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ABSTRACT 

In linear regression analysis, detecting anomalous observations is an important step for model building process. Various 
influential measures based on different motivational arguments and designed to measure the influence of observations 
on different aspects of various regression results are elucidated and critiqued. The presence of influential observations 
in the data is complicated by the presence of multicollinearity. In this paper, when Liu estimator is used to mitigate the 
effects of multicollinearity the influence of some observations can be drastically modified. Approximate deletion for- 
mulas for the detection of influential points are proposed for Liu estimator. Two real macroeconomic data sets are used 
to illustrate the methodologies proposed in this paper. 
 
Keywords: Liu Estimator; Global Influential Observations; Diagnostics; Multicollinearity; Case Deletion; Approximate 

Deletion Formulas 

1. Introduction 

The presence of multicollinearity in the regressors seri- 
ously affects the parameter estimation and prediction. 
Therefore, mixed estimation and ridge type regression 
are suggested to mitigate this effect. In addition to mul- 
ticollinearity, the presence of influential observations in 
the observed data is seriously affected by the estimators 
as those estimators are not unbiased [1,2]. 

In literature, many authors [1-3] noted that the influen- 
tial observations on ridge type estimators are different 
from the corresponding least squares estimate and that 
multicollinearity can even disguise anomalous data. Bel- 
sley [3] investigated the leverage in ridge regression. 
Walker and Bitch [2] studied the influence of observa- 
tions in ordinary ridge regression estimator (ORRE) 
based on case deletion method. Shi [4] proposed the local 
influence in principal component analysis by defining a 
generalized Cook statistic and showed that his method is 
equivalent to Cook’s approach under the likelihood fra- 
mework. Shi and Wang [2] analyzed the influential cases 
in ORRE using local influence method. Jahufer and Chen 
[5] studied global influential observations in modified 
ridge regression estimator (MRRE) moreover, Jahufer 
and Chen [6] studied local influential observations in 
MRRE. Besides, Jahufer and Chen [7] analyzed local in- 
fluential observations in Liu estimator.  

The main aim of this paper is therefore to assess the 
global influence of observations in the linear Liu estima- 

tor using the method of case deletion. This method has 
been extensively studied and it is very powerful for de- 
tecting influential cases because of its intuitive appeal 
and its direct connection to the sample influence curves. 
Also, it is widely accepted as the foundation of many 
other statistical methods approached. The methodology 
proposed in this paper is illustrated using two real mac- 
roeconomic data sets. The first Data set is macro impact 
of foreign direct investment in Sri Lanka. This data set 
contains four regressors and a response variable with 27 
observations. The second data set is Longley [8] data set. 
It consists of six regressors and a response variable with 
16 observations. This paper is composed of six sections: 
Section 2 gives the background and definition of influen- 
tial measures in least squares; Section 3 derives the in- 
fluence measures in Liu estimator; Section 4 describes 
approximate deletion formulas for Liu estimator; Section 
5 reports the examples using two real data sets. Discus- 
sion is given in the last section. 

2. Background and Definition 

2.1. Background 

A matrix multiple linear regression model can be written 
as 

, y Xβ ε                 (1) 

where y is an n × 1 response vector, X is an n × p cen- 
tered and standardized known matrix (i.e. the length of 
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the column of X is standardized to one),   is a p × 1 
vector of an unknown parameter,  is an n × 1 error vec- 
tor with  and    0E    2 I InVar  and n  is an 
identity matrix of order n. Then the ordinary least 
squares estimator (OLSE) of 



  is   1
.

ˆ  β X X X y  
The estimator of 2  is  2 ,s n p e e  where resid- 
ual vector ˆ. e y Xβ  

This article assumes that the reader is acquainted with 
the basic ideas of leverage and influence in regression 
analysis, as presented, for instance, in the works of [1] 
and [9]. 

2.2. Definition of Influential Measures in Least 
Squares 

The general purpose of influential analysis is to measure 
the changes induced in a given aspect of the analysis 
when the data set is perturbed. A particularly appealing 
perturbation scheme is case deletion. Note that this sche- 
me is used throughout this article. 

In general, the influence of a case can be viewed as the 
product of two factors: the first a function of the residual 
and the second a function of the position of the point in 
the X space. The position or leverage of the i-th point is 
measured by hi, which is the i-th diagonal element of the 
“hat” matrix   1 H X X X X

  

. 
Among the most popular single-case influential meas- 

ure is the difference in fit standardized DFFITS [1], 
which evaluated at the i-th case is given by 

  ˆ ˆDFFITS i i x β β ˆSE ,i i
 
  x β      (2) 

where  ˆ iβ  is the least squares estimator of β̂  with- 
out the i-th case and i ˆSE x β  is an estimator of the 
standard error (SE) of the fitted values. DFFITS is the 
standardized change in the fitted value of a case when it 
is deleted. Thus it can be considered a measure of influ- 
ence on individual fitted values. 

Another useful measure of influence is Cook’s D [9], 
which evaluated at the i-th case is given by  

  2

1 ˆ ˆ
iD i

ps
    β β X X   ˆ ˆ ,i  β β

D
D

D
ˆ

      (3) 

where i  is a measure of the change in all of the fitted 
values when a case is deleted. Even though i  is based 
on different theoretical consideration, it is closely related 
to DFFITS.  

Points with large values of i  have considerable in- 
fluence on the least squares estimate β . In general, 
points for which  , ,i p n p   to be influential. In 
DFFITS measures any observation for which  

D F

2i

p
S

n


ˆ
d

DFFIT  warrants attention. 

It is important to mention that these measures are use- 

ful for detecting single cases with an unduly high influ- 
ence. For generalizations of Equations (2) and (3) for 
detecting influential sets (see [1,9]). 

3. Influence Measures in Liu Estimator 

3.1. Liu Estimator 

The Liu estimator β  was introduced by Liu [10] and is 
defined as  

   1ˆ ˆ ,d d
   β X X I X y β           (4) 

ˆwhere I is an identity matrix, β  is OLSE and d is Liu 
estimator biasing parameter and it is . The Liu 
estimator combines the ORRE [11,12] estimator. The 
ORRE is effective in practice, but it is complicated func- 
tion of its biasing parameter. Thus we often meet some 
complicated equations when we use some popular meth- 
ods, such as ([13], Ck criterion [14], GCV criterion [15]) 
and etc. to choose ridge regression biasing parameter k. 
The advantage of Liu estimator over ORRE is that Liu 
estimator is a linear function of its biasing parameter d. 
Therefore, it is convenient to choose Liu estimator bias- 
ing parameter d. 

0 1d 

   
    

1

1 1

ˆ ˆˆ

,

d d

d

d

d



 

    

      

y Xβ X X X I X y β

The Liu estimator is very useful to mitigate the effect 
of near multicollinearity. Also, the recent literature, par- 
ticularly in the area of econometrics, engineering and 
other statistical areas, the Liu estimator has produced a 
number of new techniques and ideas for example [5-7, 
16-20]. 

3.2. Leverage and Residual Measures in Liu  
Estimator 

Using Equation (4), the vector of fitted value of Liu es- 
timator is 

X X X I X X I X X X y H y

     1 1

d d
 

 

     Hwhere X X X I X X I X X X

1

ˆ ;
n

di dij j
j

y h y


 

 is Liu 

estimator “hat matrix” (see [2,10]) and plays the same 
role as the hat matrix in OLSE. It is important to note 
that the matrix Hd is not a projection matrix because it is 
not idempotent and Hd is called quasi-projection matrix 
(see [2]). The i-th fitted value can be written in terms of 

elements of Hd as  consequently,  

ˆ
.i

dii di
i

y
h h

y


 


The “Liu hat diagonals” hdi can be inter-  

preted as leverage in the same sense as the hat diagonals 
in OLSE. It is important to note that the Hd is not idem- 
potent and it is called a quasi-projection matrix (see [2]). 

The single value decomposition (SVD) (see [21]) al- 
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lows X to be decomposed as X = UDV', where D is a p   

p diagonal matrix with i-th diagonal elements 
1

2
i  ( i   

is the i-th eigenvalue of X'X), the column of V are the 
eigenvectors of X'X. The (ij)-th element of the n  p ma- 

trix  is such that  ijuU 
1

2
ij iu   is the projection of the  

i-th row, xi, onto the j-th principal axis (eigenvector) of X. 
Using the SVD, the Liu estimator leverage of the i-th  

point can be written as 
 
 

2

1 1

p
j

ij
j j

d
h u










1, 2, , 

di   (see [22]).  

Several important facts can be deduced from the preced- 
ing expression. First, for d > 0, di i for i n; 
that is, for every observation the Liu estimator leverage 
is smaller than the corresponding OLSE leverage. It can 
be confirmed from the above equation that  

h h

 
 

 
 

1

1 11

p

i di i

p

d d
h h h

 


 
 



ˆ .i i i dy y  x

.  

Second, the leverage decreases monotonically as d in- 
creases. Finally, the rate of decrement of leverage de- 
pends on the position of the particular row of X along the 
principal axes. More specifically, the leverage of a row 
that lies in the direction of principal axes associated with 
large eigenvalues will be reduced less than the leverage 
of a row that lies in the direction of principal axes asso- 
ciated with small eigenvalues (see [2]).  

The influence can be differentially affected as d in- 
creases. Remember, that influence is not a function of 
leverage but also of the residual. Although the leverage 
of every point decreases monotonically as d increases, 
the effect of this increment on the residuals is far less 
clear.  

The i-th Liu estimator residual is defined as  

ˆdi i de y  β  

3.3. DFFITS and Cook’s Measures in Liu  
Estimator 

The DFFITS for Liu estimator can be written as 

     ˆ ˆDFFITSd i d di    x β β ˆ ,i di SE x β     (5) 

where d  is the Liu estimator in (4) computed with 
the i-th case deleted and the denominator is an estimator 
of the standard error of the Liu estimator fitted value. If 
Liu estimator biasing parameter d is assumed non-sto- 
chastic, then 

 iβ





ˆ

    

    

1ˆ
i d iSE s d

d

   

  
1 2

1 1
.i

 



  

I

I x

;

x β x X X I X X

X X X X I X X

 

Hence the mean squared error is a function of the fit- 
ted values and the response, neither of which depends on 
individual eigenvalues of X X  it is not affected by 
multicollinearity. For this reason, the OLSE of  s  
will be used as measures of scale. 

At least two versions of Cook’s Di can be constructed 
for Liu estimator, they are  

     2

1 ˆ ˆ ˆ ˆ
i d d d dD i i

ps
        β β X X β β     (6) 

and 

    

      

1

2

1

1 ˆ ˆ

ˆ ˆ

i d d

d d

D i d
ps

d i





       

       

β β X X I X X I

X X X X I X X I β β

D

 (7) 

where i
  is the direct generalization of Cook’s D in (3) 

and iD  is based on the fact that  

     

    

12

1 1

ˆ

.

dVar d

d

 

 

   

    

β X X I X X I

X X X X I X X I

iD

 

Note that both   and  simplify to Di in (3) 
when d = 1. 

iD

 iX

 ˆ .iβ

It would be desirable to be able to write these meas- 
ures as functions of leverage and residual, as was done in 
(2) and (3). This is not possible, however, because of the 
scale dependency of the Liu estimator. Since the Liu es- 
timator is not scale invariant,  (the X matrix with 
the i-th row deleted) has to be rescaled to unit-column 
length before computing d  In the following sec-
tion some approximate deletion formulas are proposed. 

4. Deletion Formulas for Liu Estimator 

In the analysis of influential observations to quantify the 
impact of the i-th case, the most common approach is to 
compute single-case diagnostics with the i-th case de- 
leted. In Liu regression, it is impossible to derive an ex- 
act formula using case deletion because of the scale de- 
pendency of the Liu estimator. Hence, approximate dele- 
tion formulas are derived for influential measures 
DFFITS and two versions of Cook’s statistics.  

The scale dependence of Liu estimator precludes the 
development of deletion formulas of the types (2) and (3). 
The main problem resides in the computation of  ˆ iβd  
because the matrix  iX

ˆ
d

 has to be standardized same 
as in Section 2.1, for the small values of d and/or cases 
with low leverage. However, approximate deletion for-
mulas can be obtained using the Sherman-Morrison- 
Woodbury (SMW) theorem (see [1]).  

β  then When i-th row is deleted from ˆ
d iβ

           1ˆ ˆ
d i i i i i d i

         β X X I X y β

 can 
be written as  
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 iX
 i

where  is the matrix X without the i-th row and 
y  is the vector of response without the i-th entry. We 

assume that is centered and scaled so that 
is in correlation form. 

 iX
 iX

i i 

 iX
If after deletion the i-th row X is not recentered and 

rescaled. Then, X X x x

  ˆ
i iy d i x β

  

 will not be in exact correla- 
tion form. Thus,  

    1ˆ
d i ii

    β X X x x I X y  

which uses the SMW theorem with K X X I
ˆ

d iβ

  ˆ
i id i y  β x

 (see 
the Appendix), can be approximated as:  

    1ˆ
d i ii

   β X X I x x X y  

   

 

   

 

1 1
1

1

1

1

1

1

ˆ
1

ˆ ˆ
1
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1
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i i
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i i
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i i

i
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i
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i

y

y y
m

e
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 1

ˆ
i i
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i i i
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K x x K
β K X β

x K x

K x
β x β

x K x

K x
β

β K x



y x

x K x

 

 

Therefore,  
1

ˆ
1

i di
d d

i

e

m

 
 


K xˆ iβ β . 

Based on the above result, approximate version of (5), 
(6) and (7) can written as 

     
DFFITS

1a d i
m


 ˆSE

i d i

i i d

m e 
 
  x β

,      (8) 

   



2
1

1
,

i
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x X X I
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2

1

1
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a i
i

e
D

mps
   

       

  X X X X I

     (9) 

 

  

2
1

2

1

1

1

.

di
ia i

i

i

e
D d

mps

d





          

   

x X X I

X X X X I x

*

i

    (10) 

5. Examples  

5.1. Example 1: Macroeconomic Impact of  
Foreign Direct Investment (MIFDI) Data 

Sun [23] studied MIFDI in China 1979-1996. Based on 
his theory, the MIFDI data were collected in Sri Lanka 
form 1978 to 2004 to illustrate the methodologies pro- 
posed in this paper. The data set consists of four regres-
sors (Foreign Direct Investment, Gross Domestic Product 
Per Capita, Exchange Rate and Interest Rate) and one 
response variable (Total Domestic Investment) with 27 
observations. The selected variables were tested for sta- 
tistical conditions: Integration and Multicollinearity. The 
test results showed that variables are integrated with a 
same order of integration I(1) at 1% level of significance. 
The scaled condition number of this data set is 31,244, 
this large value suggests the presence of an unusually 
high level of multicollinearity among the regressors (the 
proposed cutoff is 30; see [1]). The Liu estimator biasing 
parameter for this data set is estimated d = 0.692. 

Global influence measures Leverage, Residual, DFFITS 
and two versions of Cook’s Di were computed and the 
results for the most seven influential cases are given in 
Table 1. The influential cases detected by these methods 
are same except case 26 in leverage and case 14 in re- 
sidual measures, but only the order of magnitude is 
changed. 

Using the approximate case deletion formulas in Equa- 
tions (8)-(10) the influential cases are estimated and it is 
given in Table 2. From this table, it can be seen that the 
influential cases detected by approximate case deletion 
formulas DFFITS and two versions of Cook’s Di are 
same but only the order of magnitude is changed. More- 
over, influential cases detected by case deletion one by  

 
Table 1. The most seven influential observations using leverage, residual, DFFITS and two versions of Cook’s. 

D  **

iD  Leverage Standardized Residual DFFITS 

Case Value Case Value Case Value Case Value Case Value 

1 0.527 3 2.609 3 0.767 3 0.181 3 0.217 

23 0.360 23 1.757 1 −0.494 27 0.065 27 0.071 

18 0.330 27 1.483 27 0.473 1 0.059 1 0.070 

3 0.268 2 −1.401 2 −0.472 2 0.057 2 0.066 

2 0.218 18 1.379 18 0.387 23 0.052 23 0.056 

27 0.200 22 1.373 22 0.379 18 0.040 18 0.050 

26 0.186 14 −1.133 23 0.279 22 0.035 22 0.037 
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one formulas in Equations (5)-(7) and approximate dele- 
tion formulas in (8)-(10) are exactly same but only the 
order of magnitude is changed. 

For verifying these results, it is plane to contribute 
Table 3 of Liu estimates for the full data and the data 
without some influential cases. In this table, the paren- 
thesis value indicates the percentage of change in the 
parameter value. The result reveals that case 3 is the most 
influential case while case 22 is the seventh influential 
point among the detected cases. It is also clear from this 
table, that omission of single influential cases 3, 23, 1, 27, 
2, 18 and 22 contribute the substantial change in the Liu 
estimator. Among all of these 3, 23, 1, 2 and 18 have a 
remarkable influence while cases 27 and 22 have a little 
influence. 

5.2. Example 2: Longley Data 

The Longley data set [8] has also been used to explain 
the effect of extreme multicollinearity on the OLSE. The 
scaled condition number (see [1]) of this data set is 
43,275. This large value suggests the presence of high 
level of multicollinearity among regressors. Cook [24] 
used this data to identify the influential observations in 
OLSE using the method of Cook’s Di and found that 
cases 5, 16, 4, 10 and 15 (in this order) were the most 
influential observations (see Table 4). Walker and Birch 
[2] analyzed the same data to detect anomalous observa- 
tions in ORRE using case deletion method. They found 
that cases 16, 10, 4, 15 and 5 (in this order) were most 
influential observations (see Table 4). Shi and Wang [25] 
also analyzed the same data to detect influential observa- 
tions on the ridge regression estimator using local influ- 
ence method. They detected cases 10, 4, 15, 16 and 1 (in 
this order) were the most five anomalous observations. 

In this paper, I used the same data set to assess the in- 
fluential observations in Liu estimator using global in- 
fluence methods: Cook’s Di, DFFITS, Leverage and Re- 
sidual. The estimated results, the most five influential

cases and the corresponding values are given in Table 4. 
The approximate deletion formulas in Equations (8)- 

(10) are used to detect influential cases for Longley data 
and detected influential cases are given in Table 5. Ac- 
cording to this table, it can be confirmed that identified 
influential cases using approximate deletion formulas 
DFFITS and two versions of Cook’s Di are exactly same. 
Besides, influential cases identified by case deletion one 
by one formulas in Equations (5)-(7) and approximate 
deletion formulas in (8)-(10) are precisely same for 
Longly data. 

The influential cases in MIFDI and Longly data were 
identified using one by one deletion formulas in Equa- 
tions (5)-(7) and approximate deletion formulas in Equa-
tions (8)-(10) respectively. The identified influential 
cases for MIFDI and Longly data are same for both 
measures but only the order of magnitude is changed for 
MIFDI data. Hence, instead of using the one by one case 
deletion formulas to identify influential cases in Liu es- 
timator the approximate case deletion formulas are more 
suitable and appropriate to identify influential cases in 
Liu estimator. 
 
Table 2. The most seven influence observations according to 
approximate case deletion formulas. 

  DFFITS
a d

i  
*

a i
D    

**

a i
D  

Case Value Case Value Case Value 

3 2.020 3 0.275 3 0.312 

23 1.878 1 0.126 1 0.150 

18 1.314 23 0.108 23 0.115 

1 −1.226 27 0.079 27 0.087 

2 −0.896 2 0.071 18 0.084 

27 0.883 18 0.068 2 0.082 

22 −0.468 22 0.035 22 0.038 

 
Table 3. Impact of influential cases on Liu estimator parameter. 

Case Deleted 
ˆ

dβ  Full Data 
(3) (23) (1) (27) (2) (18) (22) 

 392.13 
394.80  
(0.68%) 

407.33 
(3.88%) 

393.36 
(0.31%) 

392.15 
(0.00%) 

393.12 
(0.25%) 

394.80 
(0.68%) 

392.41 
(0.07%) 0

ˆ
d

 −1.65 
−1.53 

(−7.5%) 
−1.88 

(13.78%) 
−2.03 

(22.97%) 
−1.65 

(−0.18%) 
−1.76 

(6.17%) 
−1.98 

(19.59%) 
−1.68 

(1.33%) 1
ˆ

d

2
ˆ

d  −26.05 
−26.44 
(1.52%) 

−27.26 
(4.65%) 

−25.92 
(−0.48%) 

−26.05 
(0.01%) 

−25.95 
(−0.38%) 

−25.81 
(−0.91%) 

−26.07 
(0.08%) 

3
ˆ

d  −14.24 
−14.25 
(0.08%) 

−13.99 
(−1.74%) 

−14.04 
(−1.38%) 

−14.23 
(−0.08%) 

−14.43 
(1.31%) 

−14.71 
(3.28%) 

−14.24 
(0.03%) 

4
ˆ

d  −10.23 
−10.04 

(−1.79%) 
−10.82 
(5.83%) 

−10.26 
(0.33%) 

−10.25 
(0.22%) 

−10.37 
(1.38%) 

−10.33 
(1.06%) 

−10.19 
(−0.34%) 
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Table 4. The five most influence observations in Longley data. 

OLSE ORRE Liu Estimator 

Case iD
i Case D

i Case D  Case DFFITS Case Leverage Case 
Standardized

Residual 

5 0.614 16 0.582 15 0.352 15 0.667 16 0.613 10 1.981 

16 0.467 10 0.251 4 0.315 4 −0.574 5 0.540 4 −1.734 

4 0.244 4 0.219 1 0.231 1 0.493 2 0.493 15 1.424 

10 0.235 15 0.145 6 0.134 6 −0.445 1 0.357 5 1.223 

15 0.170 5 0.142 16 0.106 16 −0.179 15 0.306 1 1.133 

 
Table 5. The most five influential cases for Longly data 
using deletion formulas. 

   a d
iDFFITS  

*

a i
 D   

**

a i
D  

Case Value Case Value Case Value 

15 0.642 15 0.335 15 0.323 

4 −0.554 4 0.300 4 0.302 

1 0.476 1 0.223 1 0.211 

6 −0.423 6 0.126 6 0.112 

16 −0.154 16 0.101 16 0.093 

6. Discussion 

In this article, I show that the Liu estimator user not rely 
on influence measures obtained for OLSE. Once the 
value of d is determined, influence measures should be 
computed for that d. If, after analyzing these indexes, it is 
decided to delete one or more cases from the analysis, the 
whole situation has to be reassessed in terms of both in- 
fluence and multicollinearity. 

In this research study, the Liu estimator shrinkage pa- 
rameter d is estimated first and for that d value the Liu 
estimator co-efficients are estimated. Using these pa- 
rameter quantities the influential observations are identi- 
fied. But, the value of shrinkage parameter d depends on 
the every observation. Hence, for every influential case 
the value of d should be estimated. This is very difficult 
task so this issue will be studied in future research study.  

The main advantage of the deletion formulas in Sec- 
tion 4 is that, as in least squares, the estimator does not 
have to be computed every time a case is deleted. For a 
value of d all of the elements in (8), (9) and (10) are 
readily available from a single run of Liu estimator. 
Moreover, these measures, based on deletion formulas 
are particularly helpful for large data sets. Furthermore, 
the deletion formulas provide computationally inexpen- 
sive approximate influence measures for Liu estimator. 

Although no conventional cutoff points are introduced 
or developed for the Liu estimator global influence di- 

agnostics: Cook’s measures, DFFITS, Leverage and Liu 
Estimator standardized residual, it seems that index plot 
is an optimistic and conventional procedure to disclose 
influential cases. It is a bottleneck for cutoff values for 
the influence method. These are additional active issues 
for future research study. 

REFERENCES 
[1] D. A. Belsley, E. Kuh and R. E. Welsch, “Regression 

Diagnostics: Identifying Influence Data and Source of 
Collinearity,” Wiley, New York, 1980. 
doi:10.1002/0471725153 

[2] E. Walker and J. B. Birch, “Influence Measures in Ridge 
Regression,” Technometrics, Vol. 30, No. 2, 1988, pp. 221- 
227. doi:10.1080/00401706.1988.10488370 

[3] D. A. Belsley, “Conditioning Diagnostics: Collinearity 
and Weak Data in Regression,” Wiley, New York, 1991.  

[4] L. Shi, “Local Influence in Principal Component Analy- 
sis,” Biometrika, Vol. 84, No. 1, 1997, pp. 175-186. 
doi:10.1093/biomet/84.1.175 

[5] A. Jahufer and J. B. Chen, “Assessing Global Influential 
Observations in Modified Ridge Regression,” Statistics 
and Probability Letters, Vol. 79, No. 4, 2009, pp. 513- 
518. doi:10.1016/j.spl.2008.09.019 

[6] A. Jahufer and J. Chen, “Measuring Local Influential 
Observations in Modified Ridge Regression,” Journal of 
Data Science, Vol. 9, No. 3, 2011, pp. 359-372. 

[7] A. Jahufer and J. B. Chen, “Identifying Local Influential 
Observations in Liu Estimator,” Journal of Metrika, Vol. 
75, No. 3, 2012, pp. 425-438. 
doi:10.1007/s00184-010-0334-4 

[8] J. W. Longley, “An Appraisal of Least Squares Programs 
for Electronic Computer for the Point of View of the 
User,” Journal of American Statistical Association, Vol. 
62, No. 319, 1967, pp. 819-841. 
doi:10.1080/01621459.1967.10500896 

[9] R. D. Cook and S. Weisberg, “Residuals and Influence in 
Regression,” Chapman & Hall, London, 1982. 

[10] K. Liu, “A New Class of Biased Estimate in Linear Re- 
gression,” Communications in Statistics—Theory and 
Methods, Vol. 22, No. 2, 1993, pp. 393-402. 

[11] A. E. Hoerl and R. W. Kennard, “Ridge Regression: Biased 

Copyright © 2013 SciRes.                                                                                  OJS 

http://dx.doi.org/10.1002/0471725153
http://dx.doi.org/10.1080/00401706.1988.10488370
http://dx.doi.org/10.1093/biomet/84.1.175
http://dx.doi.org/10.1016/j.spl.2008.09.019
http://dx.doi.org/10.1007/s00184-010-0334-4
http://dx.doi.org/10.1080/01621459.1967.10500896


A. JAHUFER 11

Estimation for Nonorthogonal Problems,” Technometrics, 
Vol. 12, No. 1, 1970, pp. 55-67. 
doi:10.1080/00401706.1970.10488634 

[12] C. Stein, “Inadmissibility of the Usual Estimator for the 
Mean of a Multivariate Normal Distribution,” Proceeding 
of the third Berkeley Symposium on Mathematical Statis- 
tics and Probability, Berkeley, December 1954 and July- 
August 1955, pp. 197-206. 

[13] G. C. Mcdonald and D. I. Galarneau, “A Monte Carlo 
Evaluation of Some Ridge-Type Estimators,” Journal of 
American Statistical Association, Vol. 70, No. 350, 1975, 
pp. 407-416. doi:10.1080/01621459.1975.10479882 

[14] C. L. Mallows, “Some comments on Cp,” Technometrics, 
Vol. 15, No. 4, 1973, pp. 661-675.  

[15] G. Wahba, G. H. Golub and C. G. Heath, “Generalized 
Cross-Validation as a Method for Choosing a Good Ridge 
Parameter,” Technometrics, Vol. 24, No. 2, 1979, pp. 
215-223. doi:10.1080/00401706.1979.10489751 

[16] F. Akdeniz and S. Kaçiranlar, “More on the New Biased 
Estimator in Linear Regression,” The Indian Journal of 
Statistics, Vol. 63, No. 3, 2001, pp. 321-325. 

[17] S, Kaçiranlar and S. Sakallioğin, “Combining the Liu 
Estimator and the Principal Component Regression Esti- 
mator,” Communications in Statistics—Theory and Me- 
thods, Vol. 30, No. 12, 2001, pp. 2699-2705.  

[18] S, Kaçiranlar, G. P. H. Styan and H. J. Werner, “A New 
Biased Estimator In Linear Regression and a Detailed 
Analysis of the Widely Analyzed Dataset on Portland 

Cement,” The Indian Journal of Statistics, Vol. 61, No. 
B3, 1999, pp. 443-459.  

[19] M. H. Hubert and P. Wijekoon, “Improvement of the Liu 
Estimator in Linear Regression Model,” Journal of Sta- 
tistical Papers, Vol. 47, No. 3, 2006, pp. 471-479.  
doi:10.1007/s00362-006-0300-4 

[20] N. Torigoe and K. Ujiie, “On the Restricted Liu Estimator 
in the Gauss-Markov Model,” Communications in Statis- 
tics—Theory and Methods, Vol. 35, No. 9, 2006, pp. 
1713-1722. 

[21] J. Mandel, “Use of the Singular Value Decomposition in 
Regression Analysis,” The American Statistician, Vol. 36, 
No. 1, 1982, pp. 15-24.  

[22] A. S. Topçubaşi and N. Billor, “A Class of Biased Esti- 
mators and Their Diagnostic Measures,” 2001. 
http://idari.cu.edu.tr /sempozyum/bil26.htm  

[23] H. Sun, “Macroeconomic Impact of Direct Foreign In- 
vestment in China: 1979-1996,” Blackwell Publishers 
Ltd., Oxford, 1998. 

[24] R. D. Cook, “Detection of Influential Observations in 
Linear Regression,” Technometrics, Vol. 19, No. 1, 1977, 
pp. 15-18. doi:10.2307/1268249 

[25] L. Shi and X. Wang, “Local Influence in Ridge Regres- 
sion,” Computational Statistics & Data Analysis, Vol. 31, 
No. 3, 1999, pp. 341-353. 
doi:10.1016/S0167-9473(99)00019-5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix  

Sherman Morrison-Woodbury (SMW) Theorem  
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