
Engineering, 2013, 5, 157-166
doi:10.4236/eng.2013.52023 Published Online February 2013 (http://www.scirp.org/journal/eng)

The Dynamic-to-Static Conversion of Dynamic Fault Trees
Using Stochastic Dependency Graphs and Stochastic

Activity Networks

Gabriele Manno1, Ferdinando Chiacchio2, Francesco Pappalardo3
1Department of Mathematics and Informatics, University of Catania, Catania, Italy

2Department of Electric, Electronic and Computer Engineering, University of Catania, Catania, Italy
3Department of Drug Sciences, University of Catania, Catania, Italy

Email: gmanno@dmi.unict.it, chiacchio@dmi.unict.it, Francesco.pappalardo@unict.it

Received December 1, 2012; revised January 4, 2013; accepted February 12, 2013

ABSTRACT

In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to
dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle,
the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can
be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies
not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a
pure behavioral model that can be used for various kinds of dependability studies. In the paper it is shown how to build
and integrate the two modular models and to convert them in a Stochastic Activity Network. Furthermore, based on the
construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault
trees is shown, allowing the resolution of DFTs in a very efficient way.

Keywords: Dynamic Fault Tree; Stochastic Dependency Graphs; Stochastic Activity Network; Continuous Time

Markov Chain

1. Introduction

Nowadays, technology and technological systems are fun-
damental constituents of any industrial process. In such a
context, the demand of more effective and precise risk
assessments and performability evaluations has high-
lighted the necessity of adequate, specific dependability
evaluation techniques and methods. In fact, such de-
pendability techniques and methods have to be able to
effectively capture the behavior of modern systems, sub-
systems and components which could be characterized
by interdependencies and interactions. Many methodolo-
gies have been formulated to achieve these objectives
and implement efficient solution techniques. Among these,
Dynamic Fault Tree (DFT) [1,2] stands out for its char-
acteristics including: a valid formalism, a high level lan-
guage of description and several resolution algorithms.
For these reasons DFT has became a benchmark for
many other modeling framework for the dependability.

Many efforts have been made to address the following
main issues: 1) the problem of the state space explosion
of the equivalent Continuous Time Markov Chain (CTMC)
[3-7]; and 2) the need of a more generalized formalism to
tackle various kind of complex systems and able to per-

form different dependability studies [8-18]. In [12] a
powerful framework able to tackle general dependencies
is presented. However, dependencies can be implemented
only through connections (i.e., denoted as triggers) be-
tween the elements of the Fault Tree. In this way, com-
plex relationships can be added abusing of the Fault Tree
notation, which can, in the end, results in an explosion of
the tree.

The main motivation of this work is to expand the
modeling power capabilities of dependability tools, such
as DFTs, and maintain a high level formalism of descrip-
tion. The issues addressed in this paper concern: 1) the
lack of the general modeling techniques to include sto-
chastic dependencies between events not directly related
by a fault (i.e., a more general approach to model state-
dependent components behavior); and 2) the handling of
general sojourn time distributions, non-Markovian proc-
esses (e.g. time delays), inhibitions, multiple failure modes,
etc.

To achieve these objectives a modeling framework
based on a modular approach is presented. The metho-
dology makes use of two high level models that decouple
stochastic dependencies and the system fault logic through:

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 158

a stochastic Dependency Graph (DG) and a generic fault
schema. Hence, dependability measures are evaluated
through the combination of the information provided by
these two models.

The framework results incredibly flexible because the
DG and the fault schema are independent. The former
embeds the dependencies among the components, the
latter embeds the system fault logic. Moreover, this last
one can be constructed in several ways (i.e. FT, RBD,
Event Tree, etc.). In this way, it is possible to generate a
behavioral model on the basis of the information con-
tained in the DG and compute many Reward Functions
(RF; like the reliability, availability, reliability with re-
pair, conditional probabilities, etc.) attaching the infor-
mation derived from the system fault schema.

In this paper is presented an application of this model-
ing framework and a practical case study to convert DFT
will be shown: the stochastic dependencies of the DFT
will be captured by the DG model, while the system fault
logic will be described by a static Fault Tree (FT). In the
following this modular model is referred as a Stochastic
Dependency Graph Fault Tree (DGFT).

The objectives of this methodology can be listed as
follow:
 Create a more flexible approach for the dependability

modeling in presence of state-dependent components
behavior;

 Model new dependencies logics that are not expressed
through the dynamic gates of the DFT;

 Assess various dependability studies using one single
model;

 Evaluate dependability measures of complex systems
by the mean of analytical and simulating methods
easily retrievable from the high level models.

The remainder of the paper is structured as follow: in
Section 2 a general description of DGs’ basic elements is
given and a general mathematical expression stating the
state-dependent transition rate of components with expo-
nential behavior is given; in Section 3 is presented the
general procedure to convert DFTs in DGFTs and the
subsequent lower level conversion that is needed to cal-
culate the RF; Section 4 is concerned with the derivation
of the intermediate level models; in Section 5 a case
study (taken from the literature) [10] is solved to show
the DFT to DGFT conversion and the resolution proce-
dure; Section 6 reports conclusion and future works.

2. Stochastic Dependency Graphs

A DG is a model that highlights stochastic dependencies
between components. The elements of a DG are nodes,
direct links and dependency gates. Each component is
represented by a node and nodes are linked together by
the mean of direct links and dependency gates. Connec-
tions represent stochastic relationships among compo-

nents. Components not affected by stochastic dependen-
cies are drawn as isolated nodes while components sub-
jected to dependencies will be drawn as nodes intercom-
nected by direct links and gates.

It is worth to distinguish between parents and child
components. Parents components are components whose
the entering in a particular state force some change in the
parameter of the sojourn time distribution (or more gen-
erally the entire distribution law) of the child component.
A node can be both a parent and a child for some other
node.

Among all the kind of dependencies some basic de-
pendency types are reported in this paper: elementary,
AND, OR and k/N:
 An elementary dependency exist between a parent

and a child component if a change in the state of the
parent forces a change in the child sojourn time dis-
tribution;

 In an AND dependency gate the child is affected from
its parents if all them are in a specific state;

 In an OR dependency gate the child is affected if at
least one of its parents is in a specific state;

 In a k/N dependency gate the change is dictated from
all the combinations of the N parents where k of them
are in a specific state. It generalizes the AND and OR
dependency gates in the case that k is respectively
equal to N and one. In the case that both k and N are
equal to one the dependency gate is further reduced to
an elementary dependency link.

Generally the specific state is represented by the failed
state. Figure 1 shows the graphical representation of the
four kinds of dependencies introduced above.

For a DG constituted by any combination of the basic
elements above introduced, qualitative MCS (or DMCS
in case of dynamic dependencies) can be derived. They
can be used to specify the reactivation conditions in the-
behavioral model (see Section 4).

P C

1P

NP

C

1P

NP

C

1P

NP

CNk /

a) b)

c) d)

(a) (b)

(c) (d)

Figure 1. DG elements: (a) Elementary dependency link; (b)
AND dependency gate; (c) OR dependency gate; (d) k/N
dependency gate. Pi: parent node; C: child node.

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 159

In the following a mathematical expression to calcu-
late the system-state-dependent failure rate of a compo-
nent under a k/N dependency gate is shown. The results
refer only to exponential sojourn time distribution but
they can be further generalized.

Let us consider a system with two state components
(i.e. “working-failed” or “UP-DOWN”). Let us denote
with si the state of the generic i-th component: si can as-
sume two values, one or zero standing respectively for
working and failed. Let us define the set I as the set of all
input component indexes. Let say h as the generic ele-
ment of I. Thus, .  : h 1,2, , NI h  

Let call CiI as the set of all the subset of I of cardinal-
ity i, with . The cardinality of the generic
set CiI is defined as #CiI. Let us denote each subsets of
CiI with CiI(j), with , #CiI. In this way each
subset CiI(j) represents a collection of input indexes. The
current failure rate (i.e., dependent on the current parents
state configuration) of the child component is given by:

1,2, ,i  

j 

N














1,2,

       

   

       

 
 

11

1

1

1

(1)

1 1

1

1

1 1

1

1

if 1,

.

max if 1,

.

max

IC jiN I If wj f C j w C ji ihh

I ff CN

fI
N

IC jiN I If wj f C j w C ji ihh
nom

fI
i

SS
nom scaled

N s ss
nom nom

i

s

scaled
f C

k s ss
nom

i

scaled
f C j

N k

N k

 




 



 

 



 



 







 





  



  

 


  


 











      

   

#1

1

1

.

max if 1.

I
i I If wf C j w C ji i

I ff CN

fI
N

CN s s

i k j

s

scaled
f C

N k

 



 

 





 





 

 























 (1)

where λnom and
fscaled are the failure rate of the child

component when: no dependency effects are present
(nominal) and when subjected to the dependency effects
of the parent f (scaled).

It is necessary to specify that when λnom is equal to
zero (e.g. SPARE in cold stand-by or SEQ) the formula
00 is equal to one and that when

fscaled is equal to infi-
nite (e.g. FDEP gate) the formula ∞0 is also equal to one
(this is not mathematically correct but allows a compact
representation of the expression above).

Equation (1) is the most general form to assess the
current failure rate of a child component given the state
of its parents. It is suitable for each of the dependency
gate discussed above.

Equation (1) is enough general to model systems
where the failure rate of the child component assumes
different values depending on the kind of failed parent
(e.g. a repeated component in a SPARE and a FDEP
gate). In this case the impact on the failure rate of the

child can be different depending on which parent forces
the dependency logic. The operator max is used to ad-
dress situations where the predominant effect must be
chosen.

To model some other relationship between parents and
child (e.g. modeling joint effects does not require the
max operator) other gates can be introduced, thus gener-
alizing the model for any circumstance.

If a DG is composed of a cascade of gates, Equation (1)
must be evaluated in a bottom-up procedure. To this end,
the possible states of the gates need to be estimated as
well as the transition rates determined from these states
(Table 1).

3. DFT-DGFT Conversion

In this section the general approach to convert a DFT in a
DGFT model is described. The procedure is carried in
three steps (Figure 2): the construction of the FT and the
DG model (i.e., the high level models); the construction
of the behavioral model and the calculation of the MCS
(i.e., the medium level models); and the estimation of the
RFs.

In the first step the stochastic dependencies included in
the logic of SPARE, FDEP and SEQ gates are designed
through the DG model. In this way, all the dynamic gates
can be replaced by the appropriate static gates (i.e., pre-
serving the fault logic). This is not the case of the PAND
gate since no stochastic dependencies are introduced by
this gate (i.e., it describes a kind of fault time depend-
ency). A procedure to solve models including this gate is
reported in Section 4.

The second step consists in the construction of the
medium level models. A model representing the behavior
of the system can be constructed on the basis of the DG
model. For instance it can be expressed by Generalized
Stochastic Petri Nets (GSPN) [14,15,19]. GSPNs are a
powerful tool due to the possibility to conduct simula-
tions and convert them in CTMCs. Also more general

Table 1. DG reduction: Ai component name; SAi component
state; SAi = 1 “UP; SAi “DOWN”; λi failure rate of child
component if parent i is failed.

DG DMCS Gate state (GS)

AND i jA A  max ,i jSA SA

OR i jA A ·i jSA SA

k N
2k  i j i z j zA A A A A A 

 max ,i jSA SA

·

 max ,i zSA SA

·

 max ,j zSA SA

Copyright © 2013 SciRes. ENG

G. MANNO ET AL.

Copyright © 2013 SciRes. ENG

160

High level fault logic

and dependency model
DFT

FT DG

GSPN

CTMC

MCS

simulation analytical

RF

Medium level
behavioral model

Low level behavioral
model

Reward function
evaluation

Medium level
fault logic and reward

function model

High level dependency
model

High level
fault logic model

Figure 2. DFT-DGFT conversion framework.

est from a dependability point of view and can be evalu-
ated through any other fault schema.

Discrete Event Simulation (DES) [16-21] models can be
used and, in this case, the DG provides a dependency
matrix and mathematical expressions (such as (1)) used
to update the system-state-dependent distribution law of
the system components.

4. Medium Level Models

Medium level models are used to represent the behavior
and the fault logic of the system. The behavioral model is
built using the knowledge contained in the DG model. A
special class of GSPN—Stochastic Activity Networks
(SAN) [19]—were used in this work. Elements of a SAN
are: instantaneous and timed activities, input and output
gates, places and extended places. A more complete dis-
cussion regarding SAN models can be found in [19]. The
modeling approach is component based. Each component
is represented by a place whose marking specifies its state
(e.g. one token “UP”; zero token “DOWN”). For each
state a component can assume, an activity representing its
shifting among these states must be created. Each activity
can be reactivated regarding the change of the marking of
the model. To this end, it includes a reactivation predicate
that is used to assess if the conditions specified by the
DMCS, of the sub-DG of the current modeled component,
have changed (i.e., DMCS can be automatically converted
in a if statement). Two situations must be distinguished:

The medium level of the fault model is then extracted
in order to evaluate the set of states of the system that
concur to the calculation of the RF. This operation is
trivial since the FT, obtained at the previous stage, is free
of complex formalisms and can be solved via the Mini-
mal Cut Set (MCS) [22]. In some case instead of calcu-
lating the MCS, it can be convenient to create the GSPN
model of the FT and link it to the GSPN behavioral
model. Models concerning with general type of RFs and
with fault time dependencies (e.g. PAND gates) can re-
quire the construction of this other medium level model.

The RF is finally calculated by joining the two me-
dium level models. The solution can be achieved via the
conversion of the GSPN model to a CTMC or obtained
via simulation.

Generally, analytical solutions are preferred, but in
cases where 1) the state space is too big; 2) the dynamic
behavior of the system is too complex; 3) general sojourn
time distributions are used, a solution based on simula-
tion can be obtained with precision dependent on the
simulating time (i.e., number of batches).

 In the case of non-repairable components, the reacti-
vation predicate is based only on the DMCS (Table
1).

Figure 2 represents schematically the DFT conversion
and the resolution process of a DGFT. If the DGFT is
used as a stand-alone methodology the procedure starts
from the second level of the process depicted in Figure 2.
In the case the fault schema used is not a FT, no differ-
ences are encountered in the resolution of the model. In
fact the MCS represent just that set of condition of inter-

 If the system consists of repairable components, apart
the DMCS, it must be included all the conditions due
to the repair of the parents (Table 2).

Moreover another condition must be added. In fact, the
activity can be reactivated only if one of the places repre-
senting the parents of the modeled component was the last
that changed its marking. These last conditions must be

G. MANNO ET AL. 161

Table 2. DMCS Vs reactivation predicate: reliability. Ai component name; PAi component place; mark (PAi == 1) “UP; mark
(PAi == 0) “DOWN”.

DG DMCS Reactivation Statement-Reliability

AND i jA A      0 & & 0i jmark PA mark PA 

OR i jA A      0 0i jmark PA mark PA 

k N

2k 
i j i z j zA A A A A A 

      
             

0 & & 0

0 & & 0 0 & & 0

i j

i z j

mark PA mark PA

mark PA mark PA mark PA mark PA

 

   z

added by an and statement to the conditions specified by
the DMCS.

Moreover, a distinction must be made in the case the
DG is composed of OR and k/N gates. In fact, given the
structure of these gates, reactivation occurs each time a
component attached to these gates changes its status (OR)
or each time a new k condition is reached by the change
of some component attached to a k/N gate. Thus we de-
fine another statement, the activation predicate. In the
SAN language the activation predicate checks if the state
when the activity was last activated match the conditions
expressed in the statement itself. This is done to avoid
reactivation when not wanted, but the modeler could
choose to leave the possibility of reactivation just by set-
ting the activation predicate equal to one. The condition to
specify in the activation predicate are specified in Table
3.

If a DG is composed of a cascade of gates is possible
to evaluate the DMCS following a bottom-up procedure
(i.e., from the dependency gates at the lower level to top
level).

RFs like the reliability and the availability of the sys-
tem are calculated by imposing the MCS conditions cal-
culated by the converted static FT. MCS can be attached
to the SAN model in the form of an if statement that
verifies the marking of the places representing those
components concerned in the MCS.

Two issues arise when dealing with reparable compo-
nents, more specifically when:

1) The goal is to compute the reliability even in pres-
ence of repairs (i.e., components can be repaired if the
whole system has not failed);

2) If the system has failed, working components can-
not longer fail (i.e., the associated CTMC is a truncated
CTMC).

In these cases the behavioral model requires informa-
tion about the state of the whole system. To pass this
information, two choices are possible: 1) the construction
of a SAN model of the FT; 2) include input gates which
disable activities by a statement regarding the occurrence
of the MCS.

5. Case Study

In this section an application of the DFT-DGTF conver-
sion is shown. Starting from a DFT the equivalent DGFT
is built. Successively, using the information contained in
the DG model, a SAN model is implemented using the
Mobius® software package, developed from the Center
for Reliable and High-Performance Computing at the
University of Illinois at Urbana-Champaign [18]. Once
the MCS are evaluated from the converted FT they are
integrated in the SAN model and used to calculate the
reliability of the system.

We use a study, from [10], to assess the potentiality of
the DGFT methodology due to the presence of repeated
events shared among different dynamic gates. All the
components are non-repairable characterized by a time to
failure exponentially distributed. The DFT of the case
study is shown in Figure 3. Its elements are: the basic
events A1, A2, B1, B2, S, T1, T2, T3; the gates A (SPARE
gate with an active component: A1; and two spares: A2,
S), B (SPARE gate with an active component: B1; and
two spares: B2, S), F1 (FDEP gate with trigger T1 and
components A1 and B2), F2 (FDEP gate with trigger T2
and components A1 and B2), F3 (FDEP gate with trigger
T3 and component S), TE (AND gate with gates A, B, F1,
F2, F3 as inputs).

5.1. DG Construction

The Construction of the DG of the system requires find-
ing the parents of each component. All the components
are attached to dynamic gates, thus, no isolated nodes are
present in the DG (Figure 4). The model is retrieved
using the procedure stated in Section 4 to convert DFT
gates. OR gates are used to model dependencies among
different dynamic gates.

A1 and B1 are subject to the dependency effect of T1
and T2. The DG for these two components is then com-
posed of an elementary dependency link.

Using Equation (1), the mathematical expressions of
the state-dependent failure rates of the child components
are derived. They are:

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 162

Table 3. DMCS Vs reactivation predicate: availability. Ai component name; PAi component place; mark (PAi == 1) “UP; mark
(PAi == 0) “DOWN”; a check on the inverse condition must be made; LAi, PLAi are used to represent the past state of Ai.

'
iA

Reactivation Statement-Availability Extended DMCS

 ,i jAND A A

      
              

0 & & 0

0 & & 0 & & 1 1

i j

i j i

mark PA mark PA

mark PLA mark PLA mark PA mark PA

 

   j

  ' '

i j i j i jA A LALA A A 

 ,i jOR A A

      
            

0 0

0 & & 1 (0 & & 1

i j

i i j

mark PA mark PA

mark PLA mark PA mark PLA mark PA

 

   j

 ' '

i j i i jA A LA A LA A   j

 , , ; 2i j zk N A A A k 

-      ' ' ' ' ' ' i j i j i j i z i z i z j z j z j zA A LALA A A A A LA LA A A A A LA LA A A       

A

A1 A2 S

B

B1 B2 S

S

F3T3

B2

F1T1

A1 A2

F2T2

B1

TE

Figure 3. DFT-DGFT conversion framework.

 11 1
1 1 ,TT

nom

ss
A A    (2)

 22 1
1 1 ,TT

nom

ss
B B    (3)

where 1nomA and 1nomB are the nominal failure rates
of the two modeled components (when no affected by
any dependency effect). sT1 and sT2 represent the state of
the trigger events (i.e., 0 if failed, 1 if not).

The DG of A2 and B2, is represented by an OR de-
pendency gate with two inputs: the first one represents
the active component of the SPARE and the other the
trigger event of the FDEP of the gates they respectively
belong to. The simplified expressions of the state-de-
pendent failure rates of A2 and B2 are:

   1 2 21 2

1

2

1 1
2 ,0 A T TA T

scaledA

A

s s ss s
A



    
 (4)

 11 11 1

1

1(1)
2 2 ,0 TB TB T

scaledB

ss ss s
B B     (5)

where
1

2scaledA
A

and
1

2scaledB
B are the failure rates of

A2 and B2 when operating. sA1, sA2 sT1 and sT2 represent
the state of the parent components.

Finally component S is modeled by an OR dependency
gate holding three inputs which stand for: the case the S
is required from the SPARE A, from the SPARE B and
the case the trigger T3 occurs. The DG model that em-
beds the dependencies of the components A1/A2 (or
B1/B2) on S through the SPARE are represented by an
AND dependency gate, since S is a spare component of
the second order (i.e., positioned as a second spare com-
ponent in each gate). The simplified expression of the
state-dependent failure rate of S is:

       2 1 1 2 1 2 3 31 2 3 1 1 1 1 10 D D D D D D T TD D T

scaledD

s s s s s s s ss s
SS

s             (6)

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 163

A1T1

B1T2

A1

A2

T2

B1

B2

T1

S

T3

A1

D1
A2

B1

D2
B2

a) b)

c) d)

e)

OR1

OR2

OR3

(a)

(c)

(b)

(d)

(e)

Figure 4. DG of the DFT in Figure 3. Dependencies affecting: (a) A1; (b) A2; (c) B1; (d 2; (e) S.

where

) B

scaledD
S

ting co
is the failure rate of S when operating as

substitu mponents (i.e., the dependency effect is
the same under D1 and D2). In this case a bottom-up
procedure to retrieve the state-dependent failure rates
was used. Thus sD1, sD2, represent the state of the gates
D1 and D2 and sT3 the state of the trigger T3. More spe-
cifically  1 1 2max ,D A As s s and  1 1 2max ,D B Bs s s
with sA2, s ate of A

5.2. FT Construction

B2 respectively the st 2 and B2.

The static representation of the DFT in Figure 3 is

on

shown in Figure 5. In this pure fault logic model FDEP
gates are no longer present.

The model results simplified in a top level gate, the
AND of the previous model, that holds two more AND
gates (A and B) with three inputs for each. The two AND
gates result from the conversion of the two SPARE gates
of the DFT model. In the general case they should be two
k/N gates but, since the number of active components is
equal to one, the rule of Section 4 states that k is equal to
N. Thus the gates result simplified in two AND gates.

5.3. Medium Levels Models Construction

Avoid In the SAN behavioral model each comp ent is
modeled by the following elements:
 PX; place that represent the state of the component X

(i.e., mark (PX) = 1 if UP; o if DOWN). In the fol-
lowing with X it is denoted any of the components A1,
A2, B1, B2, S, T1, T2, T3.

A

S A1 A2

B

S B1 B2

TE

Figure 5. Static representation of the DFT in Figure 3.

 Failure activity: timed activity that represents the fail-
i-
-

ure of the component. In the failure activity are spec
fied the failure rate of th component and the reactie
vation predicate.

 For the sake of clarity it is needed to specify that the
notation sX, representing the state of the component X
in any of the Equation from (2) - (6), is substituted
with the notation mark (PX).

 The reactivation predicate is specified by combining a
statement with two sets of conditions: 1) the one aris-
ing from the last component that experienced a transi-
tion (Table 4); and 2) the one arising from the DMCS
of the DG associated with the component X (Table
5).

 An output gate used to store in the place ID the iden-
tifier number of the component when the related ac-
tivity fires.

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 164

Table 4. Additional condition in the reactivation predicate: in p he identifier number of the last component- la e ID is stored t
place that changed its marking.

c

Place Name ID ID Parents Reactivation Statement

1PA 1 6   6mark ID 

2PA 2 1, 7      1k ID mark ID 7mar  

1PB 3 7   7mark ID 

2PB 4 3, 6      3 6mark ID mark ID 

PS 5
1, 2,

3, 4, 8
              1 2 3 4 8mark ID mark ID mark ID mark ID mark ID    

1PT 6 - -

2PT 7 - -

3PT 8 - -

Table 5. DMCS Vs reactivation predicate: reliability. Mark
(PX(i) = 0), “DOWN”; mark (PX(i) = 1), “UP”.

DG DMCS Reactivation Statement—Reliability

1OR 1 2A T      1 0 2 0mark PA mark PT 

2OR 1 1B T      1 0 2 0mark PB mark PT 

D1 1 2A A       1 1 0 & & 2PD mark PA mark PA  0

D2 1 2B B       2 1 0 & & 2PD mark PB mark PB   0

OR3 1 2 3D D  T   1 2 3 0PD PD mark PT 

 place, shared between all the components, where

tored the id tifier number of the last component-
place that changed its ma ing.

:

 ID;
is s en

rk
 The model of a generic component in a SAN model is

shown in Figure 6.
The MCS of the FT in Figure 5 is

1 2 1 2MCS A A B B S     (7)

This information is used when defin
ck on the marking of the places

ing the RF. In this
case a che PA
PB2 and PS of the SAN behavioral model i
tim

o evaluate the reli-
in Figure 3.
xponentially

he Mobius® Trans-
fo

1, PA2, PB1,
s made at the

e the RF is willed to be evaluated.

5.4. Evaluation of the RF: Reliability

The goal of the present case study is t
ability of the system modeled by the DFT
The time to failure of all components is e
distributed and the failure rate values can be found in
Table 6. From reference [10] the reliability value of the
system at 100 time units is 0.03126.

The model was resolved analytically (i.e., converting
the SAN model in a CTMC) and via simulation. When
converted to the low level model t

rmer found 256 states (reduced to 48 in the solving
phase). The absorbing states were found to be 8. The

PX

output gate

ID

failure activity

component-place

shared identifier

Figure 6. SAN model of a generic component.

Table 6. Components failure ra

Component Failure Rate λ

te [time unit-1].

A1 0.001

A2 0.005

B1 0.002

B2 0.0035

S 0.005

T1, T2, T3 0.003

reliability value was equal to 3.1 e-002 confirming
the result in [10].

The Simulator results are repo Table 7. Again,
the results found [10] are ma The experiment
was carried out by a laptop with ollowing charac-
teristics: CPU, Intel Core 2 uo 1.83 GHz; RAM, 1.99

6.

e and computationally efficient based on two
odels: the Stochastic Dependency

c fault schema.

26453

rted in
 in tched.

 the f
 D

GB.

 Conclusions

This paper introduces a new modeling framework for the
dependability assessment of complex stochastic systems.
DGFT is a high level modeling methodology easy to use,
intuitiv
separated system m
Graph and a generi

DGs allow to exploit many kinds of stochastic de-
pendencies that are not easily caught by other method-
ologies. The fault schema of the system results simplified
from complex relations and can be easily solved. More-

Copyright © 2013 SciRes. ENG

G. MANNO ET AL. 165

Table 7. Simulator solver results.

Simulator Batches Mean Conf. Int. CPU time

SAN 5e08 3.12e−02 +/−4.76e−05 1608 sec

over DGs can be converted efficiently in their related
behavioral m oral model, odel. Furthermore the behavi

f any fault logic, results a very flebeing free o xible mean
to va nd stu

T ain ad ges) i-
bility of building high-level-high-descriptive models very

odified and tha
m

 towards: 1) the formalization of
a

e DGFT automatic conversion in SAN
m

RMS.1990.67971

 conduct rious depe ability dies.

he m vanta of DGFT are, thus, 1 the poss

close to the real structure of the system; 2) the effective-
ness of tackling state-dependent component behaviors; 3)
and its convertibility in effective and capable lower level
models that can be easily improved and m t

ake easier the task of estimating dependability measures,
perform sensitivity and uncertainty analysis, diagnosis
and other assessments.

DGFT can be used as a stand-alone methodology or as
a starting point to build SAN models of dependable sys-
tems. Moreover, by this methodology, it is possible to
solve efficiently DFTs by converting them to their re-
lated FT model.

Future works may go
general theory regarding Stochastic Dependency Graphs

and their implication in terms of behavioral models; 2)
the integration of more advanced tools to resolve fault
time dependencies (e.g. dependencies introduced by PAND
gates); and 3) th

odels which have shown their potentiality to solve
complex dependable systems, both analytically and via
simulation, and thus, allowing to model and solve a very
general class of complex systems.

REFERENCES
[1] J. B. Dugan and S. J. Bavuso, “Fault Trees and Sequence

Dependencies,” Proceedings of Annual Reliability and
Maintainability Symposium, Los Angeles, 23-25 January
1990, pp. 232-235. doi:10.1109/A

[2] J. B. Dugan and S. J. Ba ynamic Fault-Tree
Models for F r Systems,” IEEE

vuso, “D
ault Tolerant Compute

Transactions on Reliability, Vol. 41, No. 3, 1992, pp.
363-377. doi:10.1109/24.159800

[3] S. Amari, G. Dill and E. Howald, “A New Approach to
Solve Dynamic Fault Trees,” Annual Reliability and
Maintainability Symposium, 2003, pp. 374-379.

[4] R. Gulati and J. B. Dugan, “A Modular Approach for
Analyzing Static and Dynamic Fault Trees,” Proceedings
of Annual Reliability and Maintainability Symposium,
Philadelphia, 13-16 January 1997, pp. 57-63.
doi:10.1109/RAMS.1997.571665

[5] M. Lanus, L. Yin and K. S. Trivedi, “Hierarchical Com-
position and Aggregation of State-Based Availability and
Performability Models,” IEEE Transactions on Reliabil-
ity, Vol. 52, No. 1, 2003, pp. 44-52.

doi:10.1109/TR.2002.805781

[6] B. N. Feinberg and S. S. Chiu, “A Method t
Steady-State Distributions of Lar

o Calculate
ge Markov Chains by

Aggregating States,” Operations Research, Vol. 35, No. 2,
1987, pp. 282-290. doi:10.1287/opre.35.2.282

[7] M. Malhotra and K. S. Trivedi, “A Methodology for
Formal Specification of Hierarchy
Proceedings of 5th Internatio

in Model Solution,”
nal Workshop Petri Nets

and Performance Models, (PNPM-1993), Toulouse, 19-
22 October 1999, pp. 258-267.
doi:10.1109/PNPM.1993.393445

[8] S. Distefano and A. Puliafito, “Dynamic Reliability Block

ystems by
n Networks,” Reliabil-

Diagrams vs Dynamic Fault Trees,” Proceedings of An-
nual Reliability and Maintainability Symposium RAMS’07,
Orlando, 22-25 January 2007, pp. 71-76.

[9] A. Bobbio, L. Portinale, M. Minichino and E. Ciancamer-
la, “Improving the Analysis of Dependable S
Mapping Fault Trees into Bayesia
ity Engineering and System Safety, Vol. 71, No. 3, 2001,
pp. 249-260. doi:10.1016/S0951-8320(00)00077-6

[10] H. Boudali and J. Dugan, “A New Bayesian Network
Approach to Solve Dynamic Fault Trees,” Proceedings of
Annual Reliability and Maintainability Symposium, Al-
exandria, 24-27 January 2005, pp. 451-456.
doi:10.1109/RAMS.2005.1408404

[11] H. Boudali and J. B. Dugan, “A Continuous-Time Bayes-
ian Network Reliability Modeling, and Analysis Frame-
work,” IEEE Transactions on Reliability, Vol. 55, No. 1,
2006, pp. 86-97. doi:10.1109/TR.2005.859228

[12] M. Bouissou and J. L. Bon, “A New Formalism That
Combines Advantages of Fault-Trees and M
els: Boolean Logic Driven Markov

arkov Mod-
 Processes,” Relibility

Engineering and System Safety, Vol. 82, No. 2, 2003, pp.
149-163. doi:10.1016/S0951-8320(03)00143-1

[13] S. Swaminathan and C. Smidts, “The Event Sequence
Diagram Framework for Dynamic Probabilistic Risk As-
sessment,” Reliability Engineering and System Safety, Vol.
63, No. 1, 1999, pp. 73-90.
doi:10.1016/S0951-8320(98)00027-1

[14] D. Codetta-Raiteri, “The Conversion of Dynamic Fault
Trees to Stochastic Petri Nets, as a case of Graph Trans-
formation,” Electronic Notes in Electronic Computer Sci-
ence, 127, No. 2, 2005, pp. 45-60.
doi:10.1016/j.entcs.2005.02.005

[15] V. Volovoi, “Modeling of System Re
with Aging Tokens,” Reliability Engin

liability Petri Nets
eering and System

Safety, Vol. 84, No. 2, 2004, pp. 149-161.
doi:10.1016/j.ress.2003.10.013

[16] M. Marsaguerra, E. Zio, J. Devooght and P. E. Labeau,
“A Concept Paper on dynamic
Carlo Simulation,” Mathematics

Reliability via Monte
and Computers in Simu-

lation, Vol. 47, No. 2-5, 1998, pp. 371-382.
doi:10.1016/S0378-4754(98)00112-8

[17] E. Zio, M. Marella and L. Podollini, “A
Simulation Approach to the A

 Monte Carlo
vailability Assessment of

Multi-State Systems with Operational Dependencies,” Re-
liability Engineering and System Safety, Vol. 92, No. 7,
2007, pp. 871-882. doi:10.1016/j.ress.2006.04.024

Copyright © 2013 SciRes. ENG

http://dx.doi.org/10.1109/ARMS.1990.67971
http://dx.doi.org/10.1109/ARMS.1990.67971
http://dx.doi.org/10.1109/ARMS.1990.67971
http://dx.doi.org/10.1109/RAMS.1997.571665
http://dx.doi.org/10.1109/RAMS.1997.571665
http://dx.doi.org/10.1109/RAMS.1997.571665
http://dx.doi.org/10.1109/TR.2002.805781
http://dx.doi.org/10.1109/TR.2002.805781
http://dx.doi.org/10.1109/TR.2002.805781
http://dx.doi.org/10.1109/TR.2002.805781
http://dx.doi.org/10.1287/opre.35.2.282
http://dx.doi.org/10.1287/opre.35.2.282
http://dx.doi.org/10.1016/S0951-8320(00)00077-6
http://dx.doi.org/10.1016/S0951-8320(00)00077-6
http://dx.doi.org/10.1016/S0951-8320(00)00077-6
http://dx.doi.org/10.1109/TR.2005.859228
http://dx.doi.org/10.1109/TR.2005.859228
http://dx.doi.org/10.1109/TR.2005.859228
http://dx.doi.org/10.1016/S0951-8320(03)00143-1
http://dx.doi.org/10.1016/S0951-8320(03)00143-1
http://dx.doi.org/10.1016/S0951-8320(03)00143-1
http://dx.doi.org/10.1016/S0951-8320(98)00027-1
http://dx.doi.org/10.1016/S0951-8320(98)00027-1
http://dx.doi.org/10.1016/S0951-8320(98)00027-1
http://dx.doi.org/10.1016/j.entcs.2005.02.005
http://dx.doi.org/10.1016/j.entcs.2005.02.005
http://dx.doi.org/10.1016/j.entcs.2005.02.005
http://dx.doi.org/10.1016/j.entcs.2005.02.005
http://dx.doi.org/10.1016/j.ress.2003.10.013
http://dx.doi.org/10.1016/j.ress.2003.10.013
http://dx.doi.org/10.1016/j.ress.2003.10.013
http://dx.doi.org/10.1016/S0378-4754(98)00112-8

G. MANNO ET AL.

Copyright © 2013 SciRes. ENG

166

Stochastic Activity

nd L
lution: A Con-

[18] Mobius. http://www.mobius.illinois.edu/

[19] W. H. Sanders and J. F. Meyer, “
Networks: Formal Definitions and Concepts,” In: H.
Hermanns and J.-P. Katoen, Eds., Lectures on Formal
Methods and Performance Analysis, Springer Verlag,
Berlin, 2002, pp. 315-343.

[20] F. Chiacchio, D. D’Urso, N. Trapani, G. Manno a .
Compagno, “Dynamic Fault Trees Reso
scious Trade-Off between Analytical and Simulative Ap-
proaches,” Reliability Engineering and System Safety, Vol.
96, No. 11, 2011, pp. 1115-1126.

doi:10.1016/j.ress.2011.06.014

[21] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso and N.
Trapani, “Matcarlore: An Integrat
Simulink Tool for the Reliability Assessm

ed FT and Monte Carlo
ent of Dynamic

Fault Tree,” Expert Systems with Applications, Vol. 39,
No. 12, 2012, pp. 10334-10342.
doi:10.1016/j.eswa.2011.12.020

[22] A. Rauzy, “Binary Decision Diagrams for Reliability
Studies,” Handook of Performabi
pp. 381-339.

lity Engineering, 2008,

http://dx.doi.org/10.1016/j.ress.2011.06.014
http://dx.doi.org/10.1016/j.eswa.2011.12.020
http://dx.doi.org/10.1016/j.eswa.2011.12.020
http://dx.doi.org/10.1016/j.eswa.2011.12.020
http://dx.doi.org/10.1016/j.eswa.2011.12.020

