
Intelligent Control and Automation, 2013, 4, 94-101
http://dx.doi.org/10.4236/ica.2013.41013 Published Online February 2013 (http://www.scirp.org/journal/ica)

An Enhanced Genetic Programming Algorithm for
Optimal Controller Design

Rami A. Maher1, Mohamed J. Mohamed2
1Isra University, Amman, Jordan

2University of Technology, Baghdad, Iraq
Email: rami.maher@iu.edu.jo, moh62moh@yahoo.com

Received August 16, 2012; revised September 22, 2012; accepted September 30, 2012

ABSTRACT

This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The pro-
posed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main ideas
concerning the initial population, the tree structure, genetic operations, and other proposed non-genetic operations are
discussed in details. An optimization algorithm called numeric constant mutation is embedded to strengthen the search
for the optimal solutions. The results of solving the optimal control for linear as well as nonlinear systems show the
feasibility and effectiveness of the proposed MBFGP as compared to the optimal solutions which are based on numeri-
cal methods. Furthermore, this algorithm enriches the set of suboptimal state feedback controllers to include controllers
that have product time-state terms.

Keywords: Genetic Programming; Optimal Control; Nonlinear Control System

1. Introduction

Genetic Programming (GP) is a stochastic search method
that inspired by the selection and the natural genetics. GP
is characterized by its capability to evolve models (struc-
ture as well as parameters) for different kinds of prob-
lems in different scientific fields. However, GP in its ba-
sic standard form needs to be revised according to the ap-
plications nature and requirements. In order to increase
the efficiency of GP to deal with optimal control prob-
lems, a set of syntactic rules are created to force all tree
structures in the population such that the GP will evolve
only solutions of desired form. These rules state for each
node which terminal node and non-terminal node can be
its children nodes while generating new trees and per-
forming genetic operations. The idea of using constraint
syntactic structure GP was suggested by Koza [1]. Then
it was extended by Montana, who has developed the idea
of strongly typed GP [2]. Further development was an-
nounced under what is known as a grammatical GP [3].

In many application areas, the GP is one of the power-
ful current soft computing algorithms [4-6]. It can solve
different types of problems in control discipline. For in-
stance, the GP is recently used to solve the well-known
Hamilton-Jacobi-Bellman (HJB) equation. Joe Imae et al.,
in their works [7,8] showed how GP can be used to solve
the HJB equation efficiently for linear and nonlinear con-
trol systems. The results of the used examples are coin-
cident that based on the theoretical solutions. Enhancing

the standard tree structure used in the GP algorithm by
new thoughts, ideas, and tools represent a road map to
get an efficient methodology for controller design for non-
linear dynamic systems.

2. The Proposed MBFGP Algorithm

This paper proposes an approach to force GP tree struc-
tures to represent a certain random number of basis func-
tions that are linear in parameters. The approach will be
called MBFGP. In this way, the search space of all pos-
sible GP trees is reduced to a subspace of trees that satis-
fies the required data type constraints.

These constraints are defined before learning takes
place, and they have an impact on the evolutionary proc-
ess of the algorithm. Three considerations arise when GP
is implemented with trees that have such constrained
syntactic structures. These considerations are:

1) The initial population of the random individuals
must be created such that every program in the popula-
tion has the required syntactic structure.

2) When the genetic operations are performed, the re-
quired syntactic structure must be preserved so that the
operations will always produce the offspring conforming
to the syntactic structure.

3) The fitness measure must consider the syntactic
structure.

The basic parts constituting of the MBFGP and other
related details will be explained in the following subsec-

Copyright © 2013 SciRes. ICA

R. A. MAHER, M. J. MOHAMED 95

tions.

2.1. Representation

The structures of program trees in MBFGP are composed
of a random number of linear and/or nonlinear basis
functions (terms), which are forced to be linear in para-
meters. The MBFGP tree structure has a single root node,
internal nodes, and leaf nodes. The general tree structure
of MBFGP is divided into two main parts: the head part
constructed from fixed (restricted to have specific loca-
tions in the tree) problem independent nodes set Σ, f or R
and the tail part constructed from unfixed (freely to ap-
pear in the tree) problem dependent nodes set as shown
in Figure 1.

The node Σ is restricted to appear only in the root of
the tree structure, so this node will root every program
tree. It allocates a space of a specified number Nb of ar-
guments while it is created. However, not all of these ar-
guments will be filled, but instead a random number of
them in the range between 1 and Nb will be filled. The
rest of the arguments is left empty. These empty argument
spaces have an important role through the adaptation
process of structures. They may be filled during the im-
plementation of genetic operations on its tree structure.

This property gives the node Σ the ability to have been
varying numbers of filled arguments through adaptation,
and gives the overall structures high flexibility to adapt
their size. The basis function node has two arguments of
fixed type; it is also restricted to appear only as a child
(argument) of the root node in every tree structure. The
two arguments of this node carry different types of nodes.
The first argument is restricted to carry only the numeric
constant terminal node R, while the second argument
may represent any unrestricted node from unfixed termi-
nal and function sets. The R nodes represent the coeffi-
cients of the basis functions that are present in the tree
structure. Each R node is restricted to appear only in the
first argument of each basis function node. Finally, the
unfixed node set represents all available functions and
terminals that are chosen by the user to appear in the com-

Figure 1. A general tree structure of MBFGP.

puter program.
According to the set of specific rules that are defined

to specify which terminals and functions are allowed to
be child nodes of every function in the MBFGP tree
structure, fixed sequence of nodes for each basis function
will appear in the head part. On the other hand, in the tail
part, the basis functions are completed freely without any
restrictions on the sequence of nodes. Therefore, differ-
ent basis functions in the tree structure can be obtained.

2.2. Initial Population

The initial population of random tree structures must be
created using the syntactic rules of construction. The de-
sired structure of the multiple basis functions can be cre-
ated merely by restricting the choice of function for the
root of the tree to node Σ. Then, using uniform random
distribution, a random number is chosen in the range 1 to
Nb. This random number specifies the number of argu-
ments of the node Σ that is required to be filled. All
branches of the node Σ are restricted to carry the basis
function f nodes.

The first argument of each function node f is restricted
to carry numeric constant terminal node R. The value for
each created numeric constant terminal node is chosen
randomly in a specified range (e.g., in range −10 to 10
with step size 0.001). The second argument is unrestricted.
It can carry any available function from the set of the un-
fixed functions or any available terminal from the set of
the unfixed terminals. The proceeding nodes in each
branch are chosen randomly from the same unfixed func-
tion and terminal sets. The end of the tree structure is
bounded by the parameter of maximum creation depth;
this parameter is determined by the user.

2.3. Genetic Operations

The genetic operations, as is the case with the creation of
initial population, must respect the syntactic rules to pro-
duce the correct offspring tree structure. The proposed
genetic operations for MBFGP are described in what
follows.

- Crossover Operation
Two types of crossover operation are implemented on

MBFGP tree structures. These types are: the Internal
Crossover Operation which occurs in the tail part of each
parent tree structure. The operation starts by choosing
randomly two parental trees from the population based
on fitness measure. Choosing a crossover point in each
parent is restricted to picking randomly a node from the
tail part in order to preserve the required tree structure
for the produced offspring. The simplest way to perform
the restraining process is to exclude the fixed nodes (Σ, f
and R) of the parental tree from being selected as a cross-
over point of either parent. This restraining secures that

Copyright © 2013 SciRes. ICA

R. A. MAHER, M. J. MOHAMED 96

the crossover preserves the syntactic structure, and it will
always produce the offspring tree structures. The second
type is the External Crossover Operation, which occurs
in the head part of the tree structure. In this type, two pa-
rental trees are selected randomly from the population
based on fitness measure.

The number of existent basis functions in each paren-
tal tree is counted. Therefore, the syntactic rules enforce
the crossover point in each parent to be one of the basis
functions, which are selected randomly from the existent
basis functions in the parental tree. Then, the swapping be-
tween these two selected basis functions is implemented
to produce two new offspring.

- Mutation Operation
Different types of mutation operation are proposed.

They are:
1) Swap operation, which is applied to the tail part of

the parental tree structure only. The present unfixed nodes
(functions and terminals) in the tail part of the selected
parental tree structure are counted. One unfixed node is
randomly selected from the tree structure. The number of
arguments kγ of the selection is checked. Another new
node is chosen randomly with kγ arguments from com-
bined sets of unfixed function and terminal nodes. The
new chosen node changes the existent node in the tree
structure. If one considers the number of arguments of
the terminal node is zero, another randomly chosen ter-
minal node can swap the original terminal node.

2) Shrink operation, which is applied similarly as the
swap operation. It begins by choosing randomly an un-
fixed function node and then the chosen function node is
deleted and replaced with its child. If the deleted function
node has a lot of children, one child among them is cho-
sen randomly to take the place of its parent in the tree,
and the rests of the children are deleted. This operation
eventually leads to a lower depth of the overall tree.

3) Inverse shrink operation which has two modes of
operations: the internal mode operates in the tail part, and
the external mode operates in the head part. The internal
operation will start by picking randomly an unfixed node.
The sub-tree rooted at this node is stored and then de-
leted from the parental tree. Then, a new function node is
chosen randomly from the available set of the unfixed
function to take the place of the original unfixed node.
The stored sub-tree is inserted back in the first argument
of the new node of the unfixed function. If the new func-
tion node has more than one argument, randomly created
sub-trees fill the remaining arguments. The depth of the
created sub-trees is controlled by the parameter of maxi-
mum allowable depth. This operation eventually might
lead to a higher depth of the overall tree. The external
operation works such to increase the number of basis
functions in the produced offspring. Nevertheless, the
operation is ignored when the number of basis functions

in the parental tree is equal to the maximum allowable
number Nb. In this case, the offspring is an exact copy of
the parent tree.

4) Branch operation which has also two modes of op-
eration, internal and external. The former one works such
to create randomly a sub-tree using available unfixed
function and terminal sets with respect to the maximum
allowable depth. Then, the new created sub-tree is in-
serted in the mutation point to produce a new offspring.
A special case of this operation involves inserting a sin-
gle terminal node at the selected mutation point. While
the external operation works such to create a new sub-
tree rooted with basis function node f. It is created with
respect to the syntactic rules of construction, and it is
inserted instead of a randomly deleted basis function to
produce a new offspring.

- Additional Genetic Operations
Additional proposed operations that are used to vary

and adapt the tree structures. They are:
1) Endowment operation: The name “Endowment” has

been chosen to indicate the process of basis function en-
dowment that occurs between two individuals. This op-
eration starts by choosing randomly two parental indivi-
duals on the base of the fitness. The number of existent
basis functions in each parent is counted. One basis func-
tion of the existent basis functions in each parent is cho-
sen randomly. A copy of the selected basis function in
the first parent is added to the basis functions in the sec-
ond parent to produce the first offspring. While a copy of
the selected basis function in the second parent is added
to the basis functions in the first parent to produce the
second offspring.

2) Delete operation, which is used to delete a basis
function of the individual on the bases of the fitness
value.

3) Merging operation: It edits and simplifies the indi-
vidual tree structure during GP running. For example, if
the tree has two or more basis functions with similar in-
ternal structure and contents, then this operator merges
them in one basis function.

2.4. Enhancement Operations

A number of enhancement operations are proposed here.
They are:

1) Nested function operation: It is responsible for solv-
ing the problem of the nested mathematical functions in
the individual solutions. Every nested mathematical func-
tion node in the tree structure is deleted and replaced by a
new sub-tree, which is randomly created. This operator
works on all the individuals in every generation.

2) Structural Sorting Operation: It emphasizes that the
tree structure as well as the fitness of the individual is
considered through implementing the sorting. The popu-

Copyright © 2013 SciRes. ICA

R. A. MAHER, M. J. MOHAMED 97

lation of individuals is sorted first according to the fitness
measure with the fittest at the top. Then it is starting from
the best individual in the sorted population to pick the
best individual and put it in a new list. The procedure
proceeds to the less fit individual, if its tree structure and
components are not picked before. This means that, any
individual that has a structure with components being
picked before is ignored, and thus each individual tree
structure along with its components is picked only once.
The new list of sorting will contain different sorted indi-
viduals. This structural sorting operation is based on fit-
ness, and at the same time the sorted individuals are of
different structures and components.

3) Enrichment Operation: In order not to discard too
soon structures that may be valid, the operation uses first
the proposed structural sorting operation. Then a speci-
fied number of the individuals is retained from the sorted
population list. The proposed method feeds the next popu-
lation by a number of trees that are different in structures
and/or components. In this way, it increases the structural
diversity in the subsequent generations.

4) Contribution Operation: It determines the contribu-
tion of each of the basis functions in the individual. It
resolves the problem of poor diversity of the basis func-
tions by deleting any basis function that has a trivial con-
tribution in the fitness measure. The contribution opera-
tion is an effective method to determine which basis
functions are significant in MBFGP, and are controlled
by the frequency parameter Fco. It is either 1, 0, or an
integer greater than one, thus the contribution operation
is to be applied to every generation, to no generation or
with a certain frequency respectively. In the Appendix,
the operation algorithm is shown.

5) Numeric Constant Mutation: It is used, during the
GP run, for the known reasons of replacing some of the
numerical constant node values by new ones in the indi-
vidual [6]. The proposed MBFGP here applies two pro-
posed modes of mutating numeric constant node values.
Before GP run, the user must specify the range and the
resolution of the numeric constant node values (e.g., the
range is –10 to 10 with resolution of 0.001). In this case,
the algorithm avoids the use of default precision of the
floating constant valid in the programming language.
This gives the algorithm the ability to ignore the least
significant digits in the numeric constant value. The num-
ber of numeric constant nodes to be mutated in each in-
dividual is chosen randomly in the range 1 to n. For ex-
ample, if the range is 1 to 3, then this will mean that
moving in three dimensions on the cost surface of the nu-
meric constant gives a good probability to climb out the
local minimum or maximum. Then after the number of
numeric constant nodes that will be mutated is deter-
mined, these numeric constants are chosen randomly in
the tree. Each value of the numeric constant node is ran-

domly chosen according to one of the following methods.
The first method suggests that the new numeric constant
values are chosen at random from a specific uniform dis-
tributed chosen range. The selection range for each nu-
meric constant is specified as the old value of the nu-
meric constant plus or minus a specified a percentage of
the total allowed range. Therefore, it lets the mutation
operation explore all the search space and avoid falling in
local minimum or maximum. The second method sug-
gests selecting the location of the digit to be mutated ran-
domly. The new value of the numeric constant is equal to
the old value plus or minus one for the selected digit. For
example, if the old value is 3.791 and the least significant
digit is chosen as the digit to be mutated, then the new
value of the constant will be either 3.792 or 3.790 with
equal probability. Therefore, the second method is useful
for fine tuning where the need is only for small change in
the numeric constant node values.

3. Optimal Control Solution Based MBFGP

As a first test of the proposed MBFGP, the design of
controllers for nonlinear dynamic systems is introduced
and compared to optimal control solutions. To emphasize
the importance of using MBFGP, the systems are chosen
such to have the only numerical solution and not a closed-
form one.

As it is known, with numerical methods, there are
many difficulties concerning the accuracy and the con-
vergence of the solution. In such circumstances, it is
hoped that GP is a better alternative. Because not only a
solution can be found, but also it will provide many pos-
sible solutions whose structures can be controlled by the
designer. Therefore, based on the accuracy and the sim-
plicity of the implementation, a choice of one solution
can be decided later.

To illustrate the use of the MBFGP algorithm for solv-
ing optimal problems, three classical examples will be
considered. The results are compared to that obtained by
conventional optimal control theory.

Example 1
Consider the Van der Pol system given by

            
     

2
1 2 1 2 1

2 1 2

1 , 0 0

, 0 3

x t x t x t x t u t x

x t x t x

     


 (1)

 

     
10

2 2 2
1 2

0

d

It is required to determine the optimal control, which
transfers the system to x1(10) = x2(10) = 0, while mini-
mizing the performance index.

J x t x t u t t    (2)

In [9], the method of the conjugate gradient is used to
obtain the optimal control, where the optimum value is
found to be approximately 21.4. However, when the me-

Copyright © 2013 SciRes. ICA

R. A. MAHER, M. J. MOHAMED

Copyright © 2013 SciRes. ICA

98

1 2 20.299x x x

3 3
2 1.047 10   

integer range for R’ node is −5 to 5. The fitness value is
calculated discretely with 0.001 step size. At each step,
the system equations are integrated numerically to obtain
the instantaneous system states.

thod of control vector parameterization CVP is used, it is
shown [10] that the optimum value is 21.4612, and the
control law is

 1 2 1
* , 3.0912 1.3495du x x x   (3) MBFGP control parameters are illustrated in Table 1,

and the results are as follows: The terminal values of the optimal trajectories are

  1 2 1 2 2, 3.816 0.218 1.056 0.445GPu x t x tx x x x    

   5 5
1 2

* *10 6.065 10 , 10 5.232 10x x

(4)    1
* *10 1.353 10 , 10x x 

The optimum value is 21.4335, and the terminal tra-
jectory values are The enhanced algorithm of MBFGP is now used to

evolve optimal control laws. The MBFGP is enforced to
evolve two forms of control laws. The first one is a func-
tion of the time and the system states uGP(x, t) while the
second is a function of system states only uGP(x). In the
first case, the unfixed terminal set is T = {x1, x2, t, one}
while in the second case, the unfixed terminal set is T =
{x1, x2, one}. The unfixed function set in both cases is F
= {*, /, pow}. The fixed numeric constant node R is in
the range −10 to 10 with a resolution of 0.001. A special
integer numeric constant node R’ is used to appear only
in the power function using special structural constraint
rules. The value of this type of numeric constant node is
mutated by special type of mutation operation when the
pow function is chosen in swap mutation operation. The

     

Whereas,

  1 1 2 23.041 1.273 0.328GPu x x x x x   

   3 4
1 2

* *10 1.311 10 , 10 7.463 10x x

 (5)

The optimum value is 21.4572 and the terminal tra-
jectory values are

    

Figure 2 shows the control actions of MBFGP and
CVP approaches. As shown, they are all approximately
the same. Although the first solution gives less minimal
value of J*, the so close results address the second solu-

Table 1. GP control parameters (Example 1).

GP Control Parameter MBFGP Algorithm

Population Size 200

Termination Criterion 300 Generations

Creation Probability 20%

Creation Type Ramped-Half-and-Half

Internal
19%

Crossover Probability
External

13%

Maximum Depth for Creation 5

Maximum Depth for Crossover 8

Selection Type Tournament selection

Tournament Size 4

Swap Mutation Probability 8%
Shrink Mutation Probability 8%

Internal 4%
Inverse Shrink Mutation Probability

External 4%
Internal 4%

Branch Mutation Probability
External 4%

Probability of Delete Operation 8%
Probability of Endowment Operation 8%

Maximum Number of Basis Functions 7

Add Best Solutions to a New Generation Yes

Number of Best Solutions Used in Enrichment 50

Use.Contribution Operation Yes

Frequency of Contribution Operation Fco Each 3 generations.

The Error Reduction Value ε 0.001

Use Merging Operation Yes for all generations and all individuals

Number of Iterations Applying by Numeric Constant Mutation
10 iterations for each individual in the population, and additional 660 iterations for

the elected individuals by the enrichment operation

R. A. MAHER, M. J. MOHAMED 99

Figure 2. Optimal controls of MBFGP and CVP approach.

  20.04 0.501 1.076GPu x x x   tion for the practical implementation. The most interest-
ing results are that GP can result in different controller
structures.

Example 2
Consider the following optimal control problem

   0.2 tanhx t x t u        , 0 5t x 

   2 d

 (6)

It is required to find the optimal control law that mi-
nimizes the performance index

 
0.5

2 2

0

10 10fJ x t x t   u t t  

26 3.329t t

 t

 (7)

When the conjugate gradient method is used to solve
this problem, it is found that within 17 iterations, the
optimum value of the J(u) is 41.5953. Again, when CVP
approach is used, the minimum return value J* is equal to
41.596 and the control law as a function of time is given
by

 * 2.591 1.40du t    (8)

The MBFGP algorithm combined with numeric con-
stant mutation operation is proposed to evolve three con-
trol laws , GPu  GPu x , and u t . These dif-
ferent functions of control laws can be obtained by en-
forcing the unfixed terminal sets in MBFGP algorithm to
be T = {t, one}, T = {x, one} and T = {t, x, one} respec-
tively.

 ,GP x

1.873 2.615t 

The unfixed function set for all cases is F = {*, /, ^}.
The ranges of the fixed numeric constant node R and the
special integer numeric constant node Ŕ, are as in the
previous example. The main MBFGP control parameters
are also as shown in Table 1. The following three control
laws are evolved in generations 399,245, and 282 respec-
tively.

  5 310.621 7.375GPu t t t    (9)

 (10)

 
2 3

, 6.986 1.006 0.452

0.93 2.433

GPu t x t x tx

x t

   

 

   

 (11)

The final system state and optimal criterion for MBFGP
and CVP method solutions are shown in Table 2. In fact,
the control action and the state trajectory behavior of all
solutions are almost the same.

The results again show that very near optimal solu-
tions can be attained, even better than numerical methods.
It is worth mentioning that for the exactly solved optimal
problems, the enhanced proposed MBFGP algorithm can
give the same results after enough generations [11].

Example 3
Consider the linear third order system [12]

    1
1 1 1

2
tan , 0 0.6

π
x t x t u t x     

       2 1 2 2 , 0 0.6x t x t x t x    

       3 2 3 3, 0 4x t x t x t x   

        
3

20 2 2
2 3

0

2 0.01 d

 (12)

It is required to minimize the following optimal crite-
rion

J u x t x t u t t      (13)

The MBFGP combined with numeric constant muta-
tion is proposed to evolve the optimal control laws. The
MBFGP algorithm is enforced to evolve three control
laws uGP(t), uGP(x), and uGP(t, x). The terminal sets for the
three controllers are: T = {t, one}, T = {x1, x2, x3, one},
and T = {x1, x2, x3, t, one} respectively, while the func-
tion set in all cases is F = {*, /, ^}. The MBFGP is also
initiated to similar setting as in the previous problems.
The following three control laws are evolved in genera-
tions 94, 74, and 88 respectively.

Copyright © 2013 SciRes. ICA

R. A. MAHER, M. J. MOHAMED 100

  3 20.753 5.748 12GPu t t t    .072 6.121t 

1 2 3

2
2 3

5.943x x x

x



2
1 2

2 2 2
3 3

38 8.469

2.427

t x

x t



  2 3

2 2
2 3 1

0.482 2.922

10 4.394

GPu X x x

x x x x

  

 

 , 9.88 0.5

1.313

GPu t X x

x t

  

 
 (14)

Figures 3 and 4 show the plots of the system states
and the optimal control respectively for all GP solutions.

4. Conclusions

The standard GP algorithm is enhanced by creating a
new tree structure. The crossover, the inverse shrink mu-
tation, and the branch mutation operations are split into

Table 2. MBFGP and CVP method solutions.

Control law Final state xf Optimal criterion J
ud(t) 0.0417825 41.596

uGP(t) 0.0354204 41.4707
uGP(x) 0.0351676 41.4708

uGP(x, t) 0.0354944 41.4705

Figure 3. System states when GP solutions are applied.

Figure 4. Optimal control u* for all GP solutions.

two operations (internal and external) with different prob-
abilities.

Moreover, four new operations are added, the delete,
contribution, merging and endowment operations, which
are controlled by specific probabilities and special pa-
rameters. Therefore, a new algorithm named MBFGP is
performed.

The MBFGP algorithm can be used efficiently to syn-
thesize an optimal (or very near optimal) control law for
linear as well as nonlinear systems. MBFGP algorithm
deals with them all similarly without significant change.
In addition, the MBFGP algorithm has the capability of
determining beforehand the independent variables in the
evolved optimal controller. The obtained results show
that the MFBGP algorithm can evolve different control-
lers as many as the different terminal sets.

REFERENCES
[1] J. R. Koza, “Genetic Programming: On the Programming

of Computers by Means of Natural Selection,” The MIT
Press, Cambridge, 1992.

[2] D. J. Montna, “Strongly Typed Genetic Programming,”
Evolutionary Computation, Vol. 3, No. 2, 1995, pp. 199-
230. doi:10.1162/evco.1995.3.2.199

[3] E. Hemberg, C. Gilligan, M. O’Neill and A. Brabazon,
“A Grammatical Genetic Programming Approach to Mo-
dularity in Genetic Programming,” Proceedings of the
Tenth European Conference on Genetic Programming,
Valencia, 11-13 April 2007.
doi:10.1007/978-3-540-71605-1_1

[4] I. G. Tsoulos and I. E. Lagaris, “Solving Differential
Equations with Genetic Programming,” Genetic Program-
ming and Evolvable Machines, Vol. 7, No. 1, 2006, pp.
33-54. doi:10.1007/s10710-006-7009-y

[5] C. Yuehui, Y. Ju, Y. Zhang and J. Dong, “Evolving Ad-
ditive Tree Models for System Identification,” Interna-
tional Journal of Computational Cognition, Vol. 3, No. 2,
2005, pp. 19-26.

[6] J. Imae and J. Takahashi, “A Design Method for Nonlin-
ear H∞ Control Systems via Hamilton-Jacobi-Isaacs Equa-
tions: A Genetic Programming Approach,” Proceedings
of 38th conference on Decision & Control, Phoenix, 7-10
December 1999.

[7] J. Imae, et al., “Design of Nonlinear Control Systems by
Means of Differential Genetic Programming,” 43rd IEEE
Conference, Atlantis, 14-17 December 2004.

[8] M. Evett and T. Fernandez, “Numeric Mutation Improves
the Discovery of Numeric Constants in Genetic Program-
ming,” Proceeding of the Third Annual Genetic Pro-
gramming Conference, Madison, 22-25 July 1998, pp. 66-
71.

[9] L. S. Lasdon, S. Mitter and A. Waren, “The Method of
Conjugate Gradient for optimal Control Problems,” IEEE
Transactions on Automatic Control, Vol. AC-12, 1967.

[10] A. M. Rami, “Optimization and Optimal Control, Lecture

Copyright © 2013 SciRes. ICA

http://dx.doi.org/10.1162/evco.1995.3.2.199
http://dx.doi.org/10.1007/978-3-540-71605-1_1
http://dx.doi.org/10.1007/s10710-006-7009-y

R. A. MAHER, M. J. MOHAMED

Copyright © 2013 SciRes. ICA

101

)(

Notes,” University of Technology, Baghdad, 1995-2003.

[11] M. J. Mohamad, “A Proposed Genetic Programming Ap-
plied to Controller Design and System Identification,”

Ph.D. Thesis, University of Technology, Baghdad, 2008.

[12] M. Noton, “Modern Control Engineering,” Pergamon Press
Inc., Oxford, 1972.

Appendix—Contribution Operation
Algorithm

- Let j = 1.
- Start a loop.
- Consider the current basis functions in the individual

i and compute its standard fitness Sf(t).
- Store the original values of the numeric constant ter-

minal nodes of the individual i and record their locations.
- Hide the basis function j that requires computing its

contribution.
- Optimize the values of the numeric constant terminal

nodes of the remaining basis function in the individual
using the proposed numeric constant mutation or any
available technique (use predetermined iterations).

- Compute the standard fitness
~

ji,S f

εji,SiS )(

 of the indi-

vidual i when the basis function j has been hidden.
- If

ff

~
)(

)(

, then delete the basis function
j from the considered individual, where Sf(t) is the stan-
dard fitness with the basis function j,

~
ji,S f is the

standard fitness without basis function j, ε is the error
reduction value (very small positive value).

- Else, return the basis function j in the individual i
and return the original values of the numeric constant
terminal nodes to their original locations in the individ-
ual i.

- j = j + 1.
- Go to “Start a loop” to choose another basis function.
- The above steps will be repeated, but this time it will

be applied to a combination of two basis functions. All
such possible combinations will be con.

