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ABSTRACT 

In the present paper, the semi-commutative differential oparators associated with the 1-dimensional Dirac operator are 
constructed. Using this results, the hierarchy of the mKdV (−) polynomials are expressed in terms of the KdV polyno-
mials. These formulas give a new interpretation of the classical Darboux transformation and the Miura transformation. 
Moreover, the recursion operator associated with the hierarchy of the mKdV (−) polynomials is constructed by the al-
gebraic method. 
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 n1. Introduction A

The main purpose of the present paper1 is to construct the 
semi-commutative differential operators associated with 
the 1-dimensional Dirac operator  
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where the potential  is the infinitely differen-
tiable function. Define the 1st order ordinary differential 
operartors by  

            (2) 

then, the oprtator  is expressed as   P v

            (3) 

Note that the variable x can be regarded as both real or 
complex throughout the paper. 

The differential operators A, B are said to be semi-
commutative, if the commutator  ,A B AB BA 

    ,

 is 
the multiplicative operator. As for the 1-dimensional 
Schrödinger operator  
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the identities  
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 of 
the order   difined by  
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 are the KdV polynomials which will be 
explained precisely in Section 2. 

On the other hand, in [1], R. M. Miura discovered the 
following interesting fact; if  solves the 
mKdV (−) equation  
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then both functions  defined by  

         (7) 

solve the KdV equation  

  

2

             (8) 

where the subscript denotes the partial differentiation. 
The transformation defined by (7) is the Miura transfor-
mation which plays the crucial role in the soliton theory. 
By (7), we have immediately the relation  

.xu u v  

u u

                (9) 

The transformation   defined by (9) is noth-
ing but the Darboux transformation. Using the KdV 
polynomial, the relation (9) can be expressed as  

   1 1 .xu Z u v  Z            (10) 

Considering the above facts, we investigate the prob-
lem to express the differential polynomials  
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    j jZ u Z u   in terms of the function v v x  for 
the stationary case, i.e., when the function v is independ-
ent of the time variable t, i.e., in what follows 

 jZ

 u x

   2
.v x v x 

 
are defined by  

 u x    

As a result, we obtain the new formulation of the 
stationary mKdV (−) hierarchy. 

In our previous works [2,3], it is clarified that the 
semi-commutative operators and Darboux transformation 
are deeply related to the spectral theory of the differential 
operator  H u u u x

 

 when the potential  is algebro- 
geometric. The aim of our work is to extend these results 
concerned with the 1-dimensional Schrödinger operator 
H u  to the 1-dimensional Dirac operator  P v

 

. The 
present work can be regarded as the first step of it. By 
applying the results of the present paper, we can obtain 
the various transformation formulas concerned with the 
algebro-geometric elliptic potential. These results will be 
reported in the forthcoming paper. 

The contents of the present paper are as follows. In Sec- 
tion 2, we explain the fundamental materials which are ne- 
cessary for the present work. In Section 3, calculation of 
the commutator of the Dirac operator and the differential 
operator constructed from the semi-commutative operator 
of the KdV hierarchy is carried out, and the main theorem 
of the present paper is stated. Section 4 is devoted to the 
proof of the main theorem. In Section 5, we construct the 
recursion operator associated with the mKdV hierarchy.  

2. Preliminaries 

The KdV polynomials nZ u  are differential polyno-
mials defined by the recurrence relation  
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with the condition 0 , where  is the for- 
mal pseudo-differential operator defined by  
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 turn out to be the differential polynomi- 
als in . For examples, we have  
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If  depends also on the time variable t, then 
the evolution equation  
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is nothing but the KdV equation. Hence, we call them the 
KdV polynomials. See [3] for more details of the KdV 
polynomials. 

In what follows, we will often use the higher order 

derivatives of the differential polynomials u
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. So, 
for the brevity, we will use the following notations of 
derivatives of the KdV polynomials defined by  
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. Thus we have  where 
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From now on, we restrict ourselves to the stationary 
problem, i.e., the function  under consideration 
depends only on the space variable x. 

One immediately verifies the identities  
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Define the multi-component operator  by  
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By (13), one can show immediately the operator iden-
tity  

.   (15) 

On the other hand, define the multi-component differ- 
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Then, by (5), (14), and (16), we have immediately  

   (17) 

ATherefore the operator v  are semi-commutative 
with the operator  S v .  

   ,3. Calculation of  nA v P v
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v  by  KDefine the scalar differential operators 
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respectively. By direct calculation, we have immediately  
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By the definition (6) of the operator A u , we have 
immediately  
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By (15), we have  
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Furthermore, by the definition (2) of  L v , one 
verifies  
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where we used the identity  
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where  

 

The identity (22) is derived in [4], and is called the 
fundamental identity of the Darboux transformation in it, 
By the fundamental identity (22), we have immediately  
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the main result of the present paper. 
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Thus, we have  
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 (28) 

By (7), we have  
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, we have  

 

By (12) which is the definition of  u
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This completes the proof of Theorem 1.  

5. The Recursion Operator 

In the preceding section, we have shown the relation  

      1 1

1

2 n nKn v Z u Z u 
    

hold for all n. Therefore, by (28), we have  

 

        
  

2
1 1 1

0 0

1 1
2 2

2 2

1

2

n n n n

n n

K v vv K v K K

v X u X u

u

  

 

 

     1 1 .n nv X u X 
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
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Then, by (22), we have  

 

 1
1nv D vK


1 2
1 1 1

1
2

4n n n nK D K v K vv K
  

       
      (29) 

cursion operators of  The relation (29) defines the re

 nK v . Therefore, we have the following theorem. 

Theorem 2. The formal pseudo-differential operator 
 v  defined by  

   1v D vf
 

 

is the recursion operator associated with the mKdV (−) 
polynomials 

1 3 21
2

4
v f D D f v Df vv f        

 n v ,  0n  Z N  , i.e.,  K
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  ,n nK v n N  

hold.  
Using this rec rator  v , one can calculate 

easily the hierarchy KdV (−) polynomials. 
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