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ABSTRACT

The local Petrov-Galerkin methods (MLPQG) have attracted much attention due to their great flexibility in dealing with
numerical model in elasticity problems. It is derived from the local weak form (WF) of the equilibrium equations and
by inducting the moving last square approach for trial and test functions in (WF) is discussed over local sub-domain. In
this paper, we studied the effect of the configuration parameters of the size of the support or quadrature domain, and the
effect of the size of the cells with nodes distribution number on the accuracy of the methods. It also presents a compari-
son of the results for the Shear stress, the deflections and the error in energy.
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1. Introduction

Recently Meshless formulations are becoming popular
due to their higher adaptivity and lower cost for pre-
paring input data in the numerical analysis. A variety of
meshless methods has been proposed so far (Belytschko
et al., 1994; Atluri and Shen, 2002; Liu, 2003; Atluri,
2004) [1-6]. Many of them are derived from a weak-form
formulation on global domain [1] or a set of local sub-
domains [4-7].

The meshless local Petrov-Galerkin (MLPG) method
originated by Atluri and Zhu [1] uses the so-called local
weak form of the Petrov-Galerkin formulation. MLPG
has been fine-tuned, improved, and extended by Atluri’s
group (Atluri et al., 1999) and other researchers over the
years [8-10]. MLPG has been applied to solve elastostat-
ics and elastodynamics problems of solids and plats [11].

The method is a fundamental base for the derivation of
many meshless formulations, since trial and test fun-
ctions are chosen from different functional spaces.

MLPG does not need a global mesh for either function
approximation or integration. The procedure is quite si-
milar to numerical methods based on the strong-form for-
mulation, such as the finite difference method (FDM).
However, because in the MLPG implementation, moving
least squares (MLS) approximation is employed for con-
structing shape functions, special treatments are needed
to enforce the essential boundary conditions [4,7].

The aims of this paper are to study the effect on accu-
racy and convergence of MLPG methods of different size
parameters: @, and «, associated to support and qua-
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drature domains respectively. The support domain is de-
noted be equal to influence domain. For fixed values of:
a, and a,, the effect of cells numbers N, with nodes
distribution number, on energy errors is also studied and
some of our results are presented.

In this work, the MLPG method will be developed for
solving the problem of a thin elastic homogenous plate.
The discretization and numerical implementation are pre-
sented in Section 2 numerical example for 2D problem
are given in Section 3. Then paper ends with discussions
and conclusions.

2. Basic Equations

Let us consider a two-dimensional problem of solid me-
chanics in domain Q bounded by I" whose strong-
form of governing equation and the essential boundary
conditions are given by:

oy (X)+b (x)=0 (1)
oyn; :'Eon I, 2)
U =0 on I, 3)

where in Q, o' :[O'XX,GW,TXJ is the stress vector
and b' = [bx,by] the body force vector.

On the natural boundaries t is the prescribed trac-
tion, n=(n,n,) denoted the vector of unit outward
normal at a point.

[u,,u,] the displacement components in the plan and
[[,.,0,] on the essential boundaries.

In the local Petrov-Galerkin approaches [3], one may
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write a weak form over Q, a local quadrature domain
(for node I), which may have an arbitrary shape, and
contain the point X, in question, (see Figure 1). The
generalized local weak form of the differential Equations
(1) and (3) is obtained by:

.[QQ<UU,1 ()+b,(x))W,dQ

) (4)
—aIrQu (u; —T; )W,dl" =0

where Q) is the local domain of quadrature for node I
and T, is the part of the essential boundary that
intersect with the quadrature domain Q.. W, is the
weight or test function , W, e C*(Q) [12]. The first
term in Equation (4) is for the equilibrium (in locally
weighted average sense) requirement at node 1. The se-
cond integral in Equation (4) is the curve integral to
enforce the essential boundary conditions, because the
MLS shape functions used in MLPG lack the Kronecker
delta function property.

o is the penalty factor, Here we use the same penalty
factor for all the displacement constraint equations (es-
sential boundary conditions) [1]

Generally, in meshfree methods, the representation of
field nodes in the domain will be associated to other
repartitions of problem domain: influence domain for
nodes interpolation, Qg is the support domain for ac-
curacy. For each node €, is the weight function do-
main, and €, is the quadrature domain for local inte-
gration.

Using the divergence theorem [11] in Equation (4) we
obtain:

Jro oynW,dI" - IQQ oW, ;dQ

N Q)
+ng b,W,dQ—a_[rQu (u; =T, )W,dl" =0

where 'y =To, UT,, UT

Figure 1. The local sub-domains around point x, and
boundaries.
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[y, : The internal boundary of the quadrature domain

[ : The part of the natural boundary that intersects
with the quadrature domain

[y, : The part of the essential boundary that intersects
with the quadrature domain

When the quadrature domain Q, is located entirely
within the global domain on I',, and Iy, no bound-
ary conditions are specified then 'y =T, .

Unlike the Galerkin method, the Petrov-Galerkin me-
thod chooses the trial and test functions from different
spaces. The weight function W, is purposely selected in
such a way that it vanishes on ', . We can then change
the expression of Equation (5):

jQQ oW, ;dQ+a eru uW,dr — eru oyn,W,dr

_ (6)
=[ W dl'+af GW,drC+[ bw,dQ
! Tou Qq

Tt
Witch is the local Petrov-Galerkin weak form. Here
we require U; € C*(Qq) [3,11] and the simplified Pet-

rov-Galerkin form is:

jQQ oW, ,dQ = jQQ bW,dQ (7)

Precedent equations are used to establish the discrete
equations for all the nodes whose quadrature domain
falls entirely within the problem domain (Equation (7))
and to establish the discrete equations for all the bound-
ary nodes or the nodes whose quadrature domain inter-
sects with the problem boundary “Equation (6)”.

To approximate the distribution of the function u in
Qg the support domain over a number of nodes n,.
We shall have the approximant u"(x) of u [13]

=3
S5

VxeQq:u"(x) =

@, (x)u, ®)

1

where | denote the set of the nodes in the support domain
Qg ofpoint X, .

@, the MLS shape function for node I that is created
using nodes in the support domain Qg of point X, . The
discrete system in Equation (6) is given in matrix form:

jQQv,T cdQ+a er oW, dr - er tW,dr

= _ ©
=[ W, dr+a| TWdl+[ WhdQ
Fot Tou QQ
W, 0
where V, =/ 0 W, | is a matrix that collects the
WI,y Wl,x

derivatives of the weight functions in Equation (6), and

W, 0
W =( 0' W j is the matrix of weight function. The
|

stress vector defined by:
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o=Ce=CLuU" (10)

where C is the symmetric elasticity tensor of the mate-
rial

E/1-v* vE/1-v? 0
C=|vE/1-v* E/1-V? 0
0 0 E/2(1+v)
Substituting the differential operator
ojox 0
Ly=| 0 /oy |,
0/dy 0/
and Equation (8) into Equation (10) we obtain:
o
oc=C> By, (11)
=1
o, 0 n 0
where B, =| 0 @, | andbyusing L=/ 0 n,
q)I,y q)l,x n2 n1
the tractions of a point x can be written as:
t=Lo (12)

Substituting Equations (8), (11) and (12) into Equation
(6), we obtain the discrete systems of linear equations for
the node I.

zﬂl[ jQQv,TCB,dejrQ W, ®,dI
1=1 u

- w, LI]CBIdF}u, (13)
Q
=[ Wdr+af TW,dC+[ WbdQ
Tt Tou Q9
That can assembled in matrix form:

o
ZKIUI = fl (14)
1=1

where nodal stiffness matrix

K, =[ V/CBdQ+af Wddr
Q Fqu

(15)
—[_ w,LjCB,dr
o

And nodal force vector with contributions from body
forces applied in the problem domain, tractions applied
on the natural boundary, as well as the penalty force
terms.

f, = jrot W,dlr+« eru awW,dr + j%wl bdQ  (16)
Two independent linear equations can be obtained for

each node in the entire problem domain and assembled
all these 2*n equations to obtain the final global sys-
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tem equations:

K,neanU

onet = Fonu (17)

To solve the precedent system, the standard Gauss
quadrature formula is applied with 16 Gauss points [3,14]
for evaluation of boundary and domain integrals in Equa-
tions (15) and (16)

2n*2n

3. Numerical Example

In this section, numerical results are presented for Canti-
lever rectangular plate in Figure 2. First we investigate
the effects of the size of support or quadrature domains
and we examine the numerically convergence of MLPG,
then comparisons will be made with the analytic solution
[15]

The problem data:

The height of the beam D =12 m and the length of
the beam: L =48 m;

The thickness of the plat: unit and Loading (integra-
tion of the distributed traction): P =10°N;

Young’s modulus: E =3x10" N/m®> and Poisson’s
ratio: v =0.3.

The standard Gaussian quadrature formula is applied
with 16 Gauss points, and for MLS approximation linear
polynomial basis functions are applied, the cubic spline
function is used as the test function for the local Petrov-

- -
[~ -

Figure 2. Cantilever plate subjected to distributed traction
at the free end.
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Figure 3. 55 regular field nodes on the problem domain and
boundaries.
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Galerkin weak-form. In our numerical calculations we
consider many regular distributions of nodes: 55 or 175.
To calculate the error energy a background cells is re-
quired, then we have varying the number of cell. To ob-
tain the distribution of the deflection and stress through the
plates, size of quadrature domain and support domain are
varied. Nodal configuration for a cantilever plate with 55
nodes (Figure 3) (nodal distance d, =4.8, d, =3) and
the sizes of Q, is defined by: 1, =a,d, where d;

is the nodal spacing near node | and 1, is the size of the
local quadrature domain for node |. The sizes of quadra-
ture domains will be, there fore determined by Q,, and
@, Wwhich are dimensionless coefficients in X and y di-
rections, respectively. For simplicity

Qoy =g, =y s used. The dimension of the support
domain is determined by d; =a,d, and o, is the di-
mensionless size of support domain.

4. Discussions

Figure 4 Shows the variation of the effective transverse
shear stress 7, at different points on vertical of the plate
by varyingXx for o, =3 and a,=1.5. It can be seen
the shear stress distributions on the cross-section at in
other sections (x=L/4,x=L/2,x=3L/4 and x=L).
it’s shown that the shape is identical to that obtained by
theoretical analysis ( section X=1L).

The accuracy is clear for the greater value of field
nodes distribution. It is also shown in this figure, on the
cross-section the meshless MLPG agree well with those
from analytical solution (dashed lines).

Figure 5 displays the variation of the energy error as a
function of the size of the local support domain, for fixed
value of «,, a background cells is needed, we take
ay =1.5. We note on the figure the effect distribution
field nodes number on the result, we take n =55 and 175
number of cell is n, =40 and 144 respectively.

0
v MLPG result 175node x=L/4
201 —a— MLPG result 175node x=L/2
—e— MLPG result 175node x=3L/4
-40 —x— MLPG result 175node x=L
o 1 \-- Analytical result
O -60-
>
< -804
()
<
” -100- - .
-120 \i
‘140 T T T T T
-6 -4 2 0 2 4 6

Figure 4. Shear stress (rxy) distribution as a function of y
for different values of x (x=L/4,x=L/2,x=3L/4 and
x =L ) (175 regular field nodes).
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In the case a, =1.5 For the value of field nodes num-
ber n=55 (number of cell is n, =40) the result gives
a greater domain when the value of ¢, :1.85<¢ <5
can be selected and the method is yet convergent.

Forn=175 (aQ = 1.5) the domain when accuracy is
goodin 1.8<a <3 our results are comparable to those
obtained by other authors [3,5,6].

But in case a, =2, we have considered n = 175 the
domain of convergence is found to be greater
1.85< ¢, <3.65.

Figure 6 displays the variation of the energy error as a
function of the size of the local quadrature domain, for
fixed value of «, a background cells used, we take
a, =3 and we choose two values of n = 55 and 175
number of cell is n, =40 and 144 respectively.

For the selected values n the domain when the value of
a, can be selected and the method is yet convergent is
(15<aq <3).

In Figure 7 the deflection results are plotted as func-
tion of X and fixed value of &, =1.5 where y =0 and by
varying the size of the support domain (01S =2;2.5,3;3.5).
It can be seen that the function presents a classical shape

14
124 Result MLPG 55 node,ay=1.5
1.0- Result MLPG 175 node,0q=1.5

0.8+

0.6

Energy error

0.4

0.2

0-0 T T T T T T
15 20 25 30 35 40 45 50

The sizes of local support domain

Figure 5. Influence of the « on energy error for different
distribution nodes numbers.

1.2
1.04 © MLPGresult 55 reqular nodes, 40cell
’ MLPG result 175 regular nodes, 144 cell

. 0.8+
e
°>’\ 0.6
2
2 0.4
w

0.2

) O
0.0 T T T T
0.5 1.0 1.5 2.0 25 3.0

The sizes of local quadrature domain

Figure 6. Influence of the a,on energy-error for two dis-
tribution field nodes numbers.
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for all values of ¢« and reaches the analytical solution.

The effect of the field distribution number on the de-
flection values is presented in Figure 8. For different
values of « and «, A Comparison is made with the
analytical results of deflection (solid line plotted in the
Figure 8).

For a, =2 the greater values of nodes numbers n =
175 even gives precision for the greater values of
o, =3.65 (dashed curve). No curve is available for n =
55.

For the less values of o, —we have found in Figure 5
o, =1.85—two curves are plotted for n = 55 and n =
175.

It also presented the variation of the defection in the
case a, =3.65,a, =2 for n = 55 the curve coincides
with that of the analytical results.

5. Conclusion

In conclusion, the size of the local quadrature and sup-
port domain affect the accuracy and performance of the
MLPG methods and it also show a great influence of the
choice of field nodes distribution number. The conver-
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Figure 7. Deflections at the central axis at y = 0 of the plate
for different values of o (as =2,2.5,3,3.5).
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Figure 8. Deflections as a function of x at y = 0, for
n, =55,175 and different value of a;anda, .
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gence and accuracy of MLPG method can still be better
by using a number of appropriate nodes in a large do-
main when the support sizing coefficient ag can be
chosen and «, is fixed. In our numerical examples the
MLPG gives a very close value in comparison with the
analytical results.
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