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ABSTRACT 

In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to 
dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, 
the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can 
be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies 
not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a 
pure behavioral model that can be used for various kinds of dependability studies. In the paper it is shown how to build 
and integrate the two modular models and to convert them in a Stochastic Activity Network. Furthermore, based on the 
construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault 
trees is shown, allowing the resolution of DFTs in a very efficient way. 
 
Keywords: Dynamic Fault Tree; Stochastic Dependency Graphs; Stochastic Activity Network; Continuous Time 

Markov Chain 

1. Introduction 

Nowadays, technology and technological systems are fun- 
damental constituents of any industrial process. In such a 
context, the demand of more effective and precise risk 
assessments and performability evaluations has high- 
lighted the necessity of adequate, specific dependability 
evaluation techniques and methods. In fact, such de- 
pendability techniques and methods have to be able to 
effectively capture the behavior of modern systems, sub- 
systems and components which could be characterized 
by interdependencies and interactions. Many methodolo- 
gies have been formulated to achieve these objectives 
and implement efficient solution techniques. Among these, 
Dynamic Fault Tree (DFT) [1,2] stands out for its char- 
acteristics including: a valid formalism, a high level lan- 
guage of description and several resolution algorithms. 
For these reasons DFT has became a benchmark for 
many other modeling framework for the dependability. 

Many efforts have been made to address the following 
main issues: 1) the problem of the state space explosion 
of the equivalent Continuous Time Markov Chain (CTMC) 
[3-7]; and 2) the need of a more generalized formalism to 
tackle various kind of complex systems and able to per-  

form different dependability studies [8-18]. In [12] a 
powerful framework able to tackle general dependencies 
is presented. However, dependencies can be implemented 
only through connections (i.e., denoted as triggers) be- 
tween the elements of the Fault Tree. In this way, com- 
plex relationships can be added abusing of the Fault Tree 
notation, which can, in the end, results in an explosion of 
the tree. 

The main motivation of this work is to expand the 
modeling power capabilities of dependability tools, such 
as DFTs, and maintain a high level formalism of descrip- 
tion. The issues addressed in this paper concern: 1) the 
lack of the general modeling techniques to include sto- 
chastic dependencies between events not directly related 
by a fault (i.e., a more general approach to model state- 
dependent components behavior); and 2) the handling of 
general sojourn time distributions, non-Markovian proc- 
esses (e.g. time delays), inhibitions, multiple failure modes, 
etc. 

To achieve these objectives a modeling framework 
based on a modular approach is presented. The metho- 
dology makes use of two high level models that decouple 
stochastic dependencies and the system fault logic through:  
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a stochastic Dependency Graph (DG) and a generic fault 
schema. Hence, dependability measures are evaluated 
through the combination of the information provided by 
these two models. 

The framework results incredibly flexible because the 
DG and the fault schema are independent. The former 
embeds the dependencies among the components, the 
latter embeds the system fault logic. Moreover, this last 
one can be constructed in several ways (i.e. FT, RBD, 
Event Tree, etc.). In this way, it is possible to generate a 
behavioral model on the basis of the information con- 
tained in the DG and compute many Reward Functions 
(RF; like the reliability, availability, reliability with re- 
pair, conditional probabilities, etc.) attaching the infor- 
mation derived from the system fault schema. 

In this paper is presented an application of this model- 
ing framework and a practical case study to convert DFT 
will be shown: the stochastic dependencies of the DFT 
will be captured by the DG model, while the system fault 
logic will be described by a static Fault Tree (FT). In the 
following this modular model is referred as a Stochastic 
Dependency Graph Fault Tree (DGFT). 

The objectives of this methodology can be listed as 
follow: 
 Create a more flexible approach for the dependability 

modeling in presence of state-dependent components 
behavior; 

 Model new dependencies logics that are not expressed 
through the dynamic gates of the DFT; 

 Assess various dependability studies using one single 
model; 

 Evaluate dependability measures of complex systems 
by the mean of analytical and simulating methods 
easily retrievable from the high level models. 

The remainder of the paper is structured as follow: in 
Section 2 a general description of DGs’ basic elements is 
given and a general mathematical expression stating the 
state-dependent transition rate of components with expo- 
nential behavior is given; in Section 3 is presented the 
general procedure to convert DFTs in DGFTs and the 
subsequent lower level conversion that is needed to cal- 
culate the RF; Section 4 is concerned with the derivation 
of the intermediate level models; in Section 5 a case 
study (taken from the literature) [10] is solved to show 
the DFT to DGFT conversion and the resolution proce- 
dure; Section 6 reports conclusion and future works. 

2. Stochastic Dependency Graphs 

A DG is a model that highlights stochastic dependencies 
between components. The elements of a DG are nodes, 
direct links and dependency gates. Each component is 
represented by a node and nodes are linked together by 
the mean of direct links and dependency gates. Connec- 
tions represent stochastic relationships among compo- 

nents. Components not affected by stochastic dependen- 
cies are drawn as isolated nodes while components sub- 
jected to dependencies will be drawn as nodes intercom- 
nected by direct links and gates. 

It is worth to distinguish between parents and child 
components. Parents components are components whose 
the entering in a particular state force some change in the 
parameter of the sojourn time distribution (or more gen- 
erally the entire distribution law) of the child component. 
A node can be both a parent and a child for some other 
node. 

Among all the kind of dependencies some basic de- 
pendency types are reported in this paper: elementary, 
AND, OR and k/N: 
 An elementary dependency exist between a parent 

and a child component if a change in the state of the 
parent forces a change in the child sojourn time dis- 
tribution; 

 In an AND dependency gate the child is affected from 
its parents if all them are in a specific state; 

 In an OR dependency gate the child is affected if at 
least one of its parents is in a specific state; 

 In a k/N dependency gate the change is dictated from 
all the combinations of the N parents where k of them 
are in a specific state. It generalizes the AND and OR 
dependency gates in the case that k is respectively 
equal to N and one. In the case that both k and N are 
equal to one the dependency gate is further reduced to 
an elementary dependency link. 

Generally the specific state is represented by the failed 
state. Figure 1 shows the graphical representation of the 
four kinds of dependencies introduced above. 

For a DG constituted by any combination of the basic 
elements above introduced, qualitative MCS (or DMCS 
in case of dynamic dependencies) can be derived. They 
can be used to specify the reactivation conditions in the- 
behavioral model (see Section 4). 
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Figure 1. DG elements: (a) Elementary dependency link; (b) 
AND dependency gate; (c) OR dependency gate; (d) k/N 
dependency gate. Pi: parent node; C: child node. 
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In the following a mathematical expression to calcu- 
late the system-state-dependent failure rate of a compo- 
nent under a k/N dependency gate is shown. The results 
refer only to exponential sojourn time distribution but 
they can be further generalized. 

Let us consider a system with two state components 
(i.e. “working-failed” or “UP-DOWN”). Let us denote 
with si the state of the generic i-th component: si can as- 
sume two values, one or zero standing respectively for 
working and failed. Let us define the set I as the set of all 
input component indexes. Let say h as the generic ele- 
ment of I. Thus, .  : h 1,2, , NI h  

Let call CiI as the set of all the subset of I of cardinal- 
ity i, with . The cardinality of the generic 
set CiI is defined as #CiI. Let us denote each subsets of 
CiI with CiI(j), with , #CiI. In this way each 
subset CiI(j) represents a collection of input indexes. The 
current failure rate (i.e., dependent on the current parents 
state configuration) of the child component is given by: 
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 (1) 

where λnom and 
fscaled  are the failure rate of the child 

component when: no dependency effects are present 
(nominal) and when subjected to the dependency effects 
of the parent f (scaled). 

It is necessary to specify that when λnom is equal to 
zero (e.g. SPARE in cold stand-by or SEQ) the formula 
00 is equal to one and that when 

fscaled  is equal to infi- 
nite (e.g. FDEP gate) the formula ∞0 is also equal to one 
(this is not mathematically correct but allows a compact 
representation of the expression above). 

Equation (1) is the most general form to assess the 
current failure rate of a child component given the state 
of its parents. It is suitable for each of the dependency 
gate discussed above. 

Equation (1) is enough general to model systems 
where the failure rate of the child component assumes 
different values depending on the kind of failed parent 
(e.g. a repeated component in a SPARE and a FDEP 
gate). In this case the impact on the failure rate of the  

child can be different depending on which parent forces 
the dependency logic. The operator max is used to ad- 
dress situations where the predominant effect must be 
chosen. 

To model some other relationship between parents and 
child (e.g. modeling joint effects does not require the 
max operator) other gates can be introduced, thus gener- 
alizing the model for any circumstance. 

If a DG is composed of a cascade of gates, Equation (1) 
must be evaluated in a bottom-up procedure. To this end, 
the possible states of the gates need to be estimated as 
well as the transition rates determined from these states 
(Table 1). 

3. DFT-DGFT Conversion 

In this section the general approach to convert a DFT in a 
DGFT model is described. The procedure is carried in 
three steps (Figure 2): the construction of the FT and the 
DG model (i.e., the high level models); the construction 
of the behavioral model and the calculation of the MCS 
(i.e., the medium level models); and the estimation of the 
RFs. 

In the first step the stochastic dependencies included in 
the logic of SPARE, FDEP and SEQ gates are designed 
through the DG model. In this way, all the dynamic gates 
can be replaced by the appropriate static gates (i.e., pre- 
serving the fault logic). This is not the case of the PAND 
gate since no stochastic dependencies are introduced by 
this gate (i.e., it describes a kind of fault time depend- 
ency). A procedure to solve models including this gate is 
reported in Section 4. 

The second step consists in the construction of the 
medium level models. A model representing the behavior 
of the system can be constructed on the basis of the DG 
model. For instance it can be expressed by Generalized 
Stochastic Petri Nets (GSPN) [14,15,19]. GSPNs are a 
powerful tool due to the possibility to conduct simula- 
tions and convert them in CTMCs. Also more general  

 
Table 1. DG reduction: Ai component name; SAi component 
state; SAi = 1 “UP; SAi “DOWN”; λi failure rate of child 
component if parent i is failed. 

DG DMCS Gate state (GS) 

AND i jA A   max ,i jSA SA  

OR i jA A  ·i jSA SA  

k N  
2k   i j i z j zA A A A A A   

 max ,i jSA SA
 

· 

 max ,i zSA SA
 

· 

 max ,j zSA SA  
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Figure 2. DFT-DGFT conversion framework. 
 

est from a dependability point of view and can be evalu- 
ated through any other fault schema. 

Discrete Event Simulation (DES) [16-21] models can be 
used and, in this case, the DG provides a dependency 
matrix and mathematical expressions (such as (1)) used 
to update the system-state-dependent distribution law of 
the system components. 

4. Medium Level Models 

Medium level models are used to represent the behavior 
and the fault logic of the system. The behavioral model is 
built using the knowledge contained in the DG model. A 
special class of GSPN—Stochastic Activity Networks 
(SAN) [19]—were used in this work. Elements of a SAN 
are: instantaneous and timed activities, input and output 
gates, places and extended places. A more complete dis- 
cussion regarding SAN models can be found in [19]. The 
modeling approach is component based. Each component 
is represented by a place whose marking specifies its state 
(e.g. one token “UP”; zero token “DOWN”). For each 
state a component can assume, an activity representing its 
shifting among these states must be created. Each activity 
can be reactivated regarding the change of the marking of 
the model. To this end, it includes a reactivation predicate 
that is used to assess if the conditions specified by the 
DMCS, of the sub-DG of the current modeled component, 
have changed (i.e., DMCS can be automatically converted 
in a if statement). Two situations must be distinguished: 

The medium level of the fault model is then extracted 
in order to evaluate the set of states of the system that 
concur to the calculation of the RF. This operation is 
trivial since the FT, obtained at the previous stage, is free 
of complex formalisms and can be solved via the Mini- 
mal Cut Set (MCS) [22]. In some case instead of calcu- 
lating the MCS, it can be convenient to create the GSPN 
model of the FT and link it to the GSPN behavioral 
model. Models concerning with general type of RFs and 
with fault time dependencies (e.g. PAND gates) can re- 
quire the construction of this other medium level model. 

The RF is finally calculated by joining the two me- 
dium level models. The solution can be achieved via the 
conversion of the GSPN model to a CTMC or obtained 
via simulation. 

Generally, analytical solutions are preferred, but in 
cases where 1) the state space is too big; 2) the dynamic 
behavior of the system is too complex; 3) general sojourn 
time distributions are used, a solution based on simula- 
tion can be obtained with precision dependent on the 
simulating time (i.e., number of batches). 

 In the case of non-repairable components, the reacti- 
vation predicate is based only on the DMCS (Table 
1). 

Figure 2 represents schematically the DFT conversion 
and the resolution process of a DGFT. If the DGFT is 
used as a stand-alone methodology the procedure starts 
from the second level of the process depicted in Figure 2. 
In the case the fault schema used is not a FT, no differ- 
ences are encountered in the resolution of the model. In 
fact the MCS represent just that set of condition of inter-  

 If the system consists of repairable components, apart 
the DMCS, it must be included all the conditions due 
to the repair of the parents (Table 2). 

Moreover another condition must be added. In fact, the 
activity can be reactivated only if one of the places repre- 
senting the parents of the modeled component was the last 
that changed its marking. These last conditions must be  
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Table 2. DMCS Vs reactivation predicate: reliability. Ai component name; PAi component place; mark (PAi == 1) “UP; mark 
(PAi == 0) “DOWN”. 

DG DMCS Reactivation Statement-Reliability 

AND i jA A       0 & & 0i jmark PA mark PA   

OR i jA A       0 0i jmark PA mark PA   

k N  
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added by an and statement to the conditions specified by 
the DMCS. 

Moreover, a distinction must be made in the case the 
DG is composed of OR and k/N gates. In fact, given the 
structure of these gates, reactivation occurs each time a 
component attached to these gates changes its status (OR) 
or each time a new k condition is reached by the change 
of some component attached to a k/N gate. Thus we de- 
fine another statement, the activation predicate. In the 
SAN language the activation predicate checks if the state 
when the activity was last activated match the conditions 
expressed in the statement itself. This is done to avoid 
reactivation when not wanted, but the modeler could 
choose to leave the possibility of reactivation just by set- 
ting the activation predicate equal to one. The condition to 
specify in the activation predicate are specified in Table 
3. 

If a DG is composed of a cascade of gates is possible 
to evaluate the DMCS following a bottom-up procedure 
(i.e., from the dependency gates at the lower level to top 
level). 

RFs like the reliability and the availability of the sys- 
tem are calculated by imposing the MCS conditions cal- 
culated by the converted static FT. MCS can be attached 
to the SAN model in the form of an if statement that 
verifies the marking of the places representing those 
components concerned in the MCS. 

Two issues arise when dealing with reparable compo- 
nents, more specifically when: 

1) The goal is to compute the reliability even in pres- 
ence of repairs (i.e., components can be repaired if the 
whole system has not failed); 

2) If the system has failed, working components can- 
not longer fail (i.e., the associated CTMC is a truncated 
CTMC). 

In these cases the behavioral model requires informa- 
tion about the state of the whole system. To pass this 
information, two choices are possible: 1) the construction 
of a SAN model of the FT; 2) include input gates which 
disable activities by a statement regarding the occurrence 
of the MCS. 

5. Case Study 

In this section an application of the DFT-DGTF conver- 
sion is shown. Starting from a DFT the equivalent DGFT 
is built. Successively, using the information contained in 
the DG model, a SAN model is implemented using the 
Mobius® software package, developed from the Center 
for Reliable and High-Performance Computing at the 
University of Illinois at Urbana-Champaign [18]. Once 
the MCS are evaluated from the converted FT they are 
integrated in the SAN model and used to calculate the 
reliability of the system. 

We use a study, from [10], to assess the potentiality of 
the DGFT methodology due to the presence of repeated 
events shared among different dynamic gates. All the 
components are non-repairable characterized by a time to 
failure exponentially distributed. The DFT of the case 
study is shown in Figure 3. Its elements are: the basic 
events A1, A2, B1, B2, S, T1, T2, T3; the gates A (SPARE 
gate with an active component: A1; and two spares: A2, 
S), B (SPARE gate with an active component: B1; and 
two spares: B2, S), F1 (FDEP gate with trigger T1 and 
components A1 and B2), F2 (FDEP gate with trigger T2 
and components A1 and B2), F3 (FDEP gate with trigger 
T3 and component S), TE (AND gate with gates A, B, F1, 
F2, F3 as inputs). 

5.1. DG Construction 

The Construction of the DG of the system requires find- 
ing the parents of each component. All the components 
are attached to dynamic gates, thus, no isolated nodes are 
present in the DG (Figure 4). The model is retrieved 
using the procedure stated in Section 4 to convert DFT 
gates. OR gates are used to model dependencies among 
different dynamic gates. 

A1 and B1 are subject to the dependency effect of T1 
and T2. The DG for these two components is then com-
posed of an elementary dependency link. 

Using Equation (1), the mathematical expressions of 
the state-dependent failure rates of the child components 
are derived. They are: 
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Table 3. DMCS Vs reactivation predicate: availability. Ai component name; PAi component place; mark (PAi == 1) “UP; mark 
(PAi == 0) “DOWN”;  a check on the inverse condition must be made; LAi, PLAi are used to represent the past state of Ai. 
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Figure 3. DFT-DGFT conversion framework. 
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where 1nomA  and 1nomB  are the nominal failure rates 
of the two modeled components (when no affected by 
any dependency effect). sT1 and sT2 represent the state of 
the trigger events (i.e., 0 if failed, 1 if not). 

The DG of A2 and B2, is represented by an OR de- 
pendency gate with two inputs: the first one represents 
the active component of the SPARE and the other the 
trigger event of the FDEP of the gates they respectively 
belong to. The simplified expressions of the state-de- 
pendent failure rates of A2 and B2 are: 
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1

2scaledA
A  

and 
1

2scaledB
B  are the failure rates of 

A2 and B2 when operating. sA1, sA2 sT1 and sT2 represent 
the state of the parent components. 

Finally component S is modeled by an OR dependency 
gate holding three inputs which stand for: the case the S 
is required from the SPARE A, from the SPARE B and 
the case the trigger T3 occurs. The DG model that em- 
beds the dependencies of the components A1/A2 (or 
B1/B2) on S through the SPARE are represented by an 
AND dependency gate, since S is a spare component of 
the second order (i.e., positioned as a second spare com- 
ponent in each gate). The simplified expression of the 
state-dependent failure rate of S is: 

       2 1 1 2 1 2 3 31 2 3 1 1 1 1 10 D D D D D D T TD D T

scaledD

s s s s s s s ss s
SS

s             (6) 
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A1T1

B1T2

A1

A2

T2

B1

B2

T1

S

T3

A1

D1
A2

B1

D2
B2

a) b)

c) d)

e)

OR1

OR2

OR3

 

(a) 

(c) 

(b) 

(d) 

(e) 

 

Figure 4. DG of the DFT in Figure 3. Dependencies affecting: (a) A1; (b) A2; (c) B1; (d 2; (e) S. 

where 

) B
 

scaledD
S  

ting co
is the failure rate of S when operating as 

substitu mponents (i.e., the dependency effect is 
the same under D1 and D2). In this case a bottom-up 
procedure to retrieve the state-dependent failure rates 
was used. Thus sD1, sD2, represent the state of the gates 
D1 and D2 and sT3 the state of the trigger T3. More spe- 
cifically  1 1 2max ,D A As s s  and  1 1 2max ,D B Bs s s  
with sA2, s ate of A

5.2. FT Construction 

B2 respectively the st 2 and B2. 

The static representation of the DFT in Figure 3 is 

on

shown in Figure 5. In this pure fault logic model FDEP 
gates are no longer present. 

The model results simplified in a top level gate, the 
AND of the previous model, that holds two more AND 
gates (A and B) with three inputs for each. The two AND 
gates result from the conversion of the two SPARE gates 
of the DFT model. In the general case they should be two 
k/N gates but, since the number of active components is 
equal to one, the rule of Section 4 states that k is equal to 
N. Thus the gates result simplified in two AND gates. 

5.3. Medium Levels Models Construction 

Avoid In the SAN behavioral model each comp ent is 
modeled by the following elements: 
 PX; place that represent the state of the component X 

(i.e., mark (PX) = 1 if UP; o if DOWN). In the fol- 
lowing with X it is denoted any of the components A1, 
A2, B1, B2, S, T1, T2, T3. 

A

S A1 A2

B

S B1 B2

TE

 

Figure 5. Static representation of the DFT in Figure 3. 
 

 Failure activity: timed activity that represents the fail- 
i- 
- 

ure of the component. In the failure activity are spec
fied the failure rate of th  component and the reactie
vation predicate. 

 For the sake of clarity it is needed to specify that the 
notation sX, representing the state of the component X 
in any of the Equation from (2) - (6), is substituted 
with the notation mark (PX). 

 The reactivation predicate is specified by combining a 
statement with two sets of conditions: 1) the one aris-
ing from the last component that experienced a transi-
tion (Table 4); and 2) the one arising from the DMCS 
of the DG associated with the component X (Table 
5). 

 An output gate used to store in the place ID the iden- 
tifier number of the component when the related ac- 
tivity fires. 
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Table 4. Additional condition in the reactivation predicate: in p he identifier number of the last component-  la e ID is stored t
place that changed its marking. 

c

Place Name ID ID Parents Reactivation Statement 

1PA  1 6   6mark ID   

2PA  2 1, 7      1k ID mark ID 7mar    

1PB  3 7   7mark ID   

2PB  4 3, 6      3 6mark ID mark ID   

PS  5 
1, 2, 

3, 4, 8 
              1 2 3 4 8mark ID mark ID mark ID mark ID mark ID    

1PT  6 - - 

2PT  7 - - 

3PT  8 - - 

 
Table 5. DMCS Vs reactivation predicate: reliability. Mark 
(PX(i) = 0), “DOWN”; mark (PX(i) = 1), “UP”. 

DG DMCS Reactivation Statement—Reliability 

1OR  1 2A T       1 0 2 0mark PA mark PT   

2OR  1 1B T       1 0 2 0mark PB mark PT   

D1 1 2A A        1 1 0 & & 2PD mark PA mark PA  0

D2 1 2B B        2 1 0 & & 2PD mark PB mark PB   0

OR3 1 2 3D D   T   1 2 3 0PD PD mark PT   

 
  place, shared between all the components, where 

tored the id tifier number of the last component- 
place that changed its ma ing. 

: 

 ID;
is s en

rk
 The model of a generic component in a SAN model is 

shown in Figure 6. 
The MCS of the FT in Figure 5 is

1 2 1 2MCS A A B B S             (7) 

This information is used when defin
ck on the marking of the places 

ing the RF. In this 
case a che PA
PB2 and PS of the SAN behavioral model i
tim

o evaluate the reli- 
in Figure 3. 
xponentially 

he Mobius® Trans- 
fo

1, PA2, PB1, 
s made at the 

e the RF is willed to be evaluated. 

5.4. Evaluation of the RF: Reliability 

The goal of the present case study is t
ability of the system modeled by the DFT 
The time to failure of all components is e
distributed and the failure rate values can be found in 
Table 6. From reference [10] the reliability value of the 
system at 100 time units is 0.03126. 

The model was resolved analytically (i.e., converting 
the SAN model in a CTMC) and via simulation. When 
converted to the low level model t

rmer found 256 states (reduced to 48 in the solving 
phase). The absorbing states were found to be 8. The  

PX

output gate

ID

failure activity

component-place 

shared identifier

Figure 6. SAN model of a generic component. 
 

Table 6. Components failure ra

Component Failure Rate λ 

 

te [time unit-1]. 

A1 0.001 

A2 0.005 

B1 0.002 

B2 0.0035 

S 0.005 

T1, T2, T3 0.003 

 
reliability value was equal to 3.1 e-002 confirming 
the result in [10]. 

The Simulator results are repo  Table 7. Again, 
the results found  [10] are ma  The experiment 
was carried out by a laptop with ollowing charac- 
teristics: CPU, Intel Core 2 uo 1.83 GHz; RAM, 1.99 

6.

e and computationally efficient based on two 
odels: the Stochastic Dependency 

c fault schema. 

26453

rted in
 in tched.

 the f
 D

GB. 

 Conclusions 

This paper introduces a new modeling framework for the 
dependability assessment of complex stochastic systems. 
DGFT is a high level modeling methodology easy to use, 
intuitiv
separated system m
Graph and a generi

DGs allow to exploit many kinds of stochastic de- 
pendencies that are not easily caught by other method- 
ologies. The fault schema of the system results simplified 
from complex relations and can be easily solved. More-  
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Table 7. Simulator solver results. 

Simulator Batches Mean Conf. Int. CPU time

SAN 5e08 3.12e−02 +/−4.76e−05 1608 sec 

 
over DGs can be converted efficiently in their related 
behavioral m oral model, odel. Furthermore the behavi

f any fault logic, results a very flebeing free o xible mean
to va nd  stu

T ain ad ges  ) i-
bility of building high-level-high-descriptive models very

odified and tha
m

 towards: 1) the formalization of
a 

e DGFT automatic conversion in SAN
m

RMS.1990.67971

 
 conduct rious depe ability dies. 

he m vanta of DGFT are, thus, 1 the poss  
 

close to the real structure of the system; 2) the effective- 
ness of tackling state-dependent component behaviors; 3) 
and its convertibility in effective and capable lower level 
models that can be easily improved and m t 

ake easier the task of estimating dependability measures, 
perform sensitivity and uncertainty analysis, diagnosis 
and other assessments. 

DGFT can be used as a stand-alone methodology or as 
a starting point to build SAN models of dependable sys- 
tems. Moreover, by this methodology, it is possible to 
solve efficiently DFTs by converting them to their re- 
lated FT model. 

Future works may go  
general theory regarding Stochastic Dependency Graphs 

and their implication in terms of behavioral models; 2) 
the integration of more advanced tools to resolve fault 
time dependencies (e.g. dependencies introduced by PAND 
gates); and 3) th  

odels which have shown their potentiality to solve 
complex dependable systems, both analytically and via 
simulation, and thus, allowing to model and solve a very 
general class of complex systems. 
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