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ABSTRACT 

In a previous study [1] the authors had developed a methodology for predicting global oil production. Briefly, the 
model accounted for disruptions in production by utilising a series of Hubbert curves in combination with a polynomial 
smoothing function. Whilst the model was able to produce predictions for future oil production, the methodology was 
complex in its implementation and not easily applied to future disruptions. In this study a Generalized Bass model ap-
proach is incorporated with the Hubbert linearization technique that overcomes these limitations and is consistent with 
our previous predictions. 
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1. Introduction 

It has been reported that world oil production will peak 
between 1996 and 2048 [2-16]. Typically, the modelling 
analysis is based on the Hubbert curve, which is defined 
as: 
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where Q(t) is cumulative production, QT is the ultimately 
recoverable resource (URR), defined as the sum of all 
historical and future production, r is a rate constant, and t 
is time. Equation (1) can be integrated to obtain: 
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where tp is the year when annual production is expected 
to peak. Differentiation of Equation (2) gives: 
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The Hubbert curve, as described by Equation (3), has 
been widely used for modelling oil production as the 
constants r, QT and tp can be readily quantified by apply-

ing Hubbert linearization techniques to historical produc-
tion data. The disadvantage with the Hubbert approach, 
however, is that while it is possible to include disruptions 
the methodology for doing so is very tedious [1]. 

A recent alternative to the Hubbert curve is the Gener-
alized Bass model, and is defined as [15]: 
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where r1 and r2 are rate constants,  is the URR, and 
x(t) is an intervention function used to insert a disruption. 
Equation (4) has the general solution: 
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which can be differentiated to obtain: 
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(6) 
Guseo et al. [15] modelled the intervention function as a 
summation of disruptions, i  {1,...,n}: 
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     1 21 nx f f f          ,      (7) 

with each disruption having an exponential form, i.e.: 
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where tdi, bi and ci are the commencing year, rate con-
stant and constant of the i-th disruption, respectively. 

 diH t t  is the unit step function, commencing in year 
tdi, and is defined as: 
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The advantage of the Generalized Bass model ap-
proach is that disruptions can be readily accommodated 
by the intervention function x(t). However, unlike the 
Hubbert approach, the generalized Bass model constants 
r1 and r2 are not readily quantified from existing produc-
tion statistics. 

2. Results and Discussion 

World oil production has been modelled using the Gen-
eralized Bass model (GBM), given by Equation (6), with 
the inclusion of the following three disruptions: 

1) 1973, OPEC crisis, 
2) 1979, OPEC crisis, and 
3) 1990, collapse of the former Soviet Union (FSU). 
In applying the GBM, the functions fi(t) have been 

modified1 so that they linearly decrease for tr years be-
fore exponentially decaying back to zero. Mathematically, 
this is given by:  
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Numerical values for the constants, c, b, td, and tr were 
obtained by fitting Equation (10) to the historical data. 
The actual value of these constants depends on the cho-
sen URR value, as indicated in Table 1. 

The comparison between the GBM (this study) and the 
corresponding Hubbert-based model (MHM) by Mohr 
and Evans [1] for the two URR scenarios is given in Fig-
ure 1. It can be seen that in both cases the GBM and 
MHM curves are similar, Quantitatively, for a URR of 
2234 Gb (Figure 1(a)), the GBM projects a peak in 
global oil production of 29 Gb/y to occur in 2009; with 
90 percent depletion by 2047. The corresponding peak in  

Table 1. Fitted values for constants used in Equation (10). 

Constant
1973 OPEC 

crisis 
1979 OPEC  

crisis 
1990 collapse 

FSU 

TQ


(Gb) 2234 2734 2234 2734 2234 2734

1c (-) -0.100 -0.130 -0.240 -0.270 -0.040 -0.065

1b (y-1) -0.015 -0.020 -0.001 -0.001 -0.060 -0.001

1dt (y)
 1974 1974 1979 1979 1990 1990

1rt (y) 1 1 4 4 1 1 

 

 
(a) 

 

 
(b) 

Figure 1. GBM and MHM [1] Comparison. (a) URR = 2234 
Gb; (b) URR = 2734 Gb. 
 
production for the MHM is 30 Gb/y at 2012; with 90% 
depletion by 2045. Similarly, for a URR of 2734 Gb 
(Figure 1(b)), the GBM shifted the oil production peak 
to 2017 at 32 Gb/y, with 90 percent depletion taking 
place by 2060. By comparison, for the MHM the pre-
dicted peak year was 2024 at 34 Gb/y, with 90 percent 
depletion occurring in 2053. 1The original exponential function, Equation (8,9) assumed by Guseo 

et al. [15] had a positive rate constant, b, which meant that the disrup-
tion, f, increased with time. In reality, any disruption must eventually 
dissipate over time. 

In producing the Generalized Bass Model predictions, 
values for the rate constants r1 and r2 needed to be de-
termined. Usually, these two terms are varied arbitrarily 
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spective,” Energy Policy, Vol. 34, 2006, pp. 515-531.  

until the curve matches the historical data, or fitted using 
least squares or similar techniques. An alternative ap-
proach was applied. Firstly, the following expressions 
were developed: [4] S. H. Mohr, “Projection of World Fossil Fuel Production 

with Supply and Demand Interactions,” Ph.D. dissertation, 
the University of Newcastle, Australia, 2010. http://dl. 
dropbox.com/u/8223301/Steve%20Mohr%20Thesis.pdf 
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which relates r1 and r2 to the constants r and tp, used in 
the Hubbert analysis. By doing this, the Hubbert Lin-
earization technique can then be applied to the produc-
tion data, from 1857 up to the year of the first disruption 
in 1973, to obtain r and tp, and ultimately r1 and r2. From 
the historical data, r was determined to be 0.075 y-1, with 
tp values of 141 and 144 years, for URRs of 2234 and 
2274 Gb, respectively. Substitution of these values into 
Equations (11) and (12) resulted in an r2 value2 of 0.075 
y-1, and corresponding r1 values of 1.916 and 1.530 x10-6 
y-1, URRs of 2234 and 2274 Gb, respectively.  
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The approach described above has two advantages. 
Firstly, the use of Hubbert analysis, and in particular the 
linearization methodology, is adopted to obtain constants 
r1 and r2 for the Generalised Bass model. Secondly, the 
Generalized Bass Model approach is applied, which is 
readily able to include disruptions. The use of Hubbert 
analysis, however, does rely on the validity of Equations 
(11) and (12) and the justification for the use of these 
equations is given in appendix 1. 
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The study has demonstrated that a Generalized Bass 
Model with Hubbert analysis can be used to include dis-
ruptions in oil production. The predictions are consistent 
with previous work based on a more tedious approach of 
using a combination of Hubbert curves and smoothing 
functions. The advantage of the new approach is that 
Hubbert Linearization can be readily applied to obtain 
values for Generalised Bass model constants based on 
historical data. 
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Appendix 1 

Proof that the derivatives, corresponding to annual pro-
duction, of the Generalized Hubbert and Bass Models are 
equal. 

The Generalized Bass model is able to account for dis-
ruptions by introducing an intervention function, x(t), 
into the Bass model. Following the same analogy, the 
Generalized Hubbert Model is defined by introducing an 
intervention function, x(t), into the Hubbert model, given 
by Equation (1), in the same way, i.e.: 
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Upon integration it can be shown that: 
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and by differentiating, leads to: 

   
   
   

0

2

0

exp

1 exp

t

p

T
t

p

r x d tdQ t
rQ x

dt
r x d t

 


 

 
  

 
        




 

(A3) 

The Generalized Hubbert Model (GHM), can be com-
pared with Equation (5), the Generalized Bass Model 
(GBM). To do this, Equation (A2) can be multiplied3 by 
1 as:  
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Equation (A4) can be rearranged to obtain: 
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which in turn, can be simplified to become: 
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To the first term on the rhs of Equation (A6), multiply top and bottom by exp(-rtp), then Equation (A6) becomes: 
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To the first term on the rhs of Equation (A7), multiply top and bottom by r (1 + exp(-rtp)), then Equation (A7) be-
comes: 
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To the first term on the rhs of Equation (A8), multiply 

by 1 expressed in the form exp(rtp)exp(-rtp), then Equa-
tion (A8) becomes: 
3Albeit a rather complicated expression for 1. 
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The first term on the rhs of Equation (A9) is the Gen-

eralised Bass model as expressed in Equation (5). This 
can be demonstrated explicitly, by allowing: 
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Substiuting Equation (A10-12) into Equation (A9), 
produces: 
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Now, the second term on the rhs of Equation (A13) is 
the constant4 Q(0), hence Equation (A13) can be rewrit-
ten as:  

 
    
      
1 2 0

1 2 1 2 0

1 exp
ˆ 0

exp

t

T t

r r x d
Q t Q Q

r r r r x d

 

 

      
    




. 

(A14) 

Finally, substitute Equation (5) into Equation (A14) to 
obtain: 

     ˆ 0Q t Q t Q  .           (A15) 

Since Q(0) is a constant, differentiating Equation 
(A15), leads to: 

   ˆdQ t dQ t

dt dt
 .             (A16) 

which shows that the annual production for the General-

ized Hubbert and Bass Models are equal, when the rela-
tionships, given by Equations (A10-12), are applied and 
that the cumulative production curves of the Generalized 
Hubbert and Bass Models, differ by the constant Q(0). 

Note: The Equations (A10-12) can be rearranged to 
obtain: 

1 2r r r                  (A17) 

 2 1

1 2

ln
p

r r
t

r r



              (A18) 

 

 
(a) 

 
(b) 

Figure A1. Comparison between Generalized Bass and 
Hubbert models. (a) Annual production; (b) Cumulative 
production. 

4To see this substitute t = 0 into Equation (A2). 
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1 2

2

ˆ
T T

r r
Q Q

r


              (A19) 

The following example is given to demonstrate that 
the Generalized Hubbert and Bass models provide 
equivalent predictions. Arbitrarily let r = 0.05 y-1, tP = 
200 y and QT = 1000 Gb, then from Equations (A10-12), 
r1 = 2.27x10-6 y-1, r2 = 0.05 y-1 and  = 999.95 Gb. 

Suppose there is one disruption in year 150, and that tr = 
10 y, c = -0.5 and b= -0.01 y-1. The plots of annual and 
cumulative production for both the Generalized Hubbert 
and Bass models are shown in Figure A1. It can be seen 
that annual production is identical, while the cumulative 
production is different only by a constant value of Q(0) = 
0.05 Gb. 

ˆ
TQ
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