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ABSTRACT 

The oscillatory behavior of solutions of a class of second order nonlinear differential equations with damping is studied 
and some new sufficient conditions are obtained by using the refined integral averaging technique. Some well known 
results in the literature are extended. Moreover, two examples are given to illustrate the theoretical analysis. 
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1. Introduction 

In this paper, we are concerned with the oscillatory be-
havior of solutions of the second-order nonlinear differ-
ential equations with damping 
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We shall consider only nontrivial solutions of Equa-
tion (1.1) which are defined for all large t. A solution of 
Equation (1.1) is said to be oscillatory if it has arbitrarily 
large zeros, otherwise it is said to be nonoscillatory. 
Equation (1.1) is called oscillatory if all its solutions are 
oscillatory. 

The oscillation problem for various particular cases of 
Equation (1.1) such as the nonlinear differential equation 

 ,      (1.2) 

the nonlinear damped differential equation 

   (1.3) 

and  

   (1.4) 

have been studied extensively in recent years, see e.g. 
[1-21] and the references quoted therein. Moreover, in 
2011, Wang [22] established some oscillation criteria for 
Equation (1.1) firstly, some new sharper results are ob-
tained in the present paper. 

An important method in the study of oscillatory be-
haviour for Equations (1.1)-(1.4) is the averaging tech-
nique which comes from the classical results of Wintner 
[19] and Hartman [18]. Using the generalized Riccati 
technique and the refined integral averaging technique 
introduced by Rogovchenko and Tuncay [20,21], several 
new oscillation criteria for Equation (1.1) are established 
in Section 2, we also show some examples to explain the 
application of our oscillation theorems in Section 2. Our 
results strengthen and improve the recent results of [1] 
and [21,22]. 

2. The Main Results  

Following Philos [10], let us introduce now the class of 
functions   which will be extensively used in the se-
quel. Let  

  0 0, :D t s t s t     0, :D t s t s t   and . 

 ;HThe function C D R  is said to belong to the 
class   if  

 , 0H t t   for ;  on ; 1) 0 0

2) 
t t  , 0H t s  D

H has a continuous and nonpositive partial deriva-
tive on  with respect to the second variable; 0D
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3) There exists a function   , ,s C D R  such that h t 
     ,H t s

h t, ,s H t s
s


 


. 

In this section, several oscillation criteria for Equation 
(1.1) are established under the assumptions (A1)-(A5). 
The first result is the following theorem. 
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and  , then Equation (1.1) is oscil-
latory. 

Proof. Let x t

 x t 

 be a nonoscillatory solution of 
Equation (1.1). Then there exists a 0 0T  such that 

 for all . Without loss of generality, we 
may assume that  on interval  . A simi-
lar argument holds also for the case when 

t
0 0t T
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 x t  is even-

tually negative. As in [1], define a generalized Riccati 
transformation by 
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