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ABSTRACT 

Concern on alteration of sediment natural flow caused by developments of water resources system, has been addressed 
in many river basins around the world especially in developing and remote regions where sediment data are poorly 
gauged or ungauged. Since suspended sediment load (SSL) is predominant, the objectives of this research are to: 1) 
simulate monthly average SSL (SSLm) of four catchments using artificial neural network (ANN); 2) assess the applica- 
tion of the calibrated ANN (Cal-ANN) models in three ungauged catchment representatives (UCR) before using them to 
predict SSLm of three actual ungauged catchments (AUC) in the Tonle Sap River Basin; and 3) estimate annual SSL 
(SSLA) of each AUC for the case of with and without dam-reservoirs. The model performance for total load (SSLT) pre- 
diction is also investigated because it is important for dam-reservoir management. For model simulation, ANN yielded 
very satisfactory results with determination coefficient (R2) ranging from 0.81 to 0.94 in calibration stage and 0.63 to 
0.87 in validation stage. The Cal-ANN models also perform well in UCRs with R2 ranging from 0.59 to 0.64. From the 
result of this study, one can estimate SSLm and SSLT of ungauged catchments with an accuracy of 0.61 in term of R2 
and 34.06% in term of absolute percentage bias, respectively. SSLA of the AUCs was found between 159,281 and 
723,580 t/year. In combination with Brune’s method, the impact of dam-reservoirs could reduce SSLA between 47% and 
68%. This result is key information for sustainable development of such infrastructures. 
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1. Introduction 

Rainfall and runoff, the main erosion agents, detach soil 
particles from its matrix and transport gravitationally the 
detached materials or sediments to surrounding rivers. In 
the rivers, sediments flow further downstream with 
streamflow. Suspended sediment load (SSL) is a major 
portion of the total load transported by streams [1] and 
commonly accounts for 85% to 95% [2]. Sediment has 
been becoming an important issue involving in sustain- 
able development of water resources system. The Me- 
kong2Rio conference also addressed the concern on food 
security which could be adversely affected by alteration 
of the sediment natural flow [3]. Construction of water 
storages (e.g. dam-reservoirs) can provide solutions to 
food security issues through increased irrigation and at 
the same time improve access to energy through hydro- 
power generation. However, such developments could 
affect on fisheries through the loss of sediment trapped 
behind dam walls, for example. The Lower Mekong Ba- 
sin (LMB) contains over 100 hydropower projects (HPP) 

and if there are no any effective countermeasures taken 
into account, their development could trap sediment 
around 26 Mt/year, 60% of the total basin production [4]. 

Quantification of sediment load is necessary not only 
during the project development stage but also along the 
course of operation until decommissioning [5-12]. It is 
interesting with regard to reservoir sedimentation, fish 
habitat, river utilization as well as biological sustainabil-
ity in the whole river basin [13]. The most reliable way 
in estimating sediment load is the use of its observed 
records, but sediment sampling is very difficult and re- 
quires high experienced professionals because of its sig- 
nificant fluctuation within the river section [9] and user- 
unfriendly measurement tools. Moreover, it is time con- 
suming and costly [11,14]. These constraints have led to 
low frequency of sediment observation around the world 
and especially in developing and remote regions [1] such 
as the LMB. In response to this problem, modeling ap- 
proach, based on different hydrological variables and 
terrain attributes, has been taken into consideration. 
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The unit stream power (USP) theory of Yang [15], the 
SHESED model of Wicks and Bathurst [16] and others 
known as the physically-based models, could be univer- 
sally used to predict sediment yield of a watershed but it 
requires a lot of detailed information including hydro- 
logical, hydraulic and geological characteristics of the 
river basin, and as well as sediment characteristics itself. 
Preparation of such dataset will be difficult and costly. 
Furthermore, the stream power approach cannot predict 
well the SSL because, in rivers, the finest fraction of SSL 
is often a non-capacity load [17,18]. Similarly for proc-
ess-based models such as the modified universal soil loss 
equation (MUSLE), introduced by Williams [19], and its 
family (USLE and RUSLE), they also require huge 
amount of input data. Data consumption and complex 
sediment transport mechanism have driven both physi- 
cally- and process-based models to be based on many 
simplifying assumptions and empirical relationships, 
particularly for rainfall and runoff erosive effects [7,20]. 
In consequence, their application in data scarce areas 
would yield high uncertain results or be completely in-
feasible. 

Alternative approach to the process- and physically- 
based techniques is the utilization of data-driven models. 
Artificial neural network (ANN) is the most well-known 
and powerful data-driven method and it has been proved 
to be useful in modeling complex hydrologic processes 
or non-linear systems such as sediment transport [10,21, 
22]. ANN forecasts outputs using experiences learned 
from historical data. This method is widely used because 
it does not require detailed information of the physical 
process controlling the system and generally applicable 
using available hydrological data. Tayfur [23] stated that 
ANN is a very practical and promising modeling tool for 
the study of sediment transport processes in data shortage 
regions. Kisi and Shiri [13] employed ANN to estimate 
daily suspended sediment concentration (SSC) in Eel 
River, California, and obtained a very satisfactory result 
with determination coefficient (R2) ranging between 0.82 
and 0.95. In predicting daily SSL in Mississippi, Mis-
souri and Rio Grande River in USA, Melesse et al. [11] 
found that ANN (0.65 ≤ R2 ≤ 0.96) for most cases is su-
perior to other data-driven models: multiple linear/non- 
linear regressions and autoregressive integrated moving 
average. In Longchuanjiang River, the Upper Yangtze 
Catchment in China, monthly SSL was modeled well by 
ANN with R2 varying from 0.66 to 0.89 in validation 
stage [24]. 

Singh et al. [12] compared two different models for 
predicting monthly SSL of Nagwa watershed in India 
and the results showed that ANN is better than MUSLE 
for larger R2 8% in calibration stage and 13% in valida-
tion stage. Similar study conducted by Talebizadeh et al. 
[25] demonstrated that ANN is superior to MUSLE in 

estimating low and medium values but inferior in case of 
high values. In comparing with various physically-based 
models including USP, the performance of ANN is com- 
parable and in some cases better [23]. Additionally, ANN 
could provide detailed information for design purposes 
and management practices in civil and environmental 
engineering sector [10], and hysteretic analysis of sedi- 
ment transport [26] which no other methods have been 
confirmed their applicability yet. However, one draw- 
back of ANN is the need of long time series data for sys- 
tem training. 

To our knowledge, there are many studies considering 
ANN for SSL simulation but very limited researches 
assessing its applicability in ungauged catchments (UC). 
The objectives of this research are to: 1) simulate monthly 
average SSL (SSLm) of four catchments using ANN; 2) 
assess the application of the calibrated ANN models in 
three ungauged catchment representatives (UCR) before 
using them to predict SSLm of three actual ungauged 
catchments (AUC) in the Tonle Sap River Basin; and 3) 
estimate annual SSL (SSLA) of each AUC for the case of 
with and without hydropower dam-reservoirs. All ten 
catchments considered in this study are located totally in 
the LMB. UC in this context refers to catchment having 
no sediment observation. 

2. Materials and Methods 

2.1. Study Catchments 

The study area is focused on the LMB covering about 
606,000 km2, 76% of the whole Mekong River Basin and 
more than 80% of the annual flow [27]. It lies approxi-
mately between 8˚N to 23˚N and 98˚E to 109˚E. It is a 
transboundary river basin shared by four countries: Lao 
PDR, Thailand, Cambodia and Vietnam. Majority of the 
sediment gauging stations is located in the basin part of 
Thailand and ranked the highest with respect to data 
availability and completeness [28]. On the other hand, 
many water related projects such as hydropower dams/ 
reservoirs are planned in the basin part of Lao PDR and 
Cambodia where historical records of sediment are very 
poor. Therefore, modeling of sediment load in the areas 
rich in observed data and proof of its applicability in un-
gauged areas with similar hydrological and terrain char-
acteristics, the main purpose of the research, is very chal- 
lenging in this context. 

Figure 1 illustrates the location map of all ten catch- 
ments selected for the study. Presently, there are no hy- 
dropower dams operating in these catchments [29]. Hy- 
drological and geographical/terrain characteristics of 
each catchment are presented in Table 1. Catchment No. 
1 to 7 where sediment data are available were grouped 
and divided into two sets: 1) The simulated catchment 
(SC) composing of Catchment No. 1, 2, 3 and 4, was  
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Figure 1. Location map of the study catchments. 
 
employed for model simulation; 2) The UCR containing 
Catchment No. 5, 6 and 7, was employed for examining 
the calibrated ANN (Cal-ANN) models. These two sets 
of catchment are differentiated by the length of data 
availability: 14 - 20 years for UCR and 20 - 25 years for 
SC. These seven catchments were selected based on data 
availability and different geographical/terrain coverage. 
The Tonle Sap River is a main tributary of the Lower 
Mekong River and drains about 86,045 km2, 14% of the 
whole LMB area. The Tonle Sap River Basin (TSRB) is 
a combined lake and river system of major importance to 
Cambodia, e.g. water, food and power supply, flood pro- 
tection, etc. In the TSRB, five HPPs (Figure 1) were 
planned, two in Catchment No. 8, two in Catchment No. 
9 and one in Catchment No. 10 [29]. These three catch- 
ments are ungauged in term of sediment data and they 
are called the AUC in this study. Thus, sediment quanti-
fication in these areas is so challenging and important for 
not only the project development but also the impact as- 
sessment on downstream biological system.  

2.2. Data 

The main data used in this study are suspended sediment 
load (SSL), discharge (Q), rainfall (R) and digital eleva-

tion map (DEM). SSL is the product of Q and SSC. Land 
use/cover and soil type were accounted for understanding 
the geo-physical information of each catchment and were 
not involved in model prediction. The daily data of SSC, 
Q and R were collected from Mekong River Commission 
(MRC). As a result from double mass curve plotting, the 
considered rainfall dataset of each station was confirmed 
reliable. DEM (30-m resolution) was downloaded from 
ASTER GDEM 2 [30]. ASTER GDEM is a product of 
METI and NASA. Land use/cover and soil map were 
respectively extracted from GLC2000 database [31] and 
SOIL-FAO database [32]. 

Daily time series of Q and R are continuous with long 
term records. SSC time series are discontinuous with low 
sampling frequency, between 2 and 4 samples per month 
in average (Table 1), and this provokes the analysis in 
monthly basis. The monthly average SSL (SSLm) is the 
product of monthly average Q (Qm) and monthly average 
SSC (SSCm). The distribution of monthly average R (Rm) 
over each catchment was conducted using Thiessen 
Polygon method. Qm and Rm were used as input data for 
model calculation and SSLm was employed for compari-
son with the model output. DEM was applied for catch-
ment delineation and slope computation. For model 
simulation (SC-1, SC-2, SC-3 and SC-4), the whole 
dataset was divided into two parts: the first 75% for cali-
bration and the remaining 25% for validation. The input 
combination (75*25%) was decided based on many ex-
isting case studies of sediment simulation as summarized 
in Table 2. 

The changes in land use over the simulation period 
(about 20 years) might cause significant variation of 
sediment load temporally. This effect could lead to low 
accuracy of the prediction results. In addition, other hu-
man activities could involve in this problem as well. 
These issues were not considered in the present study due 
to data constraint. However, the Mann-Kendall test [45, 
46] for gradual trend analysis and the Pettitt test [47] for 
abrupt change detection were applied to examine the 
time series of annual SSL of each SC. The results of the 
Mann-Kendall test (Table 3) show that there are no sig-
nificant trends detected at any of the four SCs at both 
0.01 and 0.05 significance level. For the Pettitt test (Ta- 
ble 3), only SSL series of the SC-4 exhibits abrupt 
change (in 1993) if considering a significance level of 
0.05. At significance level of 0.01, there is no change 
point detected at all SCs. In order to make the model 
simulation procedures straightforward, significance level 
of 0.01 was taken into account and therefore, the above 
mentioned effects were concluded to have no significant 
influence on the SSL data used for all simulations. 

2.3. Artificial Neural Network (ANN) 

ANN is characterized by network architecture (pattern of  
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Table 1. Hydrological and terrain characteristics of the study catchments. 

SSC 
Sampling 
Frequency 

Catchment 
Area  
(A) 

Annual 
SSL 

(SSLA) 

Annual 
Discharge 

(QA) 

Annual 
Rainfall 

(RA) 

Catchment 
Slope 

(S) Catchment 
Period of 
Record 

Sample per 
month 

km2 t/year/km2 m3/s/km2 mm/year % 

Dominant  
Land Use 

Dominant 
Soil 

1. Ban Huai Khayuong 1979-2003 2 3171 36.55 0.012 1522 9.44 
Cultivated and 
managed land 

Gleyic 
Acrisols 

2. Ban Nong Kiang 1982-2003a 2 1405 43.98 0.012 1079 22.49 
Tree cover or 

forest 
Orthic 

Acrisols 

3. Ban Tha Sai 1980-2001b 3 3249 46.90 0.007 1945 27.27 
Mosaics and 
shrub cover 

Orthic 
Acrisols 

4. Nam Mae Pun Luang 1980-2001 4 260 57.86 0.009 1953 32.50 
Mosaics and 
shrub cover 

Orthic 
Acrisols 

5. Ban Fang Phe 1983-1998 2 1412 42.42 0.017 1875 14.80 
Mosaics and 
shrub cover 

Ferric  
Acrisols 

6. Ban Na Kham Noi 1990-2003 2 1220 97.14 0.015 1361 16.97 
Tree cover or 

forest 
Orthic 

Acrisols 

7. Ban Tha Mai Liam 1984-2003 2 1886 54.62 0.014 1710 25.78 
Mosaics and 
shrub cover 

Orthic 
Acrisols 

8. Bac Trakoun 2001-2002 - 4221 37.74 0.011 1275 21.21 
Tree cover or 

forest 
Orthic 

Acrisols 

9. Battam Bang 2000-2002 - 3505 73.88 0.020 1138 16.12 
Tree cover or 

forest 
Distric 

Nitosols 

10. Kampong Thom 2000-2002 - 14,439 50.11 0.023 1531 9.85 
Tree cover or 

forest 
Ferric  

Acrisols 

Simulated catchment (SC): 1, 2, 3 and 4; Ungauged catchment representative (UCR): 5, 6 and 7; Actual ungauged catchment (AUC): 8, 9 and 10; aNo data in 
1986 and 1987; bNo data in 1995 and 1996; SSLA figures in bold are the model results. 

 
Table 2. Input combination for sediment modeling (Existing 
case studies). 

Percentage of Data  
Allocated for No. 

Calibration Validation

Sources 

1 66.7 33.3 Agarwal et al. [33] 

2 81.9 18.1 Ahmat et al. [34] 

3 72.7 27.3 Besaw et al. [35] 

4 67.2 32.8 Bhattacharya et al. [36] 

5 76.9 23.1 Chutachindakate and Sumi [37]

6 87.1 12.9 Cigizoglu [5] 

7 71.4 28.6 Mustafa et al. [38] 

8 75.0 25.0 Nourani [39] 

9 83.3 16.7 Rajaee [40] 

10 75.0 25.0 Rajaee et al. [41] 

11 66.7 33.3 Sarangi et al. [42] 

12 66.7 33.3 Singh and Panda [43] 

13 80.0 20.0 Singh et al. [12] 

14 76.7 23.3 Yang et al. [44] 

15 76.2 23.8 Zhu et al. [24] 

 74.9* 25.1*  

*Average value. 

Table 3. Results of the Mann-Kendall and Pettitt test for 
SSL series of each SC. 

Mann-Kendall Test Pettitt Test 

Significance level Significance levelSC
p-value

0.01 0.05 
p-value 

0.01 0.05 

1 0.836 − − 0.434  − − 

2 0.586 − − 0.297  − − 

3 0.773 − − 0.544  − − 

4 0.241 − − 0.024  − + 

(+) Significant; (−) Not significant. 

 
node-interconnection), method of determining weights 
on the connections (training algorithm), and transfer 
function (for generating output). ANN is a broad term 
covering a large variety of network architectures, the 
most common of which is a multi-layer perceptron (MLP) 
[10]. Kisi [7] compared different types of ANN for 
sediment prediction in Tongue River (Montana, USA) 
and found that MLP generally yields better results than 
others. Maier and Dandy [21] reviewed 43 papers dealing 
with ANN application in water resource modeling and 
reported that the vast majority considered the back- 
propagation algorithm for system training. As presented 
in Figure 2, this study took into account the MLP (1  
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Figure 2. ANN model structure used in this study. 
 
input, 1 hidden and 1 output layer) with the back-propa- 
gation algorithm. Due to data limitation, the input layer 
was designed with two nodes: Qm and Rm. Since there is 
no fixed rule, the size of hidden layer was determined by 
trial and error procedure. The single node of the output 
layer is SSLm. Initially, the input neuron receives a set of 
inputs (x). The connections between the input and hidden 
layer contain weights (w) which are determined through 
the system training. Then, the hidden layer calculates the 
weighted average of inputs (z) using summation func-
tions: 

1

n

i i
i

z w x 


                   (1) 

where wi is the weight vector, xi is the input vector (i = 1, 
2, ···, n) and β is the bias term. Afterward, the hidden 
layer uses sigmoid transfer function (Equation (2)) to 
generate output (y). 

1

1 e z
y






  
   

                  (2) 

Finally, the generated output is compared with the 
target value. After recognizing the error, the calculation 
is restarted by adjusting w and this procedure is repeated 
until obtaining a desirable y. Therefore, ANN model 
training is the process of weight adjustment that attempts 
to get a desirable outcome with least squares residuals 
and the back-propagation is the most common training 
algorithm. 

2.4. Computation Procedure and Model  
Evaluation 

The computation scheme of this study is depicted in 
Figure 3 and described as below. The designated ANN 
model was used to simulate SSLm of four SCs. The 
model architecture (number of hidden nodes) was opti-
mized based on three popularly used statistical indicators: 
determination coefficient (R2), root mean square error 
(RMSE) and mean absolute error (MAE). The model effi-
ciency was measured by R2 as well. With R2 greater than 
0.50, the model performance is judged satisfactory [48]. 
In case satisfactory result (R2 > 0.50) is obtained for all 
SCs, there will be totally four Cal-ANN models which 
could be applied to estimate SSL in UCs. Since total load 

(SSLT) is essential for dam-reservoir management [7], 
the model performance for this purpose was also investi-
gated and absolute percentage bias (APBIAS) was util-
ized in this case. SSLT is the integral of SSLm series 
within a particular period. For sediment prediction, the 
model result is considered acceptable with APBIAS less 
than 55% [48]. R2, RMSE, MAE and APBIAS were cal-
culated using Equation (3), (4), (5) and (6), respectively. 

2

2
2 2

avg avg

avg avg

X X Y Y
R

X X Y Y

   
 


 

          (3) 

 21
MSE X Y

N
               (4) R

1
MAE X Y

N
                (5) 

100 T T

T

X Y
APBIAS

X




*

              (6) 

where X is the observed SSLm with the mean value Xavg, 
Y is the predicted SSLm with the mean value Yavg, N is the 
sample size, XT is the observed SSLT, and YT is the pre-
dicted SSLT. 

Catchment similarity was used to select the most ap-
propriate Cal-ANN for predicting SSLm of UCRs. In this 
regard, the catchment similarity refers to annual dis- 
charge per unit area (QA), annual catchment rainfall (RA) 
and catchment slope (S). As mentioned earlier, discharge 
and rainfall are the main erosion and transport agents. 
Catchment slope or topography is a very important factor 
controlling land surface erosion and it is included in 
many erosion prediction methods and mostly the process- 
and physically-based models [8,9]. All three catchment 
similarity parameters (CSP), QA, RA and S, were used 
alternately to select a Cal-ANN model for estimating 
SSLm of three UCRs. In this case, R2 was also employed 
to evaluate the model efficiency. At the same time, the 
model performance for SSLT prediction was also inves-
tigated using APBIAS. The corresponding R2 (SSLm pre-
diction) of each CSP was afterward compared with each 
other so as to identify the most ideal CSP. In order to 
emphasize the consistency, the same procedure was con- 
ducted for APBIAS (SSLT prediction). 

After identifying the most ideal CSP, it was then used 
to select an appropriate Cal-ANN for estimating SSLm of 
three AUCs. The estimated SSLm series was integrated to 
obtain SSLA. The computed SSLA in this case does not 
consider the impact of dam-reservoirs. SSLA under the 
impact of dam-reservoirs (the latter called SSLA*) was 
calculated by: 

A A TESSL SSL SSL               (7) 

where the unit of SSLA in this case is [t/year] and SSLTE is    
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Figure 3. Computation scheme. 
 

Table 4. Statistical characteristics of the data used in this 
study. 

the annual SSL trapped by dam-reservoir and it is com-
puted by: 

TE              (8) Catchment Variable COV SKEW KURT 

Qm 1.47 1.85 2.76 

Rm 1.01 0.99 0.73 
1) Ban Huai 
Khayuong 

SSLm 1.56 1.93 3.10 

Qm 1.46 2.23 4.92 

Rm 1.11 1.26 1.39 
2) Ban Nong 
Kiang 

SSLm 2.14 3.54 14.33 

Qm 1.06 1.66 3.52 

Rm 0.93 0.84 0.33 3) Ban Tha Sai 

SSLm 1.67 3.48 15.83 

Qm 0.80 1.65 2.78 

Rm 0.96 0.91 0.42 
4) Nam Mae Pun 
Luang 

SSLm 1.44 2.45 7.03 

Qm 1.46 1.73 2.26 

Rm 1.08 1.02 0.42 5) Ban Fang Phe

SSLm 1.85 3.06 11.32 

Qm 1.70 2.41 5.40 

Rm 1.06 1.01 0.12 
6) Ban Na Kham 
Noi 

SSLm 2.47 3.99 19.44 

Qm 1.13 2.47 8.27 

Rm 0.92 0.76 −0.16 
7) Ban Tha Mai 
Liam 

SSLm 1.54 4.91 37.00 

where AR is the drainage area of the dam-reservoir, the 
unit of SSLA in this case is [t/year/km2] and TE is the res-
ervoir trapping efficiency and it is estimated using 
Brune’s equation [49]: 

0.5

1 0.05
I

C
    
 

TE               (9) 

where I is the annual discharge at the location of dam- 
reservoir and C is the active storage capacity. I and C 
data were obtained from the Lower Mekong Hydropower 
Database [29]. 

The Brune method was originally developed for res- 
ervoirs in the United States but it has been widely used as 
well for other parts of the world such as the Mekong 
River Basin in Southeast Asian countries plus China and 
Myanmar [4], the Changjiang River Basin in China [50], 
the Satluj River Basin in India [51], and so on. For ex- 
ample, the theoretical TE of the Three Gorges Dam on 
the upper Changjiang River is between 0.73 and 0.78 and 
this approximates the real TE of 0.75 [50]. The present 
study considered Brune’s technique because: 1) it is sim-
ple and does not require detailed data of the reservoir or 
sediment which are extremely scarce in the LMB; 2) it is 
commonly used and found to provide reasonable esti-
mates of long-term, mean TE [9,52]; and 3) it is applied 
in various studies in the Mekong region and provided 
acceptable results in comparing with the observed TE 
values (e.g. Kummu et al. [4], Kummu and Varis [53], 
Fu and He [54]). For the case study of Manwan Dam in 
the Upper Mekong Basin, the computed TE value (0.68) 
using this method is found comparable with the observed 
one (0.75) [53]. 

COV: Coefficient of variation; SKEW: Coefficient of skewness; KURT: 
Coefficient of kurtosis. 

 
(KURT) of the data used in the study. SKEW character-
izes the degree of asymmetry of a data distribution while 
KURT indicates the peakedness or flatness. SSLm data-
sets are characterized by the largest value of COV (1.44 - 
2.47), SKEW (1.93 - 4.91) and KURT (3.10 - 37.00) for 
all the river systems. This reflects the high temporal 
variability and non-normal distribution of sediment ero-

3. Results and Discussion 

3.1. Descriptive Statistic of Input Data 

Table 4 shows the coefficient of variation (COV), coef- 
ficient of skewness (SKEW) and coefficient of kurtosis  
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sion/transport in nature. That why it is more difficult to 
be predicted, in comparing with other hydrological vari- 
ables (e.g. discharge and rainfall). Values of Rm dataset 
generally showed a near normal distribution with lower 
values of SKEW and KURT. For model inputs (Qm and 
Rm), among four SCs, the SC-2 overall contains higher 
values of COV, SKEW and KURT indicating their high 
variation and non-normal distribution. This could cause 
poor calibration performance by the ANN model leading 
to convergence problems [11]. 

The distribution of rainfall is primarily driven by to- 
pography and the general approach direction of the south- 
west monsoon. Rainfall in the SC-2 is influenced by the 
southwest monsoon (May-October) blowing from Bay of 
Bengal bringing humid and hot weather to the area. Na- 
tural topography and mountain ranges make this catch- 
ment oriented in a leeward direction creating a rain sha- 
dow and therefore, less rainfall amount in comparing 
with other catchments. The monthly rainfall pattern (1982- 
2003) in the SC-2 is characterized by a double peak (one 
in May and another in September) and this reveals the 
high variation of rainfall in the area. The double peak of 
rainfall is due to depressions and typhoons (August- 
September) from South China Sea during some years, 
which brought local heavy rainfall. The high variability 
in rainfall could be due to local topographic influences as 
well [27]. This could explain also the great variation and 
non-normal distribution of the corresponding discharge 
dataset. 

3.2. Model Simulation 

In comparing with the observed data, results of the SSLm 
prediction are graphically shown in Figure 4 (left). It is 
apparent that trend of the predicted SSLm follows well 
the observed data in all the years for all four SCs. Figure 
4 (right) depicts the scatter plots of the predicted versus 
observed SSLm which were used to distinguish the ANN 
performance in low, medium and high value estimation. 
Overall, the model underestimates the high SSLm values 
and this might be due to different non-linear relationships 
governing the sediment erosion and/or transport proc- 
esses. It is in conformity with findings of various existing 

researches [11,12,25,55,56] and could be concluded as a 
common drawback of the ANN model. For low and me- 
dium values, the scattered points are distributed uni- 
formly around the ideal fit line. 

The model performance for SSLm simulation of each 
SC is summarized in Table 5. The optimum ANN archi-
tecture is 2-5-1, 2-2-1, 2-3-1 and 2-8-1 for SC-1, SC-2, 
SC-3 and SC-4, respectively. For all SCs, the model per-
formance was judged satisfactory because R2 values are 
greater than 0.50 in both calibration and validation stage. 
In calibration period, R2 increases from 0.81 (SC-1) to 
0.94 (SC-4); in addition, SC-2 contains much larger error 
in term of RMSE and MAE, in comparing with other SCs. 
This could be explained by the statistical characteristics 
of the input data (Qm and Rm) of each SC. The inputs 
characterized by higher values of COV, SKEW and 
KURT are generally more difficult to be calibrated and 
therefore lower accuracy of the model results. In valida-
tion stage, R2 increases from 0.63 (SC-4) to 0.87 (SC-3). 
There is no common pattern between the model archi-
tecture and its performance. However, the model per-
formance indicated by R2 (calibration stage) exhibits 
good relationship with the catchment topography repre- 
sented by average slope of the catchment in this study. 
For SSLT prediction, the model results were also consid-
ered acceptable for all cases because APBIAS values are 
less than 55% in both calibration and validation period. 
APBIAS is less than 2% in calibration stage and it is less 
than 40% in validation stage. 

From this result, it can be concluded that ANN model 
performed well in simulating SSLm of various catch-
ments with different hydrological and terrain characteris-
tics. This good result strongly encourages the present 
authors to apply further the ANN model in UCs in the 
same region, the LMB. The Cal-ANN models of all SCs 
were then employed to predict SSLm of three UCRs. 
There are totally four Cal-ANNs which are Cal-ANN-1 
of the SC-1, Cal-ANN-2, Cal-ANN-3 and Cal-ANN-4. 

3.3. Assessment of the Cal-ANN Application in 
UCRs 

Among four Cal-ANNs, the most appropriate one was  
 

Table 5. ANN model performance in simulating SSLm of each SC. 

Calibration Validation 
SC Architecture 

R2 RMSE MAE APBIAS R2 RMSE MAE APBIAS 

1 2-5-1 0.81 59.69 30.41 0.35 0.72 122.04 57.56 21.59 

2 2-2-1 0.82 112.28 60.53 1.10 0.65 151.73 84.27 12.26 

3 2-3-1 0.93 55.17 31.97 0.50 0.87 78.30 44.37 16.07 

4 2-8-1 0.94 48.62 30.13 0.10 0.63 208.72 121.06 39.47 

RMSE, MAE: 10-3 t/day/km2; APBIAS: %; R2, RMSE and MAE for SSLm; APBIAS for SSLT; Architecture (optimum): Number of nodes in the Input-Hidden- 
Output layer. 
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Figure 4. Comparison of the predicted versus observed SSLm of each SC (left) and their scatter plot (right). (a) SC-1; (b) SC-2 
no data in 1986 and 1987); (c) SC-3 (no data in 1995 and 1996); and (d) SC-4. ( 
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selected to predict SSLm of three UCRs using three dif-
ferent CSPs (QA, RA and S) alternately. Each CSP was 
assessed by the model performance in predicting SSLm 
(R2) and SSLT (APBIAS). For the case using S, Cal- 
ANN-1 is the most suitable model for the UCR-5, Cal- 
ANN-2 for the UCR-6 and Cal-ANN-3 for the UCR-7. 
For example, Cal-ANN-3 of the SC-3 was selected for 
the UCR-7 because these two catchments have the most 
similar catchment slope (S). The absolute difference in S 
value (1.49 = |25.78 − 27.27|) of both catchments is the 
smallest one in comparing with other cases: 16.35 for 
(UCR-7 vs SC-1), 3.29 for (UCR-7 vs SC-2) and 6.72 for 
(UCR-7 vs SC-4). In case of QA and RA, the selected 
Cal-ANN for each UCR is tabulated in Table 6. From 
Table 6, it is apparent that the selected Cal-ANNs per-
formed well (R2 > 0.50) in predicting SSLm for all cases. 
The range of R2 is 0.56 - 0.64, 0.54 - 0.61 and 0.59 - 0.64 
for the case using QA, RA and S, correspondingly. Based 
on the average value of R2 (R2*), catchment slope (S) is 
the most ideal CSP in identifying the Cal-ANN models. 
R2* is equal to 0.61 for the case using S and it is about 
3% and 5% larger than that of QA and RA case, respec-
tively. 

For SSLT prediction, satisfactory results are obtained 
for only UCR-5 (APBIAS = 1.38%) and UCR-6 (APBIAS 
= 26.24%) but not UCR-7 (APBIAS = 74.58%) if consid- 
ering S as the CSP. For the case using QA and RA, the 
model performance for each UCR is tabulated in Table 6. 
The range of APBIAS is 8.85% - 97.19%, 22.94% - 
204.52% and 1.38% - 74.58% for the case using QA, RA 
and S, correspondingly. Moreover, the average value of 
APBIAS (APBIAS*) demonstrates that S is the most ideal 
CSP in selecting the Cal-ANN models and the second 
ideal one is QA. For the case using RA, the model yielded 
unacceptable result with APBIAS* (=95.96%) larger than 
55%. 

Catchment slope (S) shows its better response repeat-
edly in selecting the Cal-ANNs of SCs for predicting 
SSLm and SSLT of UCRs. Physically, sediment produc-
tion rate of a catchment depends mainly on erodibility of 
the soil, and erosivity and transport capacity of the dis- 
charge. Steep ground surface is generally exposed to high 

soil erodibility. High erosive force and transport capacity 
of the discharge is corresponding to high flow velocity 
which usually occurs in steep slope areas. From this 
physical aspect, catchment slope or topography governs 
not only soil erodibility but also pattern of the discharge 
which drives sediment erosion and transport. In conse-
quence, S is more important than other CSPs. 

If the analysis is conducted catchment by catchment, 
opposition usually occurs. For instance, in the UCR-5, 
the superior CSP is RA in term of R2 but it turns to S in 
term of APBIAS. Similarly in the UCR-7, the best CSP is 
S in term of R2 but it changes to QA in term of APBIAS. 
According to the overall evaluation indicated by R2* and 
APBIAS*, S was considered as the most ideal CSP. This 
conclusion was made based on three UCRs. It is under-
stood that more UCRs should be added in order to make 
a stronger conclusion. However, data limitation restricts 
this study to be based on only these three UCRs. By the 
way, this conclusion could be acceptable because not 
only one indicator but two (R2 for SSLm and APBIAS for 
SSLT) were taken into account and both of them provided 
the same result. 

Results of the predicted SSLm series (Cal-ANN was 
selected based on S) of each UCR are graphically com-
pared with the observed values as shown in Figure 5 
(left). It can be seen that both series show similar trend 
temporally. Based on the scatter plot of the predicted 
versus observed SSLm (Figure 5 (right)), the model un-
derestimates the high values for the UCR-5 and UCR-6 
but overestimates for the UCR-7. This may be due to the 
fact that Cal-ANN-3 was developed using dataset (COV 
= 1.67) including extremely low and high SSLm values 
higher than the one of UCR-7 does (COV = 1.54). In 
case of Cal-ANN-1 and Cal-ANN-2, their COV value is 
correspondingly lower than that of UCR-5 and UCR-6, 
and therefore underestimation of the high values. For low 
and medium value prediction, the scattered points are 
distributed around the ideal fit line. 

In short, the applicability of ANN model in UCs was 
proved and catchment slope (S) is the most ideal CSP in 
selecting the Cal-ANN models for application in UCs. 
By applying the Cal-ANNs, SSLm and SSLT of UCs  

 
Table 6. Selection of the Cal-ANN model and its performance in predicting SSLm and SSLT of each UCR. 

Cal-ANN R2 APBIAS (%) 
UCR 

QA RA S QA RA S QA RA S 

5 2 3 1 0.56 0.61 0.60 97.19 204.52 1.38 

6 2 1 2 0.64 0.59 0.64 26.24 60.41 26.24 

7 2 1 3 0.58 0.54 0.59 8.85 22.94 74.58 

Average 0.59 0.58 0.61 44.10 95.96 34.06 

R2 for SSLm; APBIAS for SSLT. 
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Figure 5. Comparison of the predicted versus observed SSLm of each UCR (left) and their scatter plot (right). (a) UCR-5; (b) 
UCR-6; and (c) UCR-7. 
 
could be predicted with an accuracy of R2 of 0.61 and 
APBIAS of 34.06%, respectively. 

3.4. Application of the Cal-ANN Models in AUCs 

Based on the most ideal CSP (S), Cal-ANN-2 was se-
lected for estimating SSLm of AUC-8 and AUC-9, and 
Cal-ANN-1 for the AUC-10. The estimated SSLm series 
was used to compute SSLA. As a result, AUC-8, AUC-9 
and AUC-10 produces SSLA around 159,281, 258,943 
and 723,580 t/year, respectively. As illustrated in Figure 
6, the computed SSLA of AUCs and the observed ones of 
SCs and UCRs exhibit good relationship with not only 
the annual discharge but also the catchment area. This  

reveals the consistent results predicted by the Cal-ANN 
models. Table 7 presents the SSLA* estimations for each 
AUC. The estimated SSLA* is 84,608 t/year for the 
AUC-8, 112,588 t/year for the AUC-9 and 228,610 t/year 
for the AUC-10. Development of the proposed HPPs 
could reduce SSLA of AUC-8, AUC-9 and AUC-10 about 
47%, 57% and 68%, correspondingly, due to dam-res- 
ervoir trapping. This reduction could cause degradation 
of downstream river channels, decrease of agriculture 
and fishery production, alteration of catchment biology, 
and so on. Therefore, this result could be very useful 
information for water resource managers and different 
stakeholders for developing the proposed HPPs in a sus- 
ainable manner. t 
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Table 7. SSLA* estimation for each AUC. 

A SSLA AR I C SSLTE SSLA* 
AUC 

km2 t/year/km2 t/year 
HPP 

km2 km3/year km3 
TE 

t/year t/year 

BT1 120 0.19 0.110 0.93 4234 
8 4221 37.74 159,281 

BT2 2135 2.48 1.040 0.92 70,439 
84,608 

BB1 1100 1.85 0.690 0.92 74,605 
9 3505 73.88 258,943 

BB2 2080 1.01 0.295 0.91 71,750 
112,588 

10 14,439 50.11 723,580 KT1 10,540 4.57 2.890 0.94 494,970 228,610 

A: Catchment area; AR: Drainage area of dam-reservoir; C: Active storage capacity of dam-reservoir; I: Annual discharge at the location of dam-reservoir; 
SSLTE: Annual SSL trapped by dam-reservoir; SSLA: Annual SSL (without dam-reservoirs); SSLA*: Annual SSL (with dam-reservoirs); TE: Reservoir trapping 
efficiency. 

 

 

Figure 6. Illustration of QA-SSLA and A-SSLA relationship. 

4. Conclusions 

ANN model performed well in simulating SSLm of four 
SCs having different hydrological and terrain character- 
istics. It was calibrated better with input data having less 
variation and near normal distribution. Moreover, its 
performance (R2) was superior with catchments charac- 
terized by steeper slope. The Cal-ANN models were ap- 
plied to predict SSLm of three UCRs and at the same time, 
their performance in predicting SSLT was also investi- 
gated. Three different CSPs were used alternately to se-
lect the most appropriate Cal-ANN for each UCR. The 
analysis showed that catchment slope (S) is the most 
ideal CSP. Based on these two observations on S, it can 
be concluded that parameters of the Cal-ANN models 
might contain some physical information governing the 
catchment topography. The Cal-ANN model perform-
ance in UCRs was considered acceptable for both SSLm 
and SSLT prediction. Using these models, SSLm and 
SSLT of UCs in this region (LMB) could be predictable 
at an accuracy of 0.61 in term of R2 and 34.06% in term 
of APBIAS, respectively. In combination with Brune’s 
method, one can estimate sediment load which could be 
trapped by the planned dam-reservoirs and remain flow-
ing to downstream. This information is very important 

for sustainability of such developments. The model ap-
plication in the TSRB could be a good example in this 
regard.  

In this study, only four Cal-ANN models were estab-
lished. Consequently, with other UCs characterized by S 
different significantly from the considered four SCs, the 
prediction results might contain high uncertainty. There-
fore, more Cal-ANNs should be built up. However, this 
finding is a key step providing high motivation for fur-
ther study. 
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