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ABSTRACT 

In this paper, we investigate the existence and uniqueness of weak solutions for a new class of initial/boundary-value 
parabolic problems with nonlinear perturbation term in weighted Sobolev space. By building up the compact imbedding 
in weighted Sobolev space and extending Galerkin’s method to a new class of nonlinear problems, we drive out that 
there exists at least one weak solution of the nonlinear equations in the interval  0,T 0T 

 

 for the fixed time . 
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 a x , its norm defined as  1. Introduction 

Now we consider the initial/boundary-value problem [1] 
as following  
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The main purpose of this paper is to establish the exis-
tence of weak solutions for the parabolic initial/bound- 
ary-value problem (1.1) in a weighted Sobolev space. For 
this purpose, we assume for now that   

1)  is a positive measurable sufficiently smooth 
function,  

2) :b x R

  1,
0 ,pW a x 

 is a non-negative smooth function 
which may change sign,  

3)  is a weighted Sobolev space [5-8] 

with a weight function 
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For convenience, we will denote 0  by X,  
note   1,

0 ,pW a x
u


 by 

X
u , and unless otherwise stated,  

integrals are over  .  
Similar problems have been studied by Evans [9], he 

investigated the solvability of the initial/bondary-value 
problem for the reaction-diffusion system  
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 1 2, , , mu u u u   1 2, , , m, gHere g g g  , and as 
usual  0,T   nRT ,   is open and bounded 
with smooth boundary. Via the techniques of Banach's 
fixed point theorem method, he obtained the existence 
and uniqueness and some estimates of the weak solution 
under the assumer that the initial function  g x  be- 
longs to  0

1 , mR : m m and H f R R
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 is Lipschitz con- 
tinuous. He also studied the nonlinear heat equation with 
a simple quadratic nonlinearity  

         (1.3) 

The Blow-up solution has been established under the 
assumer that  and  are large enough in an 
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appropriate sense. 
The main results of this paper can be stated as follows,  
Theorem 1.1. There exists a unique weak solution of 

problem (1.1) on the interval  0,T
0T 

 for the fixed time 
.  

For the further argument, we need the following 
Lemma.  

Lemma 1.1. If 2 ,p p 
np

p
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are the compact imbedding [6],  
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for all , and a.e. time . We used the 
poincare’s inequality in the last inequality above. Thus,  

1) Holds and is compact. 
2) The proof of 2) is almost the same as 1). This com- 

pletes the proof of Lemma 1.1.  

2. Weak Solutions 

According to Lemma 1.1, it suffices to consider the ini- 
tial/boundary-value problem (1.1) in spaces  1H0   and 

. We will employ the Galerkin’s method to prove 
our results. 
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Definition 2.1. We say a function  

   
  

1, 2

2 1

0, ; , 0

with  0, ;

p pu L T W a x L

u L T H 

 

 
 

is a weak solution of the parabolic initial/boundary-value 
problem (1.1) provided   
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This amounts to our requiring that um solves the 
“projection” of problem (1.1) onto the finite dimensional 
subspace .  m

Theorem 2.1. (construction of approximate solutions) 
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Since  is random, therefore, system (2.4) becomes  
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This is a nonlinear system of ordinary differential 
equation, according to the existence theory for nonlinear 
ODE, there exists a unique local solution on interval 

0,T



 for fixed time T > 0. That is, the initial/boundary- 
value problem (1.1) has a unique local weak solution on 
the interval 0,T

 

.  

3. Energy Estimates 
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for a.e. tim
and 4C . 
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6. Conclusion 

In per, we es blished the ex ique

 with 
lev space. First, we investigated the com-

weighted Sobolev space, which can 
 into 

.

 this pa ta istence and un -
ness of weak solutions for initial/boundary-value para-
bolic problems nonlinear perturbation term in 
weighted Sobo
pact imbedding in 
imbedded compac

be 
tly  1

0H   and  2L   spaces. 

Existence of P lass of Quasilinear 

By exploiting Sobolev interpolation inequalities and ex-
tending Galerkin’s method to a new class of nonlinear 
problems, we proofed the energy estimates of the equa-
tions and furthermore obtained the unique weak solution 
of the problem. 

REFERENCES 
[1] C. O. Alvesa and A. El Hamidib, “Nehari Manifold and 

ositive Solutions to a C
Problems,” Nonlinear Analysis: Theory, Methods & Ap-
plications, Vol. 60, No. 4, 2005, pp. 611-624.  
doi:10.1016/j.na.2004.09.039 

[2] K. J. Brown and Y. P. Zhang, “The Nehari Manifold for a
Semilinear Elliptic Problem with a Sign-Changin
Function,” Journal of Differe

 
g Weight 

ntial Equations, Vol. 193, 
No. 2, 2003, pp. 481-499.  
doi:10.1016/S0022-0396(03)00121-9 

[3] J. Huang and Z. L. Pu, “The Nehari Manifold of Nonlin-
ear Elliptic Equations,” Journal of Sichuan Normal Uni-
versity, Vol. 31, No. 2, 2007, pp. 18-32.  

[4] T. Bartsch and M. Willem, “On an Elliptic Equation with 
Concave and Convex Nonlinearities,” Proceedings of the 
American Mathematical Society, Vol. 123, 1995, pp. 
3555-3561. doi:10.1090/S0002-9939-1995-1301008-2 

[5] P. Drabek, A. kufner and F. Nicolosi, “Quasilinear Ellip-
tic Equations with Degenerations and Singularities,” Wal-
ter de Gruyter, Berlin, 1997. doi:10.1515/9783110804775 

[6] P. A. Binding, P. Drabek and Y. X. Huang, “On Neu-
mann Boundary Value Problems for Some Quasilinear 
Elliptic Equations,” Electronic Journal of Differential 
Equations, Vol. 1997, No. 5, 1997, pp. 1-11.  

[7] R. A. Adams and J. F. F. John, “Sobolev Space,” Acad-
emy Press, New York, 2009.  

[8] M. Renardy and R. Rogers, “An Introduction to Partial 
Differential Equations,” Springer, New York, 2004.  

[9] L. Evans, “Partial Differential Equations,” American Ma- 
thematical Society, Providence, 1998.  

[10] A. Antonio, “On Compact Imbedding Theorems in Weight- 
ed Sobolev Spaces,” Czechoslovak Mathematical Journal, 
Vol. 104, No. 29, 1979, pp. 635-648.  

[11] T. F. Wu, “On Semilinear Elliptic Equations Involving Con- 
cave-Convex Nonlinearities and Sign-Changing Weight 

Journal of Mathematical AFunction,” nalysis and Appli-
cations, Vol. 318, No. 1, 2006, pp. 253-270.  
doi:10.1016/j.jmaa.2005.05.057 

[12] M. L. Miotto and O. H. Miyagaki, “Multiple Positive 
Solutions for Semilinear Dirichlet Problems with Sign- 
Changing Weight Function in Infinite Strip Domains,” 
Nonlinear Analysis: Theory, Methods & Applications, Vol. 
71, No. 7-8, 2009, pp. 3434-3447.  
doi:10.1016/j.na.2009.02.010 

[13] M. A. Nielsen and I. L. Chuang, “Quantum Computation 
and Quantum Information,” Cambridge University Press, 
Cambridge, 2000. 

 
 

http://dx.doi.org/10.1016/j.na.2004.09.039
http://dx.doi.org/10.1016/j.na.2004.09.039
http://dx.doi.org/10.1016/j.na.2004.09.039
http://dx.doi.org/10.1016/j.na.2004.09.039
http://dx.doi.org/10.1016/S0022-0396(03)00121-9
http://dx.doi.org/10.1016/S0022-0396(03)00121-9
http://dx.doi.org/10.1016/S0022-0396(03)00121-9
http://dx.doi.org/10.1090/S0002-9939-1995-1301008-2
http://dx.doi.org/10.1090/S0002-9939-1995-1301008-2
http://dx.doi.org/10.1090/S0002-9939-1995-1301008-2
http://dx.doi.org/10.1090/S0002-9939-1995-1301008-2
http://dx.doi.org/10.1515/9783110804775
http://dx.doi.org/10.1016/j.jmaa.2005.05.057
http://dx.doi.org/10.1016/j.jmaa.2005.05.057
http://dx.doi.org/10.1016/j.jmaa.2005.05.057
http://dx.doi.org/10.1016/j.na.2009.02.010
http://dx.doi.org/10.1016/j.na.2009.02.010
http://dx.doi.org/10.1016/j.na.2009.02.010

