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ABSTRACT 

The paper is an update of two earlier review papers concerning the application of the methodology of mathematical 
systems theory to population ecology, a research line initiated two decades ago. At the beginning the research was con- 
centrated on basic qualitative properties of ecological models, such as observability and controllability. Observability is 
closely related to the monitoring problem of ecosystems, while controllability concerns both sustainable harvesting of 
population systems and equilibrium control of such systems, which is a major concern of conservation biology. For 
population system, observability means that, e.g. from partial observation of the system (observing only certain indica- 
tor species), in principle the whole state process can be recovered. Recently, for different ecosystems, the so-called ob- 
server systems (or state estimators) have been constructed that enable us to effectively estimate the whole state process 
from the observation. This technique offers an efficient methodology for monitoring of complex ecosystems (including 
spatially and stage-structured population systems). In this way, from the observation of a few indicator species the state 
of the whole complex system can be monitored, in particular certain abiotic effects such as environmental contamina- 
tion can be identified. In this review, with simple and transparent examples, three topics illustrate the recent develop- 
ments in monitoring methodology of ecological systems: stock estimation of a fish population with reserve area; and 
observer construction for two vertically structured population systems (verticum-type systems): a four-level ecological 
chain and a stage-structured fishery model with reserve area. 
 
Keywords: Ecological Chain; Fishery with Reserve Area; Stable Coexistence; Ecosystem Monitoring; Verticum-Type 
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1. Introduction and Historical Overview 

Mathematical Systems Theory (MST) looks back on se- 
veral decades of history. In engineering practice, it is a 
typical situation that an object (e.g. a machine or elec- 
tronic circuit) is controlled by a human intervention to 
influence the state of the object, or observing a transform 
of the state the task is to recover the state process of the 
object. The corresponding concepts of controllability, 
observability and the related state space model played an 
important role in the development of MST. The first 
comprehensive monograph of this discipline, dealing 
only with linear systems, was [1], a more recent refer- 
ence is [2]. Generalizations of controllability and ob- 
servability theory to nonlinear systems can be found in 
[3]. Following a successful development of MST for en- 
gineering purpose, as a new research line, in [4,5] the ap- 
plication MST to the study of population systems was 
proposed.  

For population system, observability means that, from 
partial observation of the system, in principle, the whole 
state process can be recovered. Recently, for different 
ecosystems, the so-called observer systems (or state es- 
timators) have been constructed that enables us to effec- 
tively estimate the whole state process from the observa- 
tion. This technique offers an efficient methodology for 
monitoring of complex ecosystems (including spatially 
and stage-structured population systems). In this way, 
from the observation of a few indicator species the state 
of the whole complex system can be monitored, in par- 
ticular certain abiotic effects such as environmental con- 
tamination may be identified. 

In fact, the systems-theoretical study of the considered 
nonlinear frequency-dependent population models re- 
quired the generalization of general sufficient conditions 
for controllability and observability to the case of non- 
linear systems with invariant manifold (see [4,5]). These 
results have been applied to a control-theoretical model 
of artificial selection, phenotypic observation of genetic *Corresponding author. 
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processes and evolutionary game dynamics, as well as to 
systems-theoretical models of reaction kinetics, see [6- 
15]. 

Later on, the methodology of MST was used for mo- 
nitoring of different population systems: observability 
and system inversion were investigated in density-de- 
pendent models of population ecology, ranging from 
Lotka-Volterra-type ([16-18]) and non Lotka-Volterra- 
type population systems to monitoring of environmental 
change in a complex ecosystem ([19]). In particular, in 
[20] the optimal control software developed in [21] and 
[22], was also used for equilibrium control of a trophic 
chain. In [23] a new nonlinear system inversion method 
was applied for the reconstruction of time-dependent abi- 
otic environmental changes, from the observation of cer- 
tain indicator species. Furthermore, both monitoring and 
control were studied in a systems-theoretical model of 
radiotherapy in [24], while in [25-27] tools of MST were 
applied to biological pest control. Most of these topics 
and results have been reviewed in the survey papers [28] 
and [29].  

In the present survey we report on recent develop- 
ments in the methodology and application areas of mo- 
nitoring in complex ecological systems. Although the 
presented methodology can be applied for the monitoring 
of large, but appropriately structured complex population 
systems, for the sake of simplicity and transparency we 
illustrate the procedures on observation systems of low 
dimensions. A particular attention is paid to recent results 
concerning the so-called verticum-type observation sys- 
tems. The linear version of such systems have been intro- 
duced for modelling certain industrial systems and stud- 
ied for controllability and observability in [30-38]. Ver- 
ticum-type systems are composed from several “subsys- 
tems” connected sequentially in a particular way: a part 
of the state variables of each “subsystem” also appears in 
the next “subsystem” as an “exogenous variable” which 
can be also interpreted as a control generated by an “exo- 
system”. Therefore, these “subsystems” are not observa- 
tion systems, but formally can be considered as control- 
observation systems. The problem of observability of 
such systems can be reduced to rank conditions on the 
“subsystems”, which is a kind of decoupling of a com- 
plex system into simpler parts. Since most dynamic 
models of population biology are nonlinear, for the ap- 
plication in this field, it was necessary to extend the basic 
concepts and theorems of the theory of linear verticum- 
type systems to the nonlinear case, which has been done 
recently in [19,39-41]. 

The paper is organized as follows. In Section 2, based 
on [42], following a necessary stability analysis accord- 
ing to [43], the stock estimation of a fish population with 
reserved area is presented, using an appropriate observer 

design. In Section 3 results from [40] are recalled con- 
cerning the monitoring of ecological interaction chains of 
the type resource-producer-primary user-secondary con- 
sumer. The dynamic behaviour of these four-level chains 
is modelled by a system of differential equations, the 
linearization of which is a verticum-type system. Section 
4 is devoted to the general concept of a nonlinear verti-
cum-type observation system and the corresponding ge- 
neral sufficient condition of observability obtained in 
[41]. As an application, observer design is also presented 
for a stage-structured population, decomposing the state 
estimation according to the verticum structure. In Section 
5 further possible application fields of the presented mo- 
nitoring methodology are summarized. Finally, in the Ap- 
pendix the theoretical background necessary for the mo- 
nitoring of nonlinear verticum-type systems is recalled.  

2. Stock Estimation of a Fish Population 
with Reserved Area 

For the basic model of this section, from [43] we recall 
the dynamics of a fish population moving between two 
areas, the first, an unreserved one where fishing is al- 
lowed, and the second, a reserved one where fishing is 
prohibited. At time t, let x1(t) and x2(t) be the respective 
biomass densities of the same fish population inside the 
unreserved and reserved areas, respectively. Assume that 
the fish subpopulation of the unreserved area migrates 
into the reserved area at a rate m12, and there is also an 
inverse migration at rate m21. Let E be a constant fishing 
effort applied for harvesting in the unreserved area and 
let us assume that in each area the growth of the fish 
population follows a logistic model. The dynamics of the 
fish subpopulations in unreserved and reserved areas are 
then assumed to be governed by the following system of 
differential Equations (1) and (2): 

1
1 1 1 12 1 21 2 1

1

1
x

x r x m x m x qEx
K

 
     

 
      (1) 

2
2 2 2 12 1 21 2

2

1
x

x r x m x m x
K

 
    

 
 ,       (2) 

where r1 and r2 are the intrinsic growth rates of the cor- 
responding subpopulations, K1 and K2 are the carrying 
capacities for the fish species in the unreserved and re- 
served areas, respectively; q is the catchability coeffi- 
cient in the unreserved area. All parameters r1, r2, q, m12, 
m21, E, K1 and K2 are positive constants. 

In [43], it was checked that for a unique positive equi- 
librium  ,1 2

x x x 

 
 

of the dynamic model (1)-(2) the 
following set of inequalities are sufficient: 

 2

2 1 12 2 21 1

2 21 1

r r m qE r m r

K m K

  
          (3a) 
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 2 21 1 12r m r m   12 21qE m m           (3b) 

1 1

1

r x

K



1 12 .r m qE             (3c) 

Furthermore, the Lyapunov function 

  1 2 21
1 1 1 2

1 1 12

: ln 2
2 2

2

ln
x x m

V x x x x x
x

x x
x x m


 

 

 
    
  x

 


 
  

 
 

also implies asymptotic stability of equilibrium x

 

for 
system (1)-(2), globally with respect to the positive ort- 
hant of . Throughout the section we shall suppose 
conditions (3a)-(3c) to guarantee the stable coexistence 
of the system applying a constant reference fishing effort. 

2R

 1 1 , ,

0

n mC



R R

2.1. Observability of the Model 

From [3], we recall the basic concept of local observabil- 
ity of nonlinear systems and a sufficient condition for a 
system to have this property, in order to apply it to the 
considered model and in order to be used in the follow- 
ing sections.   

Let 

 
   

, , , ,

, 0,

n n

n

m n f C h

x f x h x  

 

 

N R R

R
 

and consider observation system 

 x f x                 (4) 

 y h x ,                (5) 

where function (5) defines the transform of the state, 
observed instead of the state itself. 

Definition 2.1. System (4)-(5) is called locally ob- 
servable at x  on 0,T 1 2,, if for any solutions x x


 of 

(4) defined on 0,T , initially close enough to x ,  
1 2 2h x  1x xh x  . 

Linearizing (4)-(5) around x , we get 

   : , :A f x C h x    . 

Theorem 2.1. ([3]) 1rank nC CA CA n       

system (4)-(5) is locally observable at x  on  0,T . 
Now, let us consider the problem of stock estimation 

in the reserve area on the basis of the biomass harvested 
in the free area. (For technical reason its difference from 
the equilibrium value is supposed to be observed.) To 
this end, in addition to dynamics (1)-(2) we introduce an 
observation equation 

   1 1: ,  qE x xy h x           (6) 

representing the observation of the biomass harvested in 
the free fishing area. Then linearizing observation system 
(1)-(2), (6), we get the Jacobian of the right-hand side of 

(1)-(2) 

1
1 1 12 21

1

2
12 2 2 21

2

2

: ,

2

x
r r m qE m

K
A

x
m r r m

K





 
   

    
  
  

and the observation matrix 

   : 0 .C h x qE   

Now, for the linearized system we obviously have 
rank 2.

T
C CA     Hence, Theorem 2.1 implies local 

observability of the system near the equilibrium. In other 
words, in principle the whole system state (in particular 
the stock of the species in the reserve area) as function of 
time can be uniquely recovered, observing the biomass 
harvested per unit time. In the following illustrative ex- 
ample we will see how the state of the system (and hence 
the total stock) can be effectively calculated from the 
catch realized in the fishing area, applying the method- 
ology of [44] that we will recall next. 

2.2. Observer System 

Recently, for different ecosystems, the so-called observer 
system (or state estimators) have been constructed that 
enables us to effectively estimate the whole state process 
from the observation. Here we remind the methodology 
that will be used in this subsection and in the following 
sections. Consider again observation system (4)-(5)  

   x ,f x y h x 

 1 ,n m nG C R R R



. 

Definition 2.2. Given , system  

,z G x y                 (7) 

is called a local (exponential) observer for system (4)-(5) 
at  , if for the composite system (4)-(5), (7) we have x

         00 0 ,x z x t z t t    R , 1) 

2) there exists a neighbourhood V  of x  such 
that      0 , 0 lim 0x z V z x


     (exponentially). 

Theorem 2.2. ([44]) Suppose equilibrium x  of sys- 
tem (4) is Lyapunov stable, and there exists nxn matrix 

 such that K A KC  is stable. Then system 

   z f z K y h z    

1 2 1 2

12 21

0.7, 0.5, 10, 2.2,

0.2, 0.1, 0.25

r r K K

m m q

   
  

0.9E

             (8) 

is a local exponential observer for observation system 
(4)-(5). 

Example 2.1. For a possible comparison, in this nu- 
merical example we use the same parameters as [45]: 

  

and  . 
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1
1 1 1

2
2 2 1

0.7 1 0.2 0.1
10

0.5 1 0.2 0.1
2.2

x
2 1

2

0.25 0.9x x x

x
x x x

     
 
     
 





x x

x

 

 4.85,3.12

0
: ,

10
K

 
  
 

  (9) 

Now the positive equilibrium is , and 
with  

x

 

matrix A KC  is Hurwitz; therefore by Theorem 2.2 
we have the following observer system 

 

2 1

1

0.25 0.9

.

z z

z x

 

  

 0 : 30,120

0 : 3

1
1 1 1

2
2 2 1

2 1

0.7 1 0.2 0.1
10

0.5 1 0.2
2.2

      0.1 10 0.25 0.9

z
z z z

z
z z z

z y

     
 
    
 

   



   (10) 

If we take an initial condition  for sys- 
tem (9), and similarly, we consider another nearby initial 
condition,  for the observer system (10), 
then the corresponding solution  of the observer tends 
to the solution 

x

 5,100
z

z

x  of the original system, as shown in 
Figure 1. We note that in this particular case the conver- 
gence is much faster than that of the observer constructed 
in [45]. 

3. Monitoring of a Four-Level Ecological 
Chain 

As a modification of the well-known three-level trophic 
chain consisting of resource-producer-primary consu- 
mer studied in [46], we consider the following four-level 
ecological interaction chain:  

level 0: a resource; 
level 1: the producer is a plant, supposed to die out 

without the resource, and the positive effect of the latter 
is proportional to the quantity of the resource present in 
the system;  

level 2: the primary user (instead of consumer), i.e. a 
commensalist animal, making use of the plant as part of 
its habitat without harming it (e.g. an insect species hos- 
ted by the plant), displaying a logistic dynamics in ab- 
sence of the plant and the secondary consumer; 

level 3: the secondary consumer is a monophagous 
predator of the primary user (e.g. an insectivorous sing- 
ing bird species), with intraspecific competition. 

(For more details on the role of commensalism in eco- 
logical communities, we supposed between the producer 
and the primary user, see e.g. [47]).  

For a dynamical model let 0

 
 

 

Figure 1. Solution of observer (10), approaching the solu- 
tion of system (9).  
 
sent in the system, 1 2x x and 3, x  the time-varying po- 
pulation size (biomass or density) of the producer, the 
primary user and the secondary consumer, respectively. 
Assume that a unit of biomass of the plant consumes the 
resource at velocity 0 0x ; however, it increases the bio- 
mass of the plant at rate 1 . The relative rate of increase 
in biomass of the primary user, due to the presence of the 
plant is 2 1 . While the plant population is supposed to 
die out exponentially in the absence of the resource, with 
Malthus parameter 1 , the primary user displays a lo- 
gistic growth with Malthus parameter  and is limited  

k

k x

m

2m

x  be the time-dependent 
quantity, with a constant supply  of the resource pre- Q

by a carrying capacity 2

2

m
. Furthermore, the secondary  


consumer would die out at rate 3 , without the presence 
of the primary user, and there is an intraspecific competi- 
tion among predators with rate 3

m

 . We will consider a 
partially closed system, where the dead plants may be 
recycled into nutrient resource with rate 1 . Then with 
parameters  

   
0 2 1 2 3 2 3

1 2 3 1

, , , , , , , 0;

, , 0,1 ; 0,1

Q m m m

k k k

   





 
, 

we have the following dynamic model for the considered 
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   interaction chain:  
0 0 0 0 1 0 0, :h w h x x x x

0 0 0 1 1 1 1x Q x x m x               (11) 

 1 1 1 1 0 0x x m k x             (12) 

 2 2 2 2 1 2 2 2 3x x m k x 



x x           (13) 

3 3 3 3 2 2 3 3x x m k x x             (14) 

Theorem 3.1. ([40]) Let us suppose that for given 
biological parameters, the resource supply is high 
enough,  

2
1 3 2 1

3 2 1 0

2
,

m

k k



1 2

max
m m

Q
k k  

 
 
 

 0 
 0 

 .         (15) 

Then, both the open 1  and the partially closed 

1  ecological chains stably coexist in the sense 
there exists a positive equilibrium 


x

 
0 1 1 1 1

1 1 0 0

 of system calcu- 
lated in [40], which is asymptotically stable.  

Remark 3.1. The conditions of Theorem 3.1 can also 
be formulated conversely: Given a resource supply Q, 
biological parameters satisfying condition (15) imply the 
stable coexistence of the considered ecological chain.  

3.1. Observability of the Ecological Chain 

Let us consider now the following two auxiliary 2-di- 
mension systems  

0 0

1 1

x Q x

x x m 




x m x

k x

 



  



 
 

2 2 2 3

2 2 3 3

          (16) 

and 

2 2 2 2 1

3 3 3 3

x x m k x

x x m k

 

  





x x

x x

 

 

  


.       (17) 

In ecological terms (16) is a subsystem of the original 
chain (11)-(14), while in (17) the positive effect of the 
plant on the animal species 2 appears with the equilib- 
rium value 1x

: 0

 : ,w x x    1 : ,w x x  
1, x

 of the plant. We note that by setting 

2  (i.e. considering the original system without 
commensalisms), the original ecological chain is split up 
into two components without interaction.  

k

Remark 3.2. The biological interpretation of system 
(17) is the following: Suppose that system (11)-(14) is in 
equilibrium, and the two animal species, by an external 
disturbance, deviate from their equilibrium densities. 
Then the resource-primary consumer subsystem can 
maintain its equilibrium, and the predator-prey subsys- 
tem will be governed by system (17). 

Continuing the study of systems (16) and (17), we can 
easily check that they have respective equilibria 

0 0  and 2 3 . For system (16) with 
notation , let us consider observation func- 
tion 

1

0 0:w x

  

0w

.        (18) 

This means that the deviation of the resource from its 
equilibrium value is observed. In order to check local 
observability, we calculate the linearization of system 
(16) at equilibrium  :  

   0 1 0 0 1 1
00 0 0 0

1 0 1

: ; : 1 0 .
0

x x m
A C h w

k x

  


 




   
   

 

0

0 00

rank 2
C

C A

 
 

 

0

 

(19) 

Hence we easily calculate  

, 

provided 1 

 1 2 3: ,w x x

. From the classical sufficient condition 
for the local observability of nonlinear systems, [3], we 
obtain local observability of system (16) near the equi- 
librium, with observation (18). 

Similarly, suppose that in system (17) the deviation of 
the density of the prey from its equilibrium value is ob- 
served, i.e., with notation  we consider the 
observation function  

 1 1 2 2:h w x x 

1w

.             (20) 

  is The linearization of system (17) at equilibrium 

   2 2 2 2
11 1 1 1

3 2 3 3 3

: ; : 1 0
x x

A C h w
k x x

 
 

 


 

  
   

 

2 0

.  (21) 

Checking again the rank condition, by  

1

1 11

rank 2
C

C A

 
 

 

1w

 we get 

, 

implying local observability of system (17)-(20) near 
 . Now, let us observe that with definition 

2 2
10

0
:

0 0

k x
A

 
  
 

00

10 11

0
:

A
A

, 

system matrix  

A A

 
  
 

0

1

0
:

0

C
C

C

 
  
 

w Aw

, 

together with observation matrix 

 

define a verticum-type linear observation system in the 
sense defined in the Appendix. Applying Theorem A.2 of 
the Appendix, we obtain that the linear observation sys- 
tem 

                   (22) 

y Cw                   (23) 

A  is just the Jacobian of the right- is observable. Since 
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hand side of system (11)-(14), therefore (22) is just the 
linearization of system (11)-(14). Furthermore, (23) is the 
linearization of observation function  

   0 0 2 2,x x x   :h x col x         (24) 

which can be associated with system (11)-(14). Finally, 
applying again the classical rank condition of [3], we can 
summarize the reasoning of this subsection in the fol- 
lowing theorem.  

Theorem 3.2. Let us suppose that ecological chain 
(11)-(14) is partially closed  0 1 .Then with obser- 
vation function (24), system (11)-(14) is locally observ- 
able near equilibrium x  calculated in [40].   

3.2. Construction of an Observer System 

Following the procedure of [44], let us first determine 
conditions for the construction of observers for systems 
(16) and (17), with respective observation functions (18) 
and (20). 

For matrices 00A  and , figuring in (19), we have 
to find a matrix 

0C
 0 00 01: ,H col h h

0 0 1 1

0

  such that  

0 1 00
00 0 0

1 0 1 01

x h x m     
 
 

A H C
k x h 

 
 


 

is a Hurwitz matrix, i.e. all roots of the characteristic 
polynomial 0  of matrix 00 0 0p A H C

00 0 1h x  

01 1 0 1h k x 

0h 

11

 have real nega- 
tive parts. It is easy to check that the latter condition is 
satisfied if and only if the following inequalities hold: 

               (25) 

.               (26) 

Simple sufficient conditions for (25) and (26) are 

00  and 01 , respectively. By the Theorem of 
[44], the observer for system (16) with observation func- 
tion (18) can be determined. 

0h 

Similarly, for matrices A  and , figuring in (21), 
we need to find a matrix 1 1 3

1C
 2 1: ,H col h h

1p

12 2 2

13 3 3

  such that all 
roots of the characteristic polynomial  of matrix  

2 2
11 1 1

3 2 3

x h x

h x

 
 

A H C
k x

 

 

 
 

  

12 13andh h

2 2 3 3 ,h x x 

 
   

have real negative parts. Now a straightforward checking 
shows that the latter condition is satisfied if and only if 

 satisfy the following inequalities: 

12
               (27) 

  2
3 3 2 2 3

.
2 2 21 3

13
2 2

x h x
h

x

 



 


k x x   

0h 
13 0h 

00

01

12

13

0

0

0

0

h

h
H

h

h

 
 
 
 
 
 

, 0h h  , 0h h 

        (28) 

Similarly to the previous case, in order to satisfy con- 
ditions (27) and (28), it is sufficient to set 12  and 

, and again by the Theorem of [44], the observer 

for system (17) with observation function (20) can be 
determined. 

Finally, based on the above reasoning, it will be easy 
to prove the following result: 

Theorem 3.3. ([40]) Given 

, 

with 00 12  and 01 13 , and function f  de- 
fined as the right-hand side of system (11)-(14), system  

    z f z H y h z  

 

 

is a local exponential observer for system (11)-(14) with 
observation equation y h x h

 
 
 

0 0 1 1

1 1 0

2 2 1 2 3

3 3 2 3

2.1 0.2 0.2 0.4

0.4 0.84 0.2

0.25 0.7 0.1 0.4

0.1 0.9 0.4 0.5 .

x x x x

x x x

, where  is defined in 
(24). 

Example 3.1. We consider the following system 

x x x x x

x x x x

   

   

   

    








     (29) 

System (29) has a positive equilibrium  
 2.38,5.3,10.41,7.3x  , which is asymptotically stable, 

because conditions of Theorem 3.1 are satisfied. In Fig- 
ure 2 it can be seen how, e.g. from initial condition 
   0 : 1,6,9,5x   near the equilibrium, the solution x  

of system (29) tends to this positive equilibrium, see 
Figure 2. 

Consider now system (29) with observation 

   0 0 2 2,y h x x x x x     . 

 

 

Figure 2. Solution of system (29) with initial condition 

   0 = 1,6 ,9 ,5x . 
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Since matrix 

10 0

20 0

0 10

0 0.01

 
  
 
 

 

  

10 0

20 0

0 10

0 0.01

y h z

H  , 

satisfies the conditions of Theorem 3.3, we can construct 
the following observer 

 
 
 

0 0 1 1

1 1 0

2 2 1 2 3

3 3 2 3

2.1 0.2 0.2 0.4

0.4 0.84 0.2

0.25 0.7 0.1 0.4

0.1 0.9 0.4 0.5

z z z z

z z z

z z z z z

z z z z

     
                      








 

(30) 

Solving (30) with initial condition    0 2, 4,7,7

N
1i  2

z  
near the equilibrium, we can check how this solution 
tends to recover the corresponding solution of system 
(29), see Figure 3. 

4. A Stage-Structured Fishery Model with 
Reserve Area 

Let us consider a modification of the stage-structured 
fishery model of [45], supposing that there is reserve area 
where fishing is not allowed. In what follows, the first 
index of the biomass density  will indicate the area: 

 for the reserve and i   for the free area; the 
second index will refer to the development stage: 0j   
for the pre-recruits, i.e. the eggs, larvae and the juveniles 
together, and  the exploited stage of the population. 
The dynamics of the system is modeled by the following 
autonomous system of differential equations  

1j

2
11 10 10N N p N10 10 10 11 11 11 10N m N f N p      (31a) 

 

 

Figure 3. Solutions of systems (29) and (30) with the respective 
initial conditions    , , ,1 6 9 5 0x  and   , , ,0 2 4 7 7

11 11 10 11 11 11N N m N N   

2
20 20 20 21 21 21 20 21 20 20N m N f N p N N p N    

21 21 20 21 21 11 21N N m N N qEN    

ijm

z . 

         (31b) 

   (31c) 

    (31d) 

where 
 natural mortality rate of class ,  ij

1i  linear aging coefficient in areas    1, 2,i 
0ip  juvenile competition parameter in areas i 1,2,  

f  fecundity rate of adult fish in areas i  1i 1, 2,
1ip  predation rate of class 1 on class 0 in areas 

1, 2,i   
q   catchability coefficient of class 1 in the unre- 

served area, 
 migration rate of the second class from reserved 

area to unreserved area, 
E constant fishing effort. 
From [41] we know that if 

 11 11 10 11 0,f m m             (32) 

system (31) has a unique positive equilibrium 
 21, , ,N N N N N    

11 11 10 0f p N 

10 11 20 , which is asymptotically stable 
under conditions  

 21 21 20 0.f p N  and     (33) 

Remark 4.1. Since asymptotic stability implies Lya- 
punov stability, in the next section we can apply Theo- 
rem A.3 of the Appendix to the corresponding nonlinear 
verticum-type observation system. 

4.1. Observability of the Model 

 1 2,N N N  ,N N N with 1 10 11 , Let 
 0 21,N N N

4 2: ,h R R

   

2 2  and we consider the observation func- 
tion  defined by 

 1 2 11 11 21 21, , .y h N N N N qE N N    

2
10 10 10 11 11 11 10 11 10 10

11 11 10 11 11 11

N m N f N p N N p N

N N m N N 

    

  





2
20 20 20 21 21 21 20 21 20 20

21 21 20 21 21 11 21

N m N f N p N N p N

N N m N N qEN 

    

   





   (34) 

Now the observability of observation system (31)-(34) 
will be analyzed using the results of the Appendix. Con- 
sider systems 

   (35) 

and 

. (36) 

Given observation  

 1 1 10 11 11 11, ,y h N N N N             (37) 

we calculate its linearization 

   1 1 1: 0 1 .C h N    
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It is easy to check that   2C C1 1 1 , where 1rank A  A  
is the linearization of (35), therefore by Theorem A.1 of 
the Appendix we can guarantee local observability of 
system (35)-(37). 

A KCwe can check that   is Hurwitz, which allows the 
construction of an observer for system (31)-(34) more- 
over, this observer is composed of the observers con- 
structed for the two subsystems. 

Example 4.1. Consider the following model parame- 
ters of [48]: 

Analogously, for observation  

 2 2 20 21,y h N N   21 21qE N N 

   2: 0 .N qE 

      (38) 

10 20 11 21

11 21 10 20

11 21 11 21

0.4, 0.4, 0.5, 0.5,

0.1, 0.1, 0.2, 0.1,

0.8, 0.9, 0.05, 0.1,

0.65, 0.07, 0.5.

m m f f

p p p p

m m

q E

 


   

   

   
  

1 0

10
K

 
  
 

 

2
10 10 11 10 11 10

11 10 11 11 11 11

0.4 0.5 0.1 0.2

0.8 0.05 0.65 10

Z Z Z Z Z Z

of system (36) calculate 

2 2C h    

Again we have  2 2 2 2C C A rank , where 2A  is the 
linearization of (36), therefore from Theorem A.1 of the 
Appendix we have local observability of system (36)- 
(38). Since under the appropriate conditions equilibrium 

 is asymptotically stable and hence also Lyapunov 
stable, applying Theorem A.3 we obtain  

To construct the observer system for (35)-(37) we can 
take 

N 

. 

Theorem 4.1. Suppose that conditions (32) and (33) 
hold. Then observation system (31)-(34) is locally ob- 
servable near the asymptotically stable equilibrium.  

Then the observer system is 

4.2. Construction of an Observer System 

Given the observation system (35)-(37), using the corre- 
sponding observer design of [44], it is sufficient to find a 
matrix 1K  such that 1

1 1A K C
0

 is Hurwitz. It is easy to 
check that with , 1

2k

1
1
2

0
:K

k

 
  
 

2
2 0k 

2
2
2

0
:K

k

 
  
 

 

is appropriate. 
Analogously, for observation systems (36)-(38), with 

, 

, 

2
2 2A K C  is Hurwitz, guaranteeing the construction of 

the observer system.  
From these results, for 

 1 2:
1

2
: ,

K
K C C C 

K

 
 
 

 

Z Z Z Z N Z

    

    


  (39) 

  Considering 0 0.1,0.2 .N 1  as initial value for 
the system (35), and    0 0.5,1Z 

2 0
.

10
K

 
  
 

 

2
20 20 21 20 21 20

21 20 21 11

21 21 21

0.4 0.5 0.1 0.1

0.9 0.1 0.65

      0.07 0.5 10 0.07 0.5 .

Z Z Z Z Z Z

Z Z Z Z

Z N Z

    

  

     




1  for the observer 
(39), in Figure 4 we can see how the solution of the ob- 
server system approaches the solution of the original 
system. 

To construct the observer of system (36)-(38) take 

 

Then the observer system is 

(40) 

   2 0 1,10N   as initial value for  If we consider 

   2 0 1.5,15Z   for the observer (40),  system (36), and 

we obtain the result plotted in Figure 5. 

 

    

Figure 4. Solution of the observer (39) approaching the solution of the original system (35). 
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Now the observer for system (31)-(34) can be simply 

composed from the single observers (39) and (40). In 
Figure 6 we can see how the solution of the observer 
(39)-(40) with initial value , 
estimates the solution of system (31) with initial value 

. 

  0 0.Z 

0.3,8

5. Discussion and Outlook 

Observation problems arise in many fields of human ac- 
tivity, when state of an object can be characterized by 
several numbers (i.e. by a state vector), and it is impossi- 
ble or too expensive to measure all state variables. Then 

1,0.4, 2.5,10

.3,0.1,  0 0N 
 

   

Figure 5. Solution of the observer (40) approaching the solution of the original system (36). 
 

   

   

Figure 6. Solution of the observers (39) and (40) approaching the solution of the original system (31) by coordinates.  
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we may want to recover the whole state vector. In a static 
situation this is clearly impossible, since projection is not 
invertible. However, in dynamic situation the concepts of 
observability and observer design of Mathematical Sys- 
tems Theory turned out to be efficient tools for monitor- 
ing of ecological systems, as well. We presented some 
recent developments in concrete applications to popula- 
tion systems. These systems are not only simple sets of 
populations, but each of them has a particular structure. 
In the first case (Section 2) a single species has a spa- 
tially structured habitat (with a reserve area, where ob- 
servation of density by harvesting is not allowed). In the 
other two cases, verticum-type, i.e. vertically organized 
dynamic population systems (ecological chains in Sec- 
tion 3, and stage structure of a single species in Section 
4), for monitoring purpose “decoupled” observer design 
may be efficient even in large systems. 

These examples anticipate the application of the pre- 
sented methodology in similar situations. Furthermore, in 
multispecies models of evolutionary ecology it also 
opens the way to the monitoring in behaviour-structured 
population systems. In case of density dependent models, 
for the monitoring of propagation or extinction of a spe- 
cies we may want to recover the time-dependent density 
of scarce species, observing a more abundant species of 
the system. This idea may be applied to the dynamic mo- 
dels of [49-53]. In ecological games the dynamics de- 
pends on the behavior types present in the populations, 
see [54-56]. Then the convergence towards a stable co- 
existence can be monitored from the observation of cer- 
tain phenotypes.  

Finally, we note that recent papers also show how ob- 
server design can be efficiently applied for the monitor- 
ing of particular engineering systems. For example, in 
[57] a real-time local observer was constructed for a lin- 
ear model of a solar thermal heating system. With dif- 
ferent algorithm, a global real-time observer was de- 
signed for a more precise nonlinear model for the same 
solar thermal heating system in [58].  
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Appendix 

First, we recall the extension of local observability to the 
case of a control-observation system. 

Suppose 
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System (A.1)-(A.2) is said to be locally observable 
near the equilibrium if there exists 0   such that  
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Then system is locally observabl
rium. 

Remark A.2. The theorem similar to the previous one 
is 

e near the equilib- 

also valid for function F  not depending on control, 
as we have shown in Section 2. 

en
simplified form used in 

th

Now, based on [36], we summarize some concepts, 
notation and a basic suffici t condition for observability 
of verticum-type systems, in a 

e present paper.  
Let 
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system i  , ,i ix f x x (Vi) becomes au
   control- 

em in the sense of this Appendix. Sup- 
h

The above reasoning can be summarized in the fol- 
lowing theorem: 


observation syst
pose that for eac Theorem A.3. If equilibrium x  is Lyapunov stable 

for system 
 0,i k  

 x f x , and  

rank i ii
i

C A
n




   , 

1in
i iiC A  

 

iC


 

m A.2 the verticum-t e system (LV) is 

e linearization of the observation system (V) 
Therefore, by Kalman’s theorem on ob- 

d, which by Theorem A.1 implies local 

then by Theore
observable.  

Hence, th
is observable. 

lle
ob

 
1

rank 0, ,

i

i

i ii
i

n
i ii

C

C A
n i k

C A 

 
 
   
 
 
 


 

yp
then observation system (V) is observable near its equi- 
librium  . x

servability of linear systems (see [1]), the rank condition 
 A.3  is fulfi

servability of system (V) near equilibrium *x . 
 
 
 
 


