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ABSTRACT 

Homoclinic bifurcation with one orbit flip, two inclination flips and resonance in the tangent directions of homoclinic 
orbit is considered. By studying the associated successor functions constructed from a local active coordinate system, 
we prove the existence of double 1-periodic orbit, 1-homoclinic orbit, and also some coexistence conditions of 
1-periodic orbit and 1-homoclinic orbit. 
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1. Introduction and Hypotheses 

Flips homoclinic bifurcations are comprehensively in- 
vestigated during the last decade (see [1-10]), which 
produce complicated bifurcations, such as the saddle- 
node bifurcations, the period-doubling bifurcations and 
the homoclinic-doubling bifurcations. 

Recently, the flip of heterodimensional cycle or ac- 
companied by transcritical bifurcation is discussed much 
(see [11-13]). The double and triple periodic orbit bifur- 
cation are proved to exist, and also some coexistence 
conditions for homoclinic orbits and periodic orbits. But 
their research is not focused on multiple flips since it is a 
interesting problem and full of challenges due to the high 
codimension and complexity. In this paper, we develop a 
study of resonant homoclinic bifurcation with one orbit 
flip and two inclination flips, where the resonance takes 
place in the tangent direction of the homoclinic orbit. 
This is a codimension-4 problem, by using the local 
moving frame method established in [11,14,15], we get 
the existence of a double 1-periodic orbit, some 1-pe- 
riodic orbits and 1-homoclinic orbits, and the coexistence 
conditions of 1-periodic orbits and 1-homoclinic orbits. 

We consider the following two systems, 

   , ,z f z g z             (1.1) 

  ,z f z                   (1.2) 

where 43, , , 4,0 1,lr z l          0 0f

Notice that system (1.2) is an unperturbed system of 
(1.1) and assume it has an orbit 
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Set sW  (resp. ssW ) and  (resp. ) the stable 
(resp. strong stable) manifold and unstable (resp. strong 
unstable) manifold of the equilibrium , respec- 
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Remark 1.1 Hypotheses (H1) is a resonant condition, 

while (H2) - (H3) mean the homoclinic orbit has one 
orbit flip and two inclinations flips. 
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The paper is organized as follows. In Section 2, we 
first transform system (1.1) into two normal forms, then 
construct a regular map in some neighborhood of the 
homoclinic orbit and a singular map in some neigh- 
borhood of the equilibrium respectively to establish the 
Poincaré map. In Section 3, we develop the bifurcation 
study through searching for solutions of the bifurcation 
equation. Finally a short conclusion about the flips bifur- 
cation is given in Section 4. 

2. Local Active Coordinate Frame and 
Poincaré Map 

We first give two normal forms of system (1.1) and then 
construct the Poincaré map. Firstly system (1.1) can be 
transformed into the following form in some neighbor- 
hood  of the origin O  due to the theory of inva- 
riance manifolds, (refer to [14,15]) 
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      (2.1) 

where   2 0, ,0 0,H y   1 10 ,    2 20 ,    

 1 10   and  2 20  .      , ,b ca     and  

 d   are parameters depending on  . 

One may see that from (2.1), loc  and uW s
locW  

are straightened locally to be the ,x v

 ,0

 axes in 
neighborhood of , so it is possible to take some time 

 large enough, such that  and 
O


0T 

 r T
 r T  ,0,0

0,0,0, , where   is small and  

  , , , : , , , 2x y u v x y u v U  . 

Now consider the linear variational system 

   ,z D r t z f                (2.2) 

and its adjoint system 

   .z D r t


  f  z



            (2.3) 

Matrix theory shows that system (2.2) has a funda- 
mental solution matrix and furthermore it can be chosen 
as follows (refer to [11,14-15]) 

Lemma 2.1 There exists a fundamental solution ma- 
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Obviously   t Z  is a fundamental solution ma- 
trix of system (2.3), denote by  

             1
1 2 3 4, , ,t t t t t t   

  Z . 

We here introduce a new coordinate  1 3 4,0, ,N n n n
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Naturally we can choose two cross sections of  , see 
Figure 1, 
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Substitute (2.4) into (1.1), there is 
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see Figure 1(a). If set 
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(a)                            (b) 

Figure 1. Transition maps. (a) F1: S1→S0; (b) F0: S0→S1. 
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and 

2 1 2,j jx v                  (2.8) 

Using the flow of system (2.1) in the neighborhood 
, we can set up a map  U

  0 0 1 0 0 0 0 0 1 1 1 1 1: ; , , , , , , F S S q x y u v q x y u v   

defined as (see [14,15]) 
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where  1es     is the Silnikov time and   is the 
time going from  to , see Figure 1(b). 0q 1q

From the above the Poincaré map  

1 0 0 0 0 0:F F F q S q S     

is obtained 
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Then the corresponding associated successor function 
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Since  1es   
S

 is defined by the flying time from 
the point in 0  to 1 , obviously  means S 0s    is 
limited; 0s   means    , which indicate the exi- 
stence of a periodic orbit or a homoclinic orbit of system 
(1.1). So in the following section, we focus us on the 
solutions s  of (2.10). 

3. Bifurcation Results 
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Then from 1 0G   we get the bifurcation equation 
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Notice that we have put higher orders terms into  . . .h o t
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and omitted the parameter   in the eigenvalues for 
concision. 

Define two functions as 
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Figure 2. Location between the curves. (a) μ ∈ R11∪R12; (b) 
μ ∈ R21; (c) μ ∈ R22. 
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as 42 44 4 0w w  M . Combining the first equation of (3.2) 
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with the tangent point, we obtain the double periodic 
orbit bifurcation surface 
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in the region 22R  . At the same time, when 22R  , 
the line  ,W P s   lies under the curve  ,W Q s  , 
see Figure 2(c), so if 14 1w  M  increases, the line must 
intersects the curve at two sufficiently small positive 
points, therefore system (1.1) undergos two 1-periodic 
orbits. Then the proof is complete. 

Theorem 3.3 Suppose that  1 4Rank , 2M M , then 
system (1.1) has only one 1-homoclinic orbit near   in 
the region 01 ; has only one 1-periodic orbit near R   
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and one 1-periodic orbit near 
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has always two solutions  and  1 0s 
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or has only a zero solution 1 0s   for  
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The last conclusion is obvious for  
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Similar to the proof of Theorem 3.1 and 3.3, we have 
Theorem 3.4 Suppose that  1 4Rank , 2M M , then 
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By studying the relationship between the curves 
 ,f P s   and  ,f Q s  , it is easy to get the main 

ideas, see Figure 3. Here 
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 . 
Figure 3. Location between the curves. (a) μ ∈ D12; (b) μ ∈ 
D21; (c) μ ∈ D22. 
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and 

22 14 1 14 30, 0D w w   M M  . 

Remark 3.1 For the case 44 , system (1.1) has 
no longer double 1-periodic orbits and the double 1-pe- 
riodic orbit bifurcation surfaces. 

0w 

Theorem 3.5 Suppose that  1 4Rank , 2M M , then 
system (1.1) has only one 1-homoclinic orbit near   in 
the region ; has only one 1-periodic orbit near 0D   in 
the region 10 ; has not any 1-periodic orbit or 1-ho- 
moclinic orbit in the region . 

D

20D
Proof Notice that  
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has only a zero solution  for  1 0s 

 0 14 1 0D w    M . 

And the line  ,f P s   is horizontal for  
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Thereby the conclusion is clear. We omit the details 
here. 

4. Conclusion 

The theoretical development of flip bifurcations indeed 
advanced much in recent years. More and more com- 
plicated cases with several flips or accompanied by trans- 
critical bifurcation nowadays are discussed. This paper 
focuses on a kind of three flips homoclinic case with 
resonance and introduces an effective method to extend 
the study. By the analysis of the bifurcation equation, the 
existence of a double 1-periodic orbit, some 1-periodic 
orbits and 1-homoclinic orbits, and the coexistence con- 
ditions of 1-periodic orbits and 1-homoclinic orbits are 
given. From the study, one notice that different leading 
terms of the bifurcation equation may cause different 
bifurcation phenomena, so we can go further in the future 
work. 
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