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ABSTRACT 

The diagnoses in industrial systems represent an important economic objective in process industrial automation area. To 
guarantee the safety and the continuity in production exploitation and to record the useful events with the feedback ex- 
perience for the curative maintenance. We propose in this work to examine and illustrate the application ability of the 
spectral analysis approach, in the area of fault detection and isolation industrial systems. In this work, we use a com- 
bined analysis diagram of time-frequency, in order to make this approach exploitable in the proposed supervision strat- 
egy with decision making module. The obtained results, show clearly how to guarantee a reliable and sure exploitation 
in industrial system, thus allowing better performances at the time of its exploitation on the supervision strategy. 
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1. Introduction 

The development of diagnosis system appears additional 
expensive solution in the industrial investment, but it 
deadens during the production phase. During the execu- 
tion of the strategy of diagnosis, the measurable signals 
can provide significant information, on the defects ap- 
pearance to facilitate the determination of the supervision 
parameters, representing the defects signatures, their de- 
gree and persistence. From these parameters, the decisio- 
nal system can conceive powerful diagnosis approach 
[1-3]. To realise this prospect, we proposes in this work 
to examine and illustrate the application ability of the 
spectral analysis approach, in the area of fault detection 
and isolation industrial systems. Thus it is essential to 
maintain the exploitation system apart from this instabil- 
ity zone. The signals temporal representation does not 
give a good sensitivity of fault detection on defective 
components, while the frequencies representation given 
by Fourier transform does not allow the temporal local- 
ization of these components [4-6]. In this work, we use a 
combined analysis diagram of time-frequency, in order to 
make this approach exploitable in the proposed supervi- 
sion strategy with decision making module. 

The obtained results, show clearly how to guarantee a 
reliable and sure exploitation of the studied industrial 
system, thus allowing better performances at the time of 
its exploitation on the supervision strategy. The applica- 
tion results of the investigated approach, validated by ex- 

perimental test, allowing that the use of the combined 
time-frequency method give excellent results on the tested 
models with better performances. The proposed approach, 
allows the detection of the defects at the beginning of 
their appearance. The studied approach ensures an effec- 
tive monitoring, allows detecting the defects to avoid any 
degradation and also to ensure an operation reliable and 
increase the working time of this industrial system. 

2. Diagnosis Based on Spectral Analysis  
Approach 

The detection and the identification of the defects in the 
industrial systems it is an important subject in modern 
automation engineering companies [7-9]. Indeed, in large 
industrial applications it is often posed the question, how 
guarantee the people security and preserving their envi- 
ronment? 

The diversity of the developed approaches for the di- 
agnosis of the industrial systems, seem to be the result of 
various applications aimed by specifications which result 
from it. Thus, the nature of information available on the 
system or the defects type to be detected led to the im- 
plementation of this specific strategy [3,6,7]. In this work, 
we present the application of the spectral analysis method 
to the diagnosis of the complex industrial systems, based 
on Fourier transform; we consider the signal  x t  ab- 
solutely integrable on  ,  , the transform of Fou- 
rier of this signal is to give by: 
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This transform is invertible by: 
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While applying this transform, we pass from the tem- 
poral field to the frequencies presentation, the energy is 
preserved in both representations. It is noted that the sig- 
nal x t

2 πe ,k ij f t k  

 

 tends towards the zero when t tends towards 
the infinite, for practical reasons, this signal is sampling 
in the following form [8]: 

   
i

k i
i

x t x t




        (3) 

With kx t   is an approximation of x t
t

 at the 
points k . The power density spectral is defined as being 
the square module of the Fourier transform of  x t . 

In our investigation, we add a Gaussian white signal 
disturbed, as it’s shown on the Figure 1, this white vi- 
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Figure 1. Gaussian white signal disturbed. 

bration is a realized with a random process, were the 
power density spectral is the same for all frequencies. 
This white vibration is a normal law of average and va- 
riance given by the following equation [10]: 
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In literary, there exist many methods to estimate the 
faults [4,5,11]. In our investigation, we chose the power 
density spectral, the estimation being carried out directly 
starting from the Fourier transform of the signal without 
concerned the models parametric in consideration. Under 
the hypothesis of stationary and ergodic signals, the func- 
tion of autocorrelation of the power density spectral is 
defined by: 
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 
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     (5) 
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One supposes we have N samples  


 of the  

signal to be analyzed and we thus seek to consider the 
power density spectral starting from the measured data. 
Using a nonparametric estimate of the spectrum, each 
method being related to the equalities in the Equaion (6). 
The representation of the power density spectral using 
the FFT is shown on Figure 2, this resolution method is 
nominal one Hz equal to the inverse number of multiplies 
sampling by the sampling frequency; this resolution de- 
creases the important noise in our system. 

2.1. Estimation of the Spectrum by the  
Periodogram Method 

Now we will use the spectrum estimation by the method 
of periodogram [12], in this method we used the signal 
directly. The spectrum is estimated by the following rela- 
tion: 
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The periodogram is the convolution of the spectrum by  

a window in cardinal sine, there resolution is about 
1

N

      

,  

the periodogram is a skewed estimator, given by [13]: 
1 2

1 2

ˆ dPER b xE s f W f u S u u


       (8) 
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Figure 2. Power density spectral using the Fast Fourier 
Transform FFT. 
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This periodogram representation is the triangular win- 
dow of Fourier transform, when , the presenta- 
tion of the power spectrum using the periodogram method, 
is shown on the Figure 3, the skew becomes null, that 
show us that the variance is practically independent of N 
and proportional to the spectrum, given by [6]: 

ˆvar             (10) 

The periodogram is not consistent an estimator for the 
DSP, to decrease the variance of this estimator, we can 
used the periodogram modify. It is possible to balance 
the estimator of the autocorrelation function by a window 
function  on N measures. The spectral estimator 
must be calculated as follows: 
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Figure 3. Power density spectral using the periodogram 
method. 
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Using a normalized function U to eliminate the skew 
introduced by the window function , given by: 

  21

0

1 N

n
U w n

N



             (12) 

This new estimator is as skewed by comparison with 
the precedent; the applied window function to the sam- 
ples is obtained before calculation of FFT. His advantage 
is reduced its variance, because the effect of smoothing 
of the power density spectral is realized by the convolu- 
tion with the window function. The representation of the 
power density spectral, by using of the periodogram mo- 
dify method is shown on Figure 4. The choice of the 
window function becomes important, when the power 
density spectral of the studied signal includes superim- 
posed lines of broad band noise, like the vibration in our 
application. 
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Figure 4. Power density spectral using the periodogram modify method. 
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Figure 5. (a) Power density spectral using Prony method: Analyzed with the snr number; (b) Power density spectral using 
Prony method: Analyzed with the f1, f2; (c) Power density spectral using Prony method: Analyzed with the variation of n. 
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2.2. Power Density Spectral Estimated by 

PRONY 

The proposed approach of detection and localisation of 
defects using PRONY [12] method is an exponential 
sum of the probability defects model to approach at the 
follows  x N

1

p n
m mm

, given by: 

   x n s n B z


           (13) 

In this model, the exponential nZ  noted the poles of 
model are carrying the information of the nature of de- 
fects, known in signal treatment and in system modelling 
by: 

e j m
m mB A  mZ and     (14)  πei am e fm t 

,  With Am m  are respectively the amplitude and the 
phase of the damping vector and  is the frequency 
and the step of sampling. To determine the frequencies 
and the damping coefficients, in our application we have 
used the following equations: 
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For the determination of the amplitudes and the phases 
we based on the Equations (15) and (16): 

            (17) 

The approximation function becomes then: 
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The power density spectral estimated by PRONY is 
then given by: 
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  (19) 

The spectral analysis consists in raising the fault signal 
measures on the examined system and to proceed has a 
systematic analysis, to seek the presence of fault situation 
of the whole of the defects suitable for affect the installa- 
tion considered. That gives access to the diagnosis; to 
identify with precision the nature of the anomaly and to 
specify revolves it with a good localization of these de- 
fects. The representation of the power density spectral 
with the use of Prony method is shown on the Figures 
5(a)-(c). 

3. Conclusion 

In the presented results in this paper, we have showed 

that the use of the analysis spectral method, the power of 
the signals models using Prony method, these responses 
shows that the technique of Prony makes it possible to 
distinguish the frequencies 1f  and 2f  in spite of their 
close values, and in the presence of satisfactory noise 
signal . For our investigation the starting and 
stopping control of the studied sytsem is supervised by 
the distributed control system, the fault measurements in 
the used system is done on-line, these measurements are 
taken periodically by using the various measurements 
sensors. 
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