 8v    and 111 3w   . The 
Sender ends u a worse  in this scenario by 
selecting Right, so 121 4w   . 

p with e

3.1. Receiver’s Nash Equilibrium Strategies 

n in 

outcom

The decision tree for the Sender in this game is show
Two conditions must be met by the strategies 11 , 

12 , 21 , and  established at Nash equilibrium by 
the Receiver: 

a
a a 22a

the left panel of Figure 1. The model shows that nature 
chooses the Sender’s type. After learning its type, the 
Sender chooses its message. Whereas the “Type” node is 
a chance node, the “Signal” nodes are random strategy 
nodes as defined by Cobb and Basuchoudhary [14], as 
the probabilities at these nodes represent Sender strate- 
gies. These nodes are shaded to distinguish them from 
typical chance nodes. After its strategy is chosen, the 
Sender’s payoff in the game is determined by the action 
chosen by the Receiver. 

1) A 1  Sender must be indifferent among all possible 
strategy assignments  and 2 . 

t

11 1

2) A t2 Sender must be indifferent among all possible 
strategy assignments  and 22 .  

m m

21

These conditions are met when the expected values at 
the end of either branch at the two Signal nodes in the 
decision tree in the left panel of Figure 2 are equal, or 

m m

 
Table 1. The payoffs to each player in the signaling game. 

T

wi
 

Type 2 Sender

wi  

ype 1 Sender  1t  

th probability 1 0.5p   

  2t  

th probability p2 0.5 

Right  L Right Left  eft  

Receiver Receiver 1m  2m  1m  2m  

Up  1a  8 , 3  0 , 4  Up  1a  1 , 5  1 , 5  

Down  2a  2 , 2  1 , 1  Down  2a  2 , 2  1 , 0  

 

 

Figure 1. Decision trees for the general two-type signaling game. 
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Figure 2. Decision trees rolled back one level. 
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11 12 215 2 5a a a     

The solutions m
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system of fo
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tions in four
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1 12 1a   and 21 22 1a a  . The solution to this 
ur equa  unknowns is 11 0.5a  , 

12 0.5a  , 21 0.3a  , and 22 0.7a  . 
equilibrium calcul  easily accomp

hed by solving the decision tree, because the expre- 
ssions required to solve for 11a , 12a , 21a , and 22a  are 
precisely the expected values cu d ring ro ck. 

The strategies 11a , 12a , 21a , and 22a  determined
 cal late  du llba

 
us u t

e from the tree in the left panel of Figure 1 
(w

ing this method are only aranteed o make the 
Sender indifferent between any assignment of its stra- 
tegies if none of its pure strategies is dominant. However, 
if a dominant strategy exists in the game, the decision 
tree solution can assist in the strategy selection task 
described in the introduction. For example, suppose the 
Sender’s payoffs in the example are changed so that 

212 5w   . The solution process outlined previously 
1.2 . Since this not a valid probability, a 

purely mixed strategy equilibrium does not exist and the 
Sender must have at least one pure strategy at equi- 
librium. 

Observ

 g  

yields 11a

ith 212 2w   replaced by 212 5w   ) that 2t  should 
never ft, so 22 1m  . Note  the Receiver’s 
tree in Figure 2 that 22 1m  , when the Receiver 
observes 2m  it will never m p  22 1a   because 

121 1m   The Receiver’s Nash equilibrium condi- 
further reduced to 11 123 2 1a a    and 

11 12 1a a  . The solution ( 11 0.a 

move Le

. 
re 

from

ove U

2  and 

with 

tions a

12a 0.8 ) is 
position 1 in Cob asucho [14, 

3.2. Sen

given by Pro b and B udhary 

p. 252]. 

der’s Nash Equilibrium Strategies 

 shown 
es not 

The decision tree for the Receiver in this game is
in the right panel of Figure 1. The Receiver do
directly learn the Sender’s type, but does observe 
whether it chooses Left or Right. Once it observes this 
message, it decides whether to move Up or Down. The 
“Action” nodes are shaded to indicate these are random 
strategy nodes (as opposed to typical chance nodes). The 
payoff to the Receiver in the game is then determined by 
the Sender’s actual type. 

The marginal probabilities for the Sender’s message 
type are calculated as 

   ( )j jP m P m t P m t   

       
1 2

1 1 2 2

1 2

| |

0.5 0.5

j

j j

j j

P m t P t P m t P t

m m

 
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1, 2j for . The conditional probabilities for the Sen- 
der given the observed message in this model are 

rmined
’s type 

dete  using Bayes’ rule as 

     
 

1

1

|
|

j

j

1

1 1

1 2 1 2

0.5

0.5 0.5

j

j j

j j j j

P m

m m

m m m m
 

 

 

with 

P m t P t
P t m 

   2 1| 1 |j jP t m P t m  . 
To find its Nash equilibrium strategies, the Sender 

ack the Receiver’s decision tree one level as shown rolls b
in the right panel of Figure 2. For example, the Receiver 
observing 1m  and taking action 1a  calculates its ex- 
pected value as  
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at the chance node representing the Sender type at the top 
of its tree in Figure 1. This expected value is placed in 
the rolled back decision tree in Figure 2 as the pay ff on 
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 meet the conditions 
 and . Solv system of 
s in  gives

o
the branch representing the Receiver observing 1m  and 
taking action 1a . 

Two conditions must be met by the strategies 11m , 

12m , 21m , and 22m  established at Nash equilibrium by 
the Sender: 

1) If the Re vecei r observes 1m , it must be indiffere  
tween the strategies 11a  and 12a . 
2) If the Receiver observes 2m , it must be indifferent 

between the strategies 21a  and 22 .  
These conditions are met when the expected values at 

the end of either branc

a

h at the two Action nodes in the 
decision tree in the right panel o  Figure 2 are equal, or 
when 

 11 21 11 218 2m m m m      
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22 12 22 .m m m   

The solutions m

12 1m 
four equation

ust also

21 22 1m m 
 four unknowns

11m ing this 
 11 1 3m  ,  

12 2 3  , m 21 2 3m  , and 22 1 3m  . 
The strategies  ,  , 1m , and 22m  determined 

using the process outlined above are only guaranteed to 
11m 12m 2

make the Receiver indifferent between any assignment of 
its strategies if none of its strategies are dominant. Recall 
the example from the last section where the Sender’s 
payoffs are such that it always plays 21 0m   and 

22 1m  . The revised probabilities in th ver’s 
 tree will indicate that  2 1| 0P t m  . We also 

established that in this scenario observing 

2m  should always play 21 0a   and 22 1a

e Recei

iver 
decision

the Rece
 . By 

ting the pure strategies th always ed by 
both the Sender and Receiver in the decision trees and 
rolling back the trees, the Nash equilibrium strategies for 
a semi-separating equilibrium can be determined. The 
solution for the Receiver observing 1m  is given by 
Proposition 2 in Cobb and Basuchoudhar 14, p. 252]. 

In this next section, decision trees and the expecte

inser

va

at will 

y 

ral n

 be play

[

-type sign

d 

4. General Signaling Game 

aling 

lues obtained from the solution process are used to 
obtain a pure mixed strategy Nash equilibrium for the 
n -type signaling game. 

In this section, we discuss the gene
game. Decision trees similar to those used in the 2n   
case will be useful in demonstrating the conditions  
are required to establish a Nash equilibrium. 

 that

4.1. Analysis of Sender’s 

r the 

Decision Tree 

Figure 3 shows a portion of the decision tree fo
Sender in this game. The model is expanded beyond the 

 

 

Figure 3. Sender’s decision tree in the general signaling game. 
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“Message” branch for the  Sender. This expansion 
shows that the  Send hooses from among 
possible messages. Once it selects a message, it 
which of the  ossible actions has bee
taken. An expansion of the decision tree for the other 
Sender types would appear similarly. 

Rolling back the section of the decision tree in Figure 
3 for the  Sender results in the expected values 
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for . A Nash equilibrium in this game must 
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    (1) 

More generally, the Receiver’s strategies at Nash 
equilibrium must obey the conditions 


     (2) 

for . 
s

1, ,j n 
eet the 1n 

21 22

22 23 2, 1 2

0,

0, , 0.

S S

S S S S
n n

EV EV

EV EV EV EV

 

   

1 2

2 3 , 1

0,

0, , 0

S S
i i

S S S S
i i i n in

EV EV

EV EV EV EV

 

  

1, 2, ,i n 
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matrix W  as 

1

2

W

W
W

 
 
 




0

0 0
,

0

 

nW

 
 
 

   
0 0

where each jW  
a

is itself an  matrix and  is the 
 trix. The  of block

n n
kth en

 0
n n  zero m i , try  jW  is 
simp he vector Sly ijkw . T EV  is 2 1n  , with  

S S S
T

11 21 1 12 .S S S
nEV EV EV EV EVEV   nn   

Note that 
conditions specified in (1) and (2) 

in

SW a EV . 
We can encode the 
 the  2 2n n n   matrix  

I I

.
I I

N

I I

  
 
 

 


    

0

0 0

0 0 0

 

 0 

where I  is the n n  identity matrix. 
To satisfy a Nash equilibrium, we need NWa  = 
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2n  unk s. 


nown
of the 

or 
that the sum

1 1 1

1 1 1

1 1 1

.

n n n

n n n

n n n

P

  

  

  

 
 
 
 
 
 




   


1 0 0

0 1 0

0 0 1

 

Thus, we want P a 1 . Let  and define  
NW

G
P

 
  
 

 2 1

1

n n

n

 



 
 
  

b
0

1
. We  solve in the equation  

Thus, the Nash equilibrium strategies for the Receiver 
are determined as  

provided these entries are all non-negative. When the 
Receiver plays the strategies in , the Sender cannot 
unilaterally change its strategy to earn a higher expected 
payoff. 

The prior discussion describes how the decision tree 
uilibrium calculation in the 

case of a purely mixed strategy equilibrium. To aid in 
strategy selection, the vector  can be examined to 
determine whether there are any dominated strategies at 
equilibrium. This is indicated when  contains entries 
that are not strictly between 0  not 
invertible. In the -type signa e, if a r of 

an
assig n

s i pris gies 
in a Nash equilibrium. Since the Receiver can assume 
that the Sender will never play dominated strategies, it 
can a ccordingly and may find 
do

ti
 strategies f iver. A well-defined algo- 

rithm for finding Nash equilibria where each player 
chooses some pure strategies and mixes over the re- 
maining strategies is beyond the scope of paper and 
requires future research. An example of such a solution 
in the context of a specific example will be provided later 

4.2

Th
g This
 sh eyond the “A tion” 

node when the Receiver observes message . The 
detail shows that the Receiver will first learn the m ssage 
selected from the Sender’s possible choice ce it   

 want to for a  

.G a b  

1G a b  

a

formulation is used for eq

a

ling 

a
and 1, or when

gam
G  is 

 Sende

i
strate

n
any type has y dominated strategies, these should be 

ned zero probabilities prior to finding the rema ing 
strategie n a  that com e the Receiver’s 

djust its strategies a
minated strategies of its own. The decision tree metho- 

dology can s ll be useful in determining Nash equi- 
librium or the Rece

 this 

in this section. 

. Analysis of Receiver’s Decision Tree 

e Receiver’s decision tree in the general n -type 
signalin game is partially shown in Figure 4.  

ou
We have yet to e fact  use th

jka  sh

diagram ows the detail in the tree b c

2

e
n

m

s. On  
ould be one (wh  is fixed). Ten j he 2n n   

takes this into account: matrix P  

Copyright © 2013 SciRes.                                                                                  TEL 



B. R. COBB  ET  AL. 59

 

 

in the general signaling game. Figure 4. Receiver’s decision tree
 
observes the message, it chooses an action from its n  

 

available possibilities. Only after the Receiver selects an 
action does it finally learn which of th  possi
Sender types it opposes in the game. 

In this section, an 

e n ble 

P  is n n  
 the diag

diagonal matrix that 
holds the probabilities on onal, or  ip  

  1 2diag .nP p p p   Let  be the D 2 2n n   

diagonal matrix of n  copies of P , or  

  diag .D P P P   

The marginal probabilities for the message observed 
by the Receiver are calculated as 

     
1 1

| .
N N

j j j i i
i i

q P m P m t P t m p
 

     ij i

The conditional probabilities for Sender type given the 
message observed by the Receiver are calculated as 

   
 

| .
j i ij i

ij i j
jj

P m t m p
r P t m

qP m
  


 

where  probability the Sender is 
given m ssage 

ijr
e

is the conditional it  

jm  is observed. Let  

Note that  is indexed in the same manner .  

One can derive  from  by pre-multiplyin  by 
the a a an  the matrix  de d as 
the 

 T11 21 .n nr r r r rr    1 12 n

r  as m

 r
trix 

 m
d by

g m
finebove m

2 2n n
D  Q

  al m trix whos  diagon a e first n  diagonal
entries are 11 q , whose tries are second n  diagonal en

21 q , etc. One ca onal,  n view Q  as being block diag

  1 2diag nQ Q Q Q   is n n where each jQ    

al containing onldiagonal, with the diagon y 1 jq . We 
QDr m

 strategies, we 
have that . However, in cal
equilibrium will not act

culating the Nash 
ually need the 

jq ’s and hence we will not need . The m
will be used to calculate the expected value in the game 
for the Receiver. 

 is 

Q atrix Q  

V 2 2n n  
is analogous to the m

and contains the Receiver’s payoffs. It 
atrix  from previous analysis of 

the Sender’s tree, but is defined in a different manner. It 
can be viewed as a diagonal block matrix,  

W

1

2 ,

n

V

V
V

V

 
 
 
 
 
 




   


0 0

0 0

0 0

 

where each  n njV  is , and the  entry of th,k i jV  is 

ijkv . 
Let REV  denote the 2n 

for the Receiver, 
1  vector of expected 

values of the outcomes or  
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T

11 12 1 21 .R R R R R R
n nEV EV EV EV EV   EV   n

Note the indexing of 

 

REV  differs from SEV . The 
components of REV  are derived by rolling back the 
decision tree in Figure 4. For instance, rolling back the 
tre rvinge for the Receiver obse  2m  results in the 
following expected values: 



 

1
21 2 12 1 121 22 1

1
1 2 22

1
2 2 12 1 12 22 2 22 2 2 .

R

n n n

R
n n n n

EV q m p v m p

m p v

EV q m p v m p v p v







 

   









n n n

 
22 2 12 122 22 2 222

REV q m p v m p v   
2 221 2 2n n nv m p v 

m

In general, we have RV r EV . At Nash equilibrium, 
the Receiver observing the message  must be 
indifferent between each of its actions, so that  

2m

21 22 2
R R

nEV EV EV   R . 

The matrix N  will be  2 2n n n   with  

A

.
A

N

A

 0 0
 
 
 
 
 


   



0 0

0 0

 

with A  an  1n n   “upper bidiagonal” matrix, wit  
1s on the diago and −1s on the upper 

h
bidiagonal. For 

h case, we have  

R

nal 
e 4n   instance, in t

1 1 0 0 
0 1 1 0 .

0 1 1

A    
 

 

We have RN r EV 0 . 
eplacing r  with QDm  gives 0NVQD

0

NV
m . Be- 

of t , we cause h ock dia tructur
have that 

 c

e bl
VQ 

gonal s
. Likewis

e of V  and Q
QV e, NQ Q N , where  

Q  is    2 2n n n n    diagonal, with n  opies  

of each 

1

1 jq  on the diagonal instead of n  copies. 
Thus  

NVQD NQVD Q NVD  m m m 0  

Since Q  is invertible (as long as no 0jq  ), this 
implies that NVD m 0 , and hence we can ignore Q  
and directly solve for m . 

We currently have 2n n  equations describing our 
2n  unknowns. Our final n  equations come from the  

1
1

n

ijj
m


fact that the  form a distribution, hence  ijm    

fo . Because of the way that e have indexed 
this amounts to summing every

en and getting 1. This can again be
atrix m

 matrix which is the
 identity matrix 

r 1, ,i n 
the matrix m

try of m  

 w
,  thn  

 done 
conveniently through m ultiplication. 

Let S be the 2n n  concatenation 
of  copies n of the n n I

 S I I I  . Then 1nS m 1 . 

Let 
NVD

G
S

 
  
 

. We want to solve for m  in the  

equation  
 

We can show an example of the conditions under 
which will not be invertible. If for two values of 
say , we have that 

,G m b

where b  is defined as in the previous section. Thus, the 
Nash equilibrium strategies for the Sender are deter- 
mined as  

1 .G m b  

G  
 and 

2 21 2i j

i , 
 and 1i

v v
2i 1 1 11 2i j i j i jnv v v  

2i j i jnv  
colum hence 

 , then
will not

In the -type signaling game, if a Receiver observing 
an ominated 

re of the 
Receiver’s payoffs, or perhaps because t Receiver can 
assum pe of Sende ominated 
strategies that will never be played at Nash equilibrium. 
One su  case mentioned earlier occurs when the 
Receiver has multiple actions that lead to exactly the 
same (this cause  to be invertible). All but 
one of suc  strategies ca  considered dominated and 
assigned zero probabilities. As stated in the previous 

ditional di

 furt ods for using 
decision trees to solve for such equilibria will be the 
subject of ongoing research. 

The same conclusions to those in Section 3 for the 
type signaling game about the solutions

 G  will have two identical 
 be invertible. ns and 

n

ch

 payoffs 
h

y message has any d strategies, these should 
be assigned as zero in any Nash equilibrium solution. 
This may occur simply because of the structu

he 
e that at least one ty r has d

s G
n be

section, some ad scussion will be provided later 
in the paper regarding the use of decision trees to identify 
such equilibria, and her study of meth

two-  a  and 
m  outlined above can be made for the -ty - 

lin he solutions either compute a purely mixed 
N i ndicat  Nash equili

5. Examples 

ind 

Section 3 with 

n pe signa
g game. T

ash equilibr um or i e that a brium 
containing at least some pure strategies exists. 

In this section, the process from Section 4 is used to f
Nash equilibri  strategies in the signaling game from um

2n  . 

5. rm  

 . Substi- 
tu

1. Dete ining the Receiver’s Nash 
Equilibrium Strategies 

In this problem, let a a
T

11 a aa
able 1

12 21 22

ting the values from T  gives  

3 0 0 2

5 2 0 0
.

0 0 4 1

0 0 5 0

W

 
  
 
 

 

 

. That is,  
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Recall th .W a EV  At Nash equilibrium  

11 12 0EV EV   and 21 22 0EV EV  . This i
at 

dea is enco-  
de Comb

efore,  

      (4) 

Up to this point, we have two equations for four 
un

d in the matrix N . ining N  and W  gives 

3 2 4 1
.

5 2 5
NW

  
  


          (3) 

0
Ther

   
11 12

11 12 215 2 5 0

NW N W N

EV EV

EV EV

a a a

 

 
   

     

a a EV

21 22

11 12 21 223 2 4 0
.

a a a a      
    

knowns. The sum of the jka  should be one (when j  
is fixed This is ensured by the matrix P . Thus, we 
have hat  

11 12 1
.

a a
P

 

). 
 t

21 22 1a a   
Combine Equations (4) and (5) together. The matrices 

NW  and P  are both 2 4 , and hence the matrix  

is 4 4
NW

G
P

 
  
 

 

and 

 T0 0 1 1 .G a  

The Nash equilibrium stra gies are  

 T0.5 0.5 0.3 0.7 . a  

5.2. Determining the Sender’s Nash Equilibrium 
Strategies 

This section illustrates the determination of the Sender’s 
so

 
              (5) 

te

 the  

e diagonal. T atrix  is 
onal, with two copies of the 

a     

lution in the example from Section 3. 
Let the Sender’s strategy vector be denoted by  

 T11 21 12 22m m m m  and the vector of revised 

probabilities  |i jP t m  be denoted by  

 T11 21 12 22 .r r r rr  The matrix P  holds

m

probabilities ip
4 4  block dia

 on th he m D
 on g P

diagonal. 
The matrix V  contains the payoffs ijkv  and is also  

block diagonal,   1 2agV V di V , or  






The 

8 1 0 0

2 2 0

 
  0

.
0 0 0 1

 

0 0 1 1

V 
 




th,k i  entry of jV  is . Thus,ijkv  RV r EV
T

,  

where 11 21 12 22 .R R R R REV EV EV EV   EV  We want  

to multiply REV
ilibrium

 by a matrix that ensures we have 
ash equ . This matrix e same as om 

th cti
The expressi

N  
 is tha N N  fr

e previous se on. 
Don NV m 0

s. 
esents tw

 gives
qua re  

because lity  
where 

 two equations for 
our four unknown Two more e tions a  required

m  repr

1 2 1i im m
o probabi  distributions 

. Let  2 2S I I  he matrix S   . T

is  that formed such  2 1S  1m
e satisfied at 

. This gives two more 
eq ust b Nash equilibrium. 

We form  as before, concatenating our matrices.  

Set 

uations that m
 G

NVD
G

S

 
  
 

. Thus  

 T0 0 1 0 .G m  

Forming G  as directed gives  

3 1.5 0 0

0 0 0.5 1
.G



1 0 1 0

0 1 0 1

 
  
 
 
 

 

Finally, with  invertible, an easily be found. 
W
if nee

The Nash equilibrium strategies are

G m  c
ith this, the iq ’s can be easily determined as can r  

ded. 
  

 T1 3 2 3 2 3 1 3 . m  

5.3. Nash Equilibria without Purely Mixed 
Strategies 

Whe r and Receiver 
payoffs, the solutions 

n applied to an arbitrary set of Sende
a  and can be classified 

into two mutually exclusive categories: 

m   

1) All elements of a  and m  are valid, non-zero 
probabilities (requiring that the matrices G  used to

ine the so
 

determ lution are both invertible), i.e. the 

 are not valid 
no
solutions are not defined bec
is not invertible. 

g games ng, separating, 
semi-separating or purely mixed Nash equilibrium. Th
equilibrium types are m ive

solution is a purely mixed Nash equilibrium. 
2) Some or all elements of a  and m
n-zero probabilities, or one or both of the vectors of 

ause one of the G  matrices 

All signalin have either a pooli
ese 

utually exclus . Solutions a  
and m  from e first category above are ident ally 
ass iated with games with purely mixed strategies. 
Therefore,

 th ic
oc

 solutions from the second category above are 
id

 at our
ither identify a pur xed strategy or  

entified with pooling, separating, or semi-separating 
we can be certai h  solution equilibria. Thus, n t

technique will e ely mi
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verify the existence of a Nash equilibrium containing at 
least some pure strategies (the strategy selection task). In 
terms of the equilibrium calculation tas purely mixed 
strategy equilibria are the primary focus of this paper. 
We give an example in this section that uses decision 
tre facil n ilibrium i

nd category. 
payoffs and prior probabilities for Sen

he

 each pair is the payoff to the 
R econd num

lection phas als   
ist and 

m 

k, 

es to itate the determinatio of an equ n 
the seco

The der type in 
the game are listed in Table 2. T  Sender may be one of 
three types and the Receiver has three possible actions. 
The first number in

eceiver and the s ber is the payoff to the 
Sender. 

In this problem, calculating a  or m  in the stra- 
tegy se e reve purely mixed Nash that a

doequilibrium does not ex minated strategies must 
be identified to determine the Nash equilibrium. The 
procedure fro Section 4 gives the solutions 11 3.237a  , 

1.15  1.082a    as the strategies for the 12 13

Rece ing 1m
6a

iver obs
, and 
erv . Clearly, these are 

babilities and this result provides an indication that the 
Sender has a dominated strategy. 

The part of the Sender’s decision tree related to th 1  
Se Figure 5 and ro
back in the right part of Figure 5. Again, the roll-b ck 
procedure involves calculating expected values.  
instance, the  Sender selecting o s exp
v a l u e  .  F r m 
these  
w  

th 

not pro- 

by bo 12m  and 13m . Specifically, 

       21 22 23 11 12 13
21 22 23 11 12 13

, , 0,1 , , 0,1
2maxmin

a a a a a a
a a a a a a

 
       

and 

       
32 11 12 132 .maxmin a a a a

 
     

32 11 12 130,1 , , 0,1a a a a

Once the Receiver accounts for the fact that 11 0m  , 
it will adjust its payoffs and ascertain (through similar 
analysis as that performed above for the Sender) that it 
should always play 12 0a   because 12a  is dominated 
by 11a  and 13a . 

The method presented in Section  be o 
fin

4 can adapted t
d the remaining equilibrium strategies in this game. 

Since 11 0m  , the expected value 11
SEV  does not have 

to be considered in the Nash equilibrium conditions 
when the Receiver determines its optimal strategies using 
the Sender’s decision tree. Since the first row of the 
matrix N S SW in (3) captures 
th e  

the condition 
m .

11 12EV EV
S

, 
is row can be removed from th atrix ince 12 0a   

the second column of NW can be removed. The matrix is 

1 2 1 1 2 0 0 0

0.5 0 0.5 0 1 0 0 0

.0 0 1 1 0

0 0 1 1 2 2 1

0 0 0.5 0 1 0.6 1 1

 
e t
lled 
a
For

ected 
o

nder

nder is shown in the left part of 
1 0 1

1

NW

 
  
  
 

   
     

 

1t

11

s

1m  

11a 
r

s

btain

12 13 12 131 1 2 2a a a a a        
diagram , we can clearly obse ve that the Se

 m s 
The Nash equilibrium strategies for the Receiver (with 

12 0a   replaced) are  

T0.385 0.914 0.082 0.004 .  

tion 4 for these dominated strategies, solving  

5 1G 

ill always play 11 = 0 , as thi trategy is dominated 
 

0.926 0 0.074 0.156 a 0.459

 
To determine its equilibrium strategies, the Sender 

must adjust the Receiver’s decision tree for the conditions 
 and . After adapting the process in Sec-  11 0m  12 0a 

3 1

 
  
 

m
0

1
 gives  

ha -a
observing  is 

sh it op
ot

(a

 

 T0 0.831 0.333 0.990 0.110 0.550 0.010 0.059 0.117 . m  

 
The strategy 11 0m   s been re dded to the vector. 
The decision tree for the Receiver 1

own in Figure 6 w h the timal strategies and 
resulting conditional probabilities for b
inserted. The Sender’s strategies make the Receiver 
indifferent between any possible assignment a

m

h players 

 and 11 13

lthough it has selected 11 0.926a
a  

  and 13 0.074a   
at equilibrium). Since 11m , the Receiver can never gain a 
higher payoff by assigning any positive probability , 
so this was set to 12 0a 

12

r 
a

he othe prior to determ
eq

no
purely mixed (the strategy selection task). The process  

for interpreting the results of Section 4 for an arbitrary 
signaling game where a purely mixed Nash equilibrium 
does not exist, then adapting the matrices representing 
the Nash equilibrium conditions is not well-defined and 
has only been demonstrated by example. Creating such 
an algorithm requires further investigation, but the 
decision tree approach appears to hold promise for 
developing a heuristic approach to determining a Nash 
equilibrium in signaling games. 

6. Conclusions 

The main contribution of this paper is to introduce a 
standard approach to constructing and solving the equa-   

ining t
uilibrium strategies. 
This example demonstrates that the decision trees are 

still useful for identifying Nash equilibria that are t 
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Table 2. Payoffs to each p

Sender  Sen

layer in the example. 

der 2t  Sender 3t  1t

 1 1 0.4P t p    2P t 2 0.4p    3 3 0.2P t p    

1m  2

 

1m  2m  3m  m  3m  

 

1m  2m  3m  

1 1a  −2, −1 − 1 − − 6 11, 1 2, 0 a  −2, 1 −1, − 1, 1 1a  3, −0.5 2, −0.5 2, −0.

2a  0.1, −1 −10, −1 −1, 1 2a  −2, 0  

3a  −1, −2 −11, 1 −1, 0 3a  −1, 2 

0 , 1 −2, 2 −1, −1 −2, −1, 1 

4, 2 2, −1 −2, −1 −3, 

2a   0  

3a  0  0 , 1 

 

 

 for the t1 Sender. Figure 5. Decision tr
 

ee

 

Figure 6. Decision tree for the Receiver observing m1. 
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tions required to determine a mixed strategy Nash equili- 
brium in a signaling game. Some existing algorithms in 
the literature can solve two-type signaling games very 
fast. The problem is that once the game becomes even 
slightly more complex, finding equilibrium becomes 
increasingly difficult. This is acknowledged, for instance, 
by the developers of the Gambit software package [7]. 

In some sense, the purely mixed strategy is the most 
general solution for the n-type signaling game. Naturally, 
many signaling games have payoffs structured so that 
certain strategies for either player are dominated. In these 
cases, the decision tree can still be used to identify the 
Nash equilibrium conditions and solve for a mixed 
equilibrium over the remaining strategies. The eventual 
goal of future research is to provide new heuristic 
approaches for solving signaling games that can be 
derived from the solutions to the equations for the mixed 
strategy Nash equilibrium. This potential was demon- 
strated in Section 5.3 through an example where the 
Sender has a dominated strategy. 

Decision trees provide a convenient 
acilitate the calculation of purely mixed Nash equilibria 

in signaling games. This paper extends decision tree 
results for the two-type signaling game presented by 
Cobb and Basuchoudhary [14] by finding general results 
for a purely mixed Nash equilibrium. Most game theory 
textbooks limit the possible types of solutions to pooling, 
separating, and semi-separating equilibria. The decision 
tree allows an analyst to simply compute a purely mixed 
Nash equilibrium, as opposed to testing a hypothesized 
Nash equilibrium by abstractly examining the payoffs or 
game tree for the problem. 

The graphical representation of the decision tree 
models used to determine the purely mixed strategy Nash 
equilibria will clearly grow exponentially as the number 
of Sender types expands in the symmetric signaling game. 
However, the expected values required to solve such a 
decision tree are easily defined in matrix form. In a sense, 
we can dynamically construct nodes of interest in the 
decision tree, calculate expected values, then find the 
Nash equilibria using these expected values. This allows 
the decision tree solution to be used to find the purely 
mixed Nash equilibrium solution, even when the Sender 
as many possible types. 
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