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ABSTRACT 

The PLIC/SN method that combines the second-order volume tracking method (PLIC-VOF) with the equation of sur-
face normal (SN) vector was recently proposed (M. Sun, “Volume Tracking of Subgrid Particles,” International Jour-
nal for Numerical Methods in Fluids, Vol. 66, No. 12, 2011, pp. 1530-1554). The method is able to track the motion of 
a subgrid particle, but the accuracy is not as good as expected on high resolution grids for vortical flows. In this paper, a 
simple unsplit multidimensional advection algorithm is coupled with the equation of SN vector. The advection algo-
rithm is formulated as the finite volume method, so that it can be used readily for both structured and unstructured grids 
while maintaining the exact mass conservation. The new method improves the accuracy significantly for high resolution 
grids. In the well-known test of the time-resolved vortex problem of T = 2, the circular interface is resolved with an 
accuracy better than ever using the equation of SN vector. 
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1. Introduction 

The volume-of-fluid (VOF) is one of the most widely 
used methods for the numerical simulation of interfacial 
phenomena [1]. In the VOF method, the evolution of an 
interface is predicted generally by solving the advection 
equation  

0,t   u               (1) 

where u is the velocity. Function   is the volume frac-
tion or color function at the discrete level. It is unity in a 
cell filled with one phase, and is zero if the cell lies in the 
other phase. Because the volume fraction is discontinu-
ous across a sharp interface, it is challenging to advect 
(1). The volume tracking method, or geometric VOF 
method, that resolves an interface basically within one 
cell while maintaining the mass conservation, has been 
developed for over decades [2,3]. In this method, the 
interface in a cell is not tracked explicitly, but recon-
structed and approximated by a simple geometry, such as 
simple line (piecewise constant) interface calculation 
(SLIC) [4] and piecewise linear interface calculation 
(PLIC). A historic review of the piecewise constant and 
linear reconstructions can be found in [2,5]. In the PLIC, 
the surface normal vector, n, is required to construct the 
linear interface  

0,h  n r

h

                 (2) 

where  is the line constant. The normal vector can be 

inferred from the spatial distribution of  , symbolically 
by,  

. n                    (3) 

A few numerical methods have been proposed for the 
calculation of the surface normal from the volume frac-
tion directly by the finite-difference method [6], fitting 
methods [7-10], or height function technique (e.g. [11]). 
The difficulty that these methods must overcome is 
originated from the discontinuous property of the volume 
fraction. In fact, (3) is just a symbolic representation of 
SN vector if   is interpreted as the discontinuous vol-
ume fraction. One may also integrate the same Equation 
(1) for a smooth level-set function with the hope that its 
gradient (3) can be straightforwardly evaluated with a 
better accuracy, as proposed by Sussman and Puckett 
[12]. 

Since it is the surface normal (3) instead of the level 
set function itself that is required for the geometric VOF, 
one may directly integrate the equation for the SN vec-
tors,  

  0,t   n u n               (4) 

which can be readily derived by taking the gradient of (1). 
Although the volume fraction is discontinuous, the SN 
vector can be a continuous function near an interface, a 
clear advantage for numerical analysis using the finite 
difference method. Raessi et al. [13] investigated the 
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equation imposed with the unit normal constraint  
 1n . We proposed the PLIC/SN method that com-
bines the Equation (4) directly with the PLIC reconstruc-
tion and DDR advection algorithm [14], and found that 
the method allows us to track subgrid particles [15]. The 
capability of the PLIC/SN method was successfully used 
to study the fragmentation onset of a liquid drop [16]. 
The PLIC/SN method improves the accuracy at low grid 
resolution, but experiences a loss of high-order accuracy 
on high resolution grids in the time-resolved vortical 
flows. 

In this paper, an unsplit multidimensional advection 
algorithm is developed to replace the DDR used in the 
previous PLIC/SN method. This paper is organized as 
follows. The new advection algorithm used is introduced 
in Section 2.1, and the positivity of phase volume is en-
forced by a limiting procedure to be shown in Section 
2.1.2. The accuracy of the proposed method is evaluated 
by simulating two typical test cases, and the results are 
summarized in Section 3. 

2. The PLIC/SN Method 

The PLIC/SN method that couples the PLIC-VOF vol-
ume-tracking method with the SN equation consists of 
three procedures [15],   

1) to reconstruct the piecewise linear interface with a 
given surface normal in each interface cell such that the 
interface truncates the cell with a fractional volume 
equaling the given phase volume in the cell;  

2) to advance the phase volumes using an advection 
algorithm, which preserves the mass while ensuring all 
phase volumes lie within the bound of  0, , where   
is the cell volume;  

3) to advance the SN vectors by solving the SN equa-
tion.  

Procedures 1) and 2) are nothing but a typical PLIC- 
VOF method except that the SN vectors are given by 3). 
In the previous work, the DDR was used to evaluate 
volume fluxes in 2). In this work, a simple multidimen-
sional advection algorithm is coupled with the SN equa-
tion. 

2.1. Advection of Phase Volumes 

2.1.1. Volume Update 
The advection Equation (1) is solved by the finite volume 
method. The volume flux is evaluated at every face in a 
unsplit manner. Given an incompressible flow field u, 
the advection equation is rewritten as  

    0,k k   u

k

t
            (5) 

where   is the volume fraction of phase k. Integrating  

(5) over cell i of volume  as the finite volume method, 
one gets  



     1
,

n n

k k kj iji i
j

    

k

         (6) 

where   is the phase volume satisfying k k  

kj

, 

and   represents the fraction of phase k of total vol- 

ume flux  
.ij ij ju s t  

u

 

where ij  is the outward normal velocity at grid face j 
of length s j . In order to maintain the conservation, we  
have the saturation constraint  1.kj

k

 

kjThe volume fraction at the face  , which is calcu- 

lated geometrically in PLIC-VOF, is generally different  
from k  that is defined in the cell. Figure 1 shows a 

few possible method to evaluate kj . Consider a control  

volume or a cell of any shape, which is a rectangular in 
the figures. We want to find the phase fraction at face 
AB. Suppose the interface CD has been properly recon-
structed (e.g. [15] and there referred), and also suppose  
the total volume flux ij  is also known. The area of  

donor polygon ABEF must be the same as the total vol-
ume flux, but there is a freedom to define its shape. 

The naive unsplit method [2] assumes the donor poly-
gon ABEF is a rectangular as shown in Figure 1(a). The 
volume flux of the dark phase is then geometrically cal-
culated from the area of polygon ACGF. This method is 
not recommended because face-adjacent polygons may 
overlap. The DDR method [14] traces the upwind char-
acteristic inside the upstream cell only, BE in Figure 
1(b), and retains the other side bounded by the upstream 
cell. This method has been coupled with the SN equation 
in our previous study [15], in which the loss of high- 
order accuracy for high resolution grids is observed for 
vortical flows. It was believed that the loss of accuracy is 
due to the DDR advection algorithm. In order to verify 
this speculation, the multi-dimensional advection method 
is coupled with the SN equation. The idea is similar to 
what investigated in [2]. This method traces upwind 
characteristics on two sides, BE and AF, and the volume 
flux of the dark phase is set to be the area of polygon 
ACGF as shown in Figure 1(c). If a long material inter-
face aligned with CD divides the whole computational 
domain, this method is obviously more accurate. 

2.1.2. Positivity of Phase Volume 
The conservation of phase volumes cannot ensure the 
positivity of each phase volume. We introduce a center- 
centered flux limiter function  0,1 

,

i  to reduce the 
outward volume flux, based on the phase with the 
smaller volume in the cell,  

sj i sj  

0u 

                 (7) 

for all faces with positive normal velocity ij , such 
that the remaining volume in the cell will not become  
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(a)                          (b) 

 
(c) 

Figure 1. Calculation of phase volume flux at face AB. Total 
volume flux are the same for three cases, defined by the area 
of ABEF. The volume flux of the dark phase is all given by 
ACGF. (a) Naive unsplit advection method; (b) The DDR 
method; (c) Multi-dimensional advection method. 
 
negative. The volume fraction of the other phase at the  

face must be updated to 1 sj 

i

, 0

,
ij

 due to conservation. 

A simple and efficient iterative method is used to cal- 
culate . We start from the outward flux of the small 
phase,  

 0
s sj ij

j u




 f               (8) 

and then the first estimate of the limiter function can be 
obtained by,  

 0

1,

n
s , for

otherwise

n
s sf  

n

i sf


  



           (9) 

where s

  1, ,m m

 is the volume of the small phase in the last 
step. It can be easy shown that the small volume remains 
non-negative if the phase volume is updated by using 
limited flux (7). This limiter function was directly used 
in [15]. 

In the initial estimate, only the outward volume fluxes 
are considered, which leads to the strictest limiter func-
tion. The possible inward volume fluxes that increase the 
volume are not considered. The limiter function may be 
further relaxed by an iterative method. With the addi-
tional inward fluxes, (8) becomes,  

 

, 0 , 0

min
ij ij

s sj ij
j u j u

f 
 

   

 m

sj sj ij   



  1min , m
sj sj  

   (10) 

and then i  can be obtained similarly by (9). Super-
script m denotes the number of iterations. Notice that the 
limiter function (7) tends to reduce the outward flux of 

the small volume, and to increase that of the other large 
volume due to conservation. Since the small phase in two 
cell may be different, the inward flux is calculated by the  

minimum possible flux, . Figure 2 re- 

cords the geometrical errors in simulating a circular in-
terface in a time-resolved vortical velocity field, and the 
details of this test will be introduced in Section 3. The 
geometric error is reduced dramatically with the first 
iteration; more iterations hardly affect the overall accu-
racy. Fixed three iterations are performed for all other 
tests in this paper.  

It emphasized that the limiting procedure is general for 
any advection algorithm, and is valid for any structured 
and unstructured grid system, given the volume flux of 
the small phase and the total volume flux at faces. There 
is no need to deal with complicated geometrical prob-
lems, such as polygon volume overlapping and/or under-
lapping. The limiting procedure maintains the exact vol- 
ume conservation and the boundedness of phase volumes, 
if the total volume flux at cell faces is defined from a 
divergence-free velocity field. 

2.2. Discretization of Surface Normal Equations 

In numerical simulation, Equation (4) are reformulated in 
a non-conservative form [15], using y xl m ,  

   1 2 ,t x y
  n F F S

1 2, , ,x y

x y

mv lvul vl

mu luum vm

     
             

F F S

            (11) 

where  

   (12) 

 ,l m , and ,u v  are two components of SN vector n 
and velocity u respectively. We use the two-step Runge- 
Kutta method for achieving second-order accuracy in 
time, and the MUSCL method for the accuracy in space. 
The details of the numerical method have been reported 
in [15]. 

3. Numerical Results and Discussion 

In all test cases, the computational domain is a square of  
 

 

Figure 2. Effect of the limiter function on the geometric 
error. 
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 2
0,1 , with open or free boundary outside. Initial sur-

face norm
fac mal ors r sp ib ll 
exactly v n con finite diffe nt 
sc r imp y f r-

ime

e of 

al vectors are specified the same as [15]. The
initial phase volume intersected with the interface is ex-
actly calculated; the sum of all phase volumes inside a 
circle differs from the exact area by the order of 
 1610O  . The velocities at cell faces are also exactly 

specified, to exclude any possible error in the treatment 
of velocity. The CFL number is always taken as 1/8, the 
same as [13]. The geometric error measure, L1 norm, is 
defined as  

 

cal exactg j
1

N

j
j

               (13) 

w calhere   and exact  are the calcula
n cell 

ted and the exact 
volume fractions i j with volume j . N is the total 
number of cells used in the domain. The error measure 
for surface normal vector is defined as  

 cal exact cal

1 IN

n exact
1

jj
jIN 

,    (14) 

where the tilde indicates the surface normal

 of Circular Surfaces 

nterface. The 
 

l l m m       

 has been 
normalized. NI is the total number of interface cells; only 
the error in these interface cells is considered. Both the 
numerical and exact surface normal vectors are defined 
at the cell center. 

3.1. Translation

The first test is the translation of a circular i
initial circle of 0.3 in diameter centered at 0.25,0.5  is 
translated in the constant velocity field of    , 1,0u v   
for 0.5t  . The test was taken from [13,1 -
metric errors for this test are presented in Table 1. It is 
apparent that the grid convergence has been achieved by 
the present PLIC/SN method, even for circles as small as 
1.2

5]. The geo

x . In this test, the flow velocity is perpendicular to 
the vertical faces; the DDR advection is actually the 
same as the present multidimensional one. The geomet-
rical errors obtained are actually identical. These errors 
are solely due to the advection algorithms, since the sur- 
 
Table 1. Geometrical errors in translating a circle (u = 1, v 

 

 0). 

sh Geometrical errors 

=

Me

∆x 

e nor  vect of a linea atial distr ution are a
 sol

heme fo
ed usi

this s
g the se
le velocit

d-order 
ield. The vo

re
lume diffe

ences between the initial area of the circle and the final 
area for all grids are the order of 1610 ; the mass con-
servation is maintained within the round-off error. 

3.2. A Circular Fluid Body in T -Resolved 
Vortex Field 

The second test is the deformation of a circular surfac
0.3d   in a vortex velocity field. The circle is initiall

d at 
y 

centere   . The time-resolved velocity field 0.5,0.75
is specified as,  

     2cos π sin π sin 2π ,u t T x y   



d/∆x Raess Present i [13] DDR [15] 

1/4 1.2 - 2.0 × 10−2 2. 2 00 × 10−

1/8 2.4 - 3.9 × 10−3 3.99 × 10−3 

1/16 4.8 - 1.1 × 10−3 1.09 × 10−3 

1/32 9.6 4.1 × 10−4 

1/128 38.4 2.0 × 10−5 1.9 × 10−5 1.93 × 10−5 

4.5 × 10−4 4.46 × 10−4 

1/64 19.2 1.1 × 10−4 1.1 × 10−4 1.06 × 10−4 

    2os π sin π sin 2π .t T y x  

The test, taken from [2], is a standard case for evalu-
ating the accuracy of sharp interface methods. The vorti-
cal velocity field will deform the circle and promote to-
po

cv 

logy changes. It is periodic with a period of T. The 
circle will undergo the maximum deformation at 2t T , 
and then return to its initial state. Error measurements are 
performed on the differences in data observed between 

0t   and t T . 
Results of the circle after one period are shown in Fig-

ure 3 for the period T varying from 0.5 to 4.0. The exact 
solution is a perfect circle as the initial state. Linear seg-
ments reconstructed in all interface cells with  0,1   
are plotted. They are not contours of equal volume frac-
tions. Surface normal vectors in the interface cells and 
the cells filled with the dark phase are also plotted. The 
vectors in other cells are used in computation as well, but 
not plotted for the sake of clarity. The arrow indicates the 
direction of the normal vector, starting from the cell cen-
ter, and its length is proportional to the magnitude of the 
vector. 

It is seen that for small period 2T  , the circle is re-
solved excellently well even on the 322 grid. The surface 
normal errors increase dramatically for large period T = 4. 
Th  is o

d in Figure 4(a). The present method 
is 

e location where the SN vector f zero magnitude 
should correspond to the centroid of the circle to the 
second-order accuracy [15]. However, the SN vector of 
zero magnitude deviates far from the center (0.5, 0.75) in 
Figure 3(d), compared with those in other three figures 
of smaller periods. 

The dependence of numerical error on the period is 
further investigated. Both the geometric and the SN vec-
tor errors are plotte

more accurate than that obtained by Rider & Kothe [2] 
for 2T  . However, the geometric error increases rap-
idly for large period. As seen from Figure 4(a), the SN 
error increases nearly four orders of magnitude for the 
peri ncreasing from 0.5 to 8.0. The second-order od T i  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Results for the circular fluid body ed in the 
time-reversed single-vortex flow field on a 3  grid, after 
one peirod T: (a) T = 0.5; (b)  1.0; (c) T = 2.0; (d) T = 4.0. 

plac
22

 T =
The square domain is 0.375 wide and high, centered at (0.5, 
0.75). 

accuracy is generally achieved for all periods as shown in 
Figure 4(b). It is of interest that the geometric errors 
show a second-order convergence rate even for T = 8. 

The error increase for large period is closely related to 
the difficulty in integrating the SN equation for large 
period, in which the interface structures experiences a 
strong deformation. The circle undergoes the maximum 
deformation at 2t T . The grid dependence of nu-
merical solution of l, the x-component of SN vector, are 
plotted in Figure 5 for T = 2.0 and T = 8.0. At this mo-
ment, the interface is nearly circular, so the magnitude of 
the y-component of SN vector is much smaller, and will 
not be discussed here. For the small period of T = 2 
shown in Figure 5(a), a 322 grid can resolve the SN vec-
tor well in central domain where the deformed circle is 
located. However, for the period of T = 8, the wavy  

 

 
(a) 

 
(b) 

Figure 4. Results for the circular fluid body placed in the 
time-reversed single-vortex flow field: (a) Geometric and 
SN vector errors on a 1282 grid for T = 0.5, 1.0, 2.0, 4.0 and 
8.0; (b) Geometric errors ag t grid size. Results are com- ains
pared with those of Rider & Kothe [2] and DDR [15].   
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Table 2. Convergence of the present method that couples the multidimensional advection algorithm with the SN vector equa- 
tion in the reversed single-vortex test. A few published results tained using various advection and reconstruction meb
are compared. 

Mesh SN vector Youngs Puckett Quadratic 

∆x Present 15] H & F [17]  [9] R & K [2]  [9] DDR [  EMPA EMPA EL-LE [8] 

1/8 4. −2 4. −2 70 × 10 74 × 10 - - - - - 

1/16 −2 −2

−3 −3 2.49 × 10−3 2.29 × 10−3 2.36 × 10−3 2.14 × 10−3 1.88 × 10−3 

−4 −4 −4 −4 −4 −4 −4

1/128 −3 −4 −4 −4 −4 −4 −5

1.02 × 10  1.06 × 10  - - - - - 

1/32 1.65 × 10  1.76 × 10  

1/64 1.80 × 10  3.58 × 10  7.06 × 10  6.72 × 10  5.85 × 10  5.39 × 10  4.42 × 10  

2.61 × 10  2.08 × 10  2.23 × 10  2.24 × 10  1.31 × 10  1.29 × 10  9.36 × 10  

 

 
(a) 

 

Figure 5. Numerical solution -component of SN vec l) 
along y = 0.5 at t = T/2: (a) T  (b) T = 8. 

at difficulty
e solution to converge. The numerical error of the 

 affe tion ent
The geometric errors of the PLIC/SN method are com-

ns as low 
as 

(b) 

remain and ct the solu  at last mom . 

 of x
= 2;

tor (

 
structure of the SN vector imposes a gre  for 

SN th
vector introduced in the stage of large deformation may 

pared with other results in literature in Table 2. The pre-
sent results show an improved accuracy for all grids. The 
grid convergence is achieved for grid resolutio

1 8x  . Compared with the DDR advection, the geo- 
metric errors at high resolution grids  1 64,1 128x   
have been greatly reduced. For 1 128x  , the geomet-
rical error  52.61 10  is only a bit larger than that in 
the ion test. To what we know, this accuracy has 
never been reported before. 

4. Concluding Remarks 

It has been shown shown that the equation of allow us to 
implicitly track a subgrid 

translat

particle [15] when coupled 
is work confirms that the 

with the multidimensional 

 
di

d (VOF) 
Method for the Dynamics of Free Boundaries,” Journal 
of Computationa , 1981, pp. 201- 
225. doi:10.10 -5

with the PLIC-VOF method. Th
equation of SN vector coupled 
advection algorithm improves the accuracy not only on 
low resolution grids but also on high resolution grids in 
the vortical flows with a low period. The geometric error 
obtained is much lower than those reported in literature. 

The PLIC/SN method generally improves the accuracy 
in the calculation of SN vector, especially at low grid 
resolution. It can resolve a particle with less cells, or re-
solve more particles/bubbles with a given grid. In the

rect simulation of interfacial phenomena with a large 
amount of particles/bubbles, such as defragmentation, 
cavitation, it is expected that the PLIC/SN can resolve 
interfacial structure with one order of magnitude less grid 
cells for achieving the same interface resolution. 
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